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Abstract

Cellular manufacturing (CM) is an approach that can be used to enhance both flexibility and efficiency in today’s
small-to-medium lot production environment. The design of a CM system (CMS) often involves three major decisions:
cell formation, group layout, and group schedule. Ideally, these decisions should be addressed simultaneously in order to
obtain the best results. However, due to the complexity and NP-complete nature of each decision and the limitations of
traditional approaches, most researchers have only addressed these decisions sequentially or independently. In this
study, a hierarchical genetic algorithm is developed to simultaneously form manufacturing cells and determine the group
layout of a CMS. The intrinsic features of our proposed algorithm include a hierarchical chromosome structure to
encode two important cell design decisions, a new selection scheme to dynamically consider two correlated fitness func-
tions, and a group mutation operator to increase the probability of mutation. From the computational analyses, these
proposed structure and operators are found to be effective in improving solution quality as well as accelerating
convergence.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

CM, an important application of group technol-
ogy, is an approach that can be used to enhance
both flexibility and efficiency in today’s small-
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to-medium lot production environment. In essence,
a manufacturing system is decomposed into several
manageable subsystems, named manufacturing
cells. The design of a CMS includes (1) cell forma-
tion (CF) – grouping parts with similar design fea-
tures or processing requirements into part families
and associated machines into machine cells, (2)
group layout – laying out machines within each cell
(intra-cell layout) and cells with respect to one
another (inter-cell layout), (3) group scheduling –
scheduling parts and part families for production,
and (4) resource allocation – assigning tools and
human and materials resources [27]. Ideally, all of
.
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these decisions should be addressed simultaneously
in order to obtain the best results [1]. However,
due to the complexity and NP-complete nature of
each decision and the limitations of traditional
approaches, most researchers have only addressed
these decisions sequentially or independently
[5,6,13,14].

Genetic algorithms (GAs), developed by Holland
[15], have been used extensively as an alternative
method for solving numerical optimization prob-
lems in a wide variety of application domains
including engineering, biology, economics, agricul-
ture, business, telecommunications, and manufac-
turing [11,12,18]. As a general-purpose search
method, a GA combines elements of directed and
stochastic search for exploring and exploiting the
search space to obtain good solutions. In contrast
to other stochastic searches, GAs have the following
unique features: implicit parallelism, population-
based search, independence of gradient information,
and flexibility to hybridize with domain-dependent
heuristics. These features often make them a prefer-
able choice over traditional heuristics. GAs seem to
perform well for some problems, but not so well for
others, especially when multiple objectives and con-
straints are considered. Determining the contribut-
ing behavior of premature and slow convergence
and examining the factors (operators and parame-
ters) that have significant impacts on GA perfor-
mance is important.

Various explorations have been made to study
the convergence behavior and/or process of GAs
from different viewpoints. Notable developments
include dynamic parameter encoding [23], migration
and artificial selection [22], and cloning operations
[2,17]. Since most real-world problems involve mul-
tiple objectives and constraints, researchers have
devoted their efforts to exploring methods that can
solve such problems. Typically, methods for han-
dling multiple constraints include encoding, modify-
ing genetic operators [19], repairing, and penalizing
or rejecting [9,11,20]. Approaches to dealing with
multi-objective problems include weighted sums,
and Epsilon-constrained and sub-population
approaches [9]. Very limited research has been
performed on solving concurrent decisions with
multiple constraints and highly correlated multi-
objectives. Past researchers have studied the impact
of various factors, including problem encoding,
crossover, mutation, population size, crossover
and mutation rates, and halting criteria, on different
domains [7]. Some of these factors will be examined
in this study since they are closely interrelated and
their impacts may be problem dependent.

GAs have been effectively used to solve CF prob-
lems of CM [4,16,26] or facility layout problems
[3,17,25]. But attempts to concurrently make these
two decisions are limited. In this study, a hierarchi-
cal genetic algorithm (HGA) is developed to simul-
taneously form manufacturing cells and determine
the group layout of a CMS. In order to manage
the complicated and correlated decisions, a hierar-
chical chromosome structure, a dynamic selection
strategy, and a group mutation operator are devel-
oped. The major objectives for the current study
are:

(1) to develop a GA approach to solving the inte-
grated CF and group layout problem in CM;

(2) to determine the impacts of various parame-
ters, specifically the impact of crossover rate,
mutation rate, population size, and the maxi-
mum number of generations, on the GA’s
performance.

2. Mathematical description of the problem

We considered many factors, such as routing
(sequence), work load, machine capacity, demand,
batch size, and layout type in the problem formula-
tion (see Fig. 1). Routing is often presented in a
machine/part/sequence matrix, where the value, aij,
inside the matrix indicates the operational sequence
of part j to be processed by machine i. Since machine
layout type (e.g., in single row, U shape, multiple
rows, or other configurations) has significant impact
on part transfer cost, it needs to be considered in CF.
The following notation is used in the model:

Indices

i machine index; i = 1, . . . ,m

j part index; j = 1, . . . ,n

k cell index; k = 1, . . . ,c

p machine position index; p = 1, . . . ,mp

Parameters

Bj transfer batch size for part j

CjA unit intra-cell transfer cost of part j

CjE unit inter-cell transfer cost of part j

CjB unit intra-cell backtracking cost of part j
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Fig. 1. The integrated cell design problem.
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Cj
ii0 transfer cost of part j between machine i

and i 0

Dj demand quantity of part j

ICk =1, if cell k is to be formed; 0, otherwise
Mi the position number of machine i (or the se-

quence of machine i to be laid out)
NC minimum number of cells to be formed
NM maximum number of machine types al-

lowed in each cell
Rij operation number done on part j using ma-

chine i

f j
ii0 number of trips for moving part j between

machine i and i 0; f j
ii0 ¼ Dj=Bj, if Ri0j�

Rij ¼ 1; 0, otherwise
Ti the capacity of machine i

tij processing time of part j with machine i

SP set of pairs (i, j) such that aij P 1

Decision variables

Xik =1, if machine i is to be assigned to cell k; 0,
otherwise

Yjk =1, if part j is to be assigned to cell k; 0,
otherwise

Zip =1, if machine i is to be assigned to position
p; 0, otherwise

Uijk = 1, if Xik = 1 and Yjk = 0; 0, otherwise
Vijk = 1, if Yjk = 1 and Xik = 0; 0, otherwise
Consequently, we obtain
Cj
ii0 ¼ ðMi0 �MiÞCjA if X ik;X i0k > 0; Mi0 > Mi

ðMi �Mi0 ÞCjB if X ik;X i0k > 0; Mi0 < Mi

jk � k0jCjE if X ikX i0k ¼ 0; X ikX i0k0 > 0

0 otherwise:

ð1Þ
The problem can be formulated as

Minimize
Xn

j¼1

Xm

i¼1

Xm

i0¼1

f j
ii0C

j
ii0 and ð2Þ

Minimize
X

k

X

ði;jÞ2sp

ðUijk þ V ijkÞ
2

ð3Þ

Subject to
Xc

k¼1

X ik ¼ 1; i ¼ 1; . . . ;m; ð4Þ

Xc

k¼1

Y jk ¼ 1; j ¼ 1; . . . ; n; ð5Þ

Xm

i¼1

X ik 6 NM� ICk; k ¼ 1; . . . ; c;

ð6Þ
Xc

k¼1

ICk P NC; ð7Þ

Xm

i¼1

Zip ¼ 1; p ¼ 1; . . . ;mp; ð8Þ
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Xmp

p¼1

Zip ¼ 1; i ¼ 1; . . . ;m; ð9Þ

X ik

Xn

j¼1

Y jktijDj=T i 6 1; i ¼ 1; . . . ;m;

ð10Þ

X ik; Y jk; Zip ¼ 0 or 1: ð11Þ

Objective functions (2) and (3) are for minimizing
the total cost of movement (both inter-cell and
intra-cell) and exceptional elements (EEs) respec-
tively. Here, an EE is defined as a part where some
of its operations need to be performed outside the
part’s designated cell. Constraint set (4) is to ensure
that each machine is only being assigned to one cell.
Constraint set (5) is for ensuring that each part is
only being assigned to one cell. Constraint set (6)
is for preventing the assignment of more than NM
machines to each cell. This constraint set is also
used to prevent all machines from being assigned
to a single cell. Constraint set (7) is for forcing at
least NC cells to be formed. Constraint (8) is for
restricting each position to accept only one
machine. Constraint (9) is for ensuring that each
machine is being assigned to only one position.
Constraint (10) is for forcing machine workload to
not exceed its capacity. The parameters used in
the model can be estimated based on current shop
floor configuration and past production data.

CF problems have been shown to be NP-com-
plete [5,6,13,14]. The mathematical model, however,
provides an important basis for designing GA appli-
cations. The objective functions serve as the fitness
functions for evaluating the performance of chro-
mosomes. The constraints are used to filter and
repair unqualified chromosomes.

3. Applying a GA to a CMS design

The proposed GA involves the following steps –
problem encoding, population initialization, fitness
evaluation, selection, crossover, mutation, and
replacement (see Fig. 2). GAs start by encoding
the solution in a chromosome string containing sev-
eral genes. The value of each gene is an allele. An
initial population of chromosomes is then gener-
ated, usually in a random fashion, to be the initial
solutions of the problem. A fitness function is
selected and used to evaluate the relative perfor-
mance, or fitness value, of the chromosomes. Based
on the fitness value, the selection operator selects
superior chromosomes for the new mating pool.
The evolution is simulated using reproduction oper-
ators such as crossover, which mimics propagation;
and mutation, which mimics random changes
occurring in nature. Reproduction operators are
used on the mating pool to generate new solutions,
called offspring. After multiple generations of evolu-
tion, highly fit chromosomes often emerge that cor-
respond to very good solutions to the problem.

3.1. Hierarchical chromosome structure

In order to encode CF information for both parts
and machines and for machine layout information,
a two-layer hierarchical scheme is proposed. In the
first layer, a string of integer numbers is used to
encode the CF results for machine and then part
genes [26]. In the second layer, the allele of each
gene represents the positional weight at which the
machine is placed. These weights are then ranked
to determine the layout sequence of the machines.
The machine with the highest weight will be placed
in the first position. The genes of the first layer were
used to control the genes of the second layer in a
hierarchical manner.

For illustration, consider a data set with 10 parts
and seven machines to be classified into two manu-
facturing cells. In Table 1 we show a typical chro-
mosome. The chromosome contains two layers of
genes. In layer one, the chromosome contains 17
genes. The allele of each gene represents the cell
number to which the machine or part belongs. For
instance, machine 1 is assigned to cell #2, machine
2 is assigned to cell #1, and so on. As such cell #1
contains machines 2, 3, 4, and 5 and parts 1, 2, 3,
4, and 6 and cell #2 contains machines 1, 6, and 7
and parts 5, 7, 8, 9, and 10. In layer two, the chro-
mosome contains seven genes. The positional
weight for machine 1 is 3, the weight for machine
2 is 4, and so on. The weight matrix of this example
is {3,4,2,5,1,6,7}. By ranking the weights, the
machines will be laid out in the order of machines
7, 6, 4, 2, 1, 3, and 5. Combining the CF obtained
from the control genes in layer 1, we obtain that
the order to lay machines in cell #1 is machines 4,
2, 3, and 5 and machines 7, 6, and 1 for cell #2.

3.2. Dynamic selection strategy

A number of measures have been used to evalu-
ate the performance of CF and machine layout.
The popular metrics used are the number of EEs
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Table 1
Example of chromosome representation

Machine Part

Genes 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10
Locus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Layer 1 2 1 1 1 1 2 2 1 1 1 1 2 1 2 2 2 2
Layer 2 3 4 2 5 1 6 7
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and total cost of movement [8]. In order to deter-
mine the optimal CF and layout decisions simulta-
neously, four approaches are used in selecting the
fitness function:

(1) use a single objective as the fitness function;
(2) use linearly weighted sum of objective func-

tions as the fitness function;
(3) use Pareto-based fitness assignment for the fit-

ness function;
(4) use a dynamic assignment to switch between

fitness functions.

There have been no general guidelines regarding
which approach is the best [18]. Based upon schema
concepts [15], for highly correlated fitness functions
the dynamic switch assignment could be a better
choice. A schema is a string of symbols taken from
the alphabet {0,1,#} for a binary string. The sym-
bol ‘‘#’’ indicates that we ‘‘don’t care’’ what kind
of attribute occurs at a given position, thus a
schema can represent several bit strings. For exam-
ple the schema #01# represents four strings: 0010,
0011, 1010 and 1011. Schema theorem was pro-
posed to explain how GAs can be used to exploit
in parallel many similarities contained in short,
high-performance schemata and illustrate the neces-
sity of finding the best solution by considering the
effect of reproduction, crossover, and mutation for
a particular schema [15].

The usefulness of schema theorem has been
widely debated because it has some limitations
[10,21]. In spite of that, the theorem provides gen-
eral guideline on how GAs work. In this study, we
place more emphasis on using correlated good sche-
mata for improving solutions and exploring the idea
behind the concept of schemata to increase the
speed of convergence for lengthy chromosomes.

The logic of the dynamic selection strategy is
given in Fig. 3. The main idea behind it is that if
the best fitness value remains unchanged for a fixed
number of generations (e.g., 10 generations), it is



Fig. 3. Logic of dynamic selection.
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time to switch to the other fitness function or stop
the evolution process.

We now present the theory behind the dynamic
selection logic.

Definition 1. For schema H, if the fitness value of
the chromosome with H is always better than that
of without H, then schema H is a good schema for
the fitness function f(X) and will be defined as H*(f),
otherwise as H+(f). Thus, f(H*) P f(H+).

Definition 2. If the correlation coefficient of the val-
ues of two functions is a positive value, then the two
functions are positively correlated.

Theorem 1. If two fitness functions f1 and f2 are pos-

itively correlated, then the good schema H* for f1 is

also good for f2. That is, H*(f1) � H*(f2)

Proof. From Definition 1, f1(H*) P f1(H+) if there
exists H*(f1).

Since f1 and f2 are positively correlated,
f2(H*) P f2(H+).

Thus, {H*(f1)} � {H*(f2)}. h

Since that total cost of movement consists of the
costs of inter-cell and intra-cell movements and
the inter-cell movement is implicitly determined by
the EEs and unit inter-cell movement cost [8], there
exists a positive correlation between total cost of
movement and EEs.
For two highly correlated fitness functions f1 and
f2, if we ignore f2 at the first stage of evolution (that
is, only consider the genes in the first layer), then the
search space decreases by mm. Similarly, if at the
second stage we only consider the genes in the sec-
ond layer, then the search space may be decreased
by cm+n, where c is the number of cells. Conse-
quently, using a dynamic selection operator for
GA evolution would significantly improve computa-
tional efficiency.

3.3. Crossover operators

Due to the unique hierarchical chromosome
scheme used, a one-point crossover and its variation
– partial mapped crossover (PMX) is used [11,12].
At first, a cut point is randomly selected over the
whole chromosome. Then one-point crossover is
used for layer 1 and PMX is applied to layer 2 to
prevent from producing illegal chromosomes.

An example of the PMX crossover is given in
Table 2. P1 and P2 is the chromosome pair selected
for crossover. If only the one-point crossover is
used, the reproduced chromosomes, C1 0 and C2 0,
may contain some redundant alleles (e.g., 4 and 5)
and miss some other necessary alleles (e.g., 1 and
6). These chromosomes are illegal because it means
machines 2 and 6 will be assigned to the same loca-
tion and there is no machine being assigned to posi-
tion 1 or 6. To prevent these illegal chromosomes



Table 2
Numerical illustration of crossovers

Cut Point ↓
Locus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 1 1 1 1 2 2 1 1 1 1 2 1 2 2 2 2
P1

3 4 2 5 1 6 7
1 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1 1

P2
1 3 6 2 7 4 5
2 1 1 1 2 1 2 1 1 2 2 1 2 1 2 1 1

C1’
3 4 2 5 7 4 5
1 1 1 2 1 2 2 1 1 1 1 2 1 2 2 2 2

C2’
1 3 6 2 1 6 7
2 1 1 1 2 1 2 1 1 2 2 1 2 1 2 1 1

C1
3 6 2 1 7 4 5
1 1 1 2 1 2 2 1 1 1 1 2 1 2 2 2 2

C2
5 3 4 2 1 6 7

162 X. Wu et al. / European Journal of Operational Research 181 (2007) 156–167
from reproducing, we need to apply PMX to layer 2.
In layer 2, for chromosome C1 0 we first replace
alleles 1, 6, and 7 with 7, 4, and 5, then we determine
the mapping relationship (5 M 7 M 1 and 4 M 6),
and finally we partially replace the illegal alleles
with their corresponding mapping. For instance, in
chromosome C1 0, alleles 4 and 5 are illegal. We
replace them with alleles 6 and 1 respectively. Simi-
larly, in chromosome C2 0, besides replacing alleles
7, 4, and 5 with 1, 6, and 7, we replace illegal allele
1 with 5 and allele 6 with 4. We thus obtain final
legal children chromosomes C1 and C2.
3.4. Mutation operators

Mutation is designed to prevent premature con-
vergence and to explore a new solution space. How-
ever, unlike crossover, the operation alters or
mutates one or more genes within an individual
chromosome rather than across a pair of chromo-
Table 3
Numerical illustrations of mutations

Cut point # #
Locus 1 2 3 4 5 6 7 8 9

(a) Exchange mutation

Before 2 1 1 1 1 2 2 1 1
3 4 2 5 1 6 7

After 2 1 2 1 1 2 1 1 1
3 4 7 5 1 6 2

(b) Group mutation

Before 2 1 1 1 1 2 2 1 1
3 4 2 5 1 6 7

After 1 2 2 2 2 1 1 2 2
3 4 7 5 1 6 2
somes. We use a conventional exchange mutation
operator and also propose a new variation called
group mutation for exploration. Exchange mutation
involves exchanging the allele of genes from two ran-
domly chosen loci each time. Group mutation is for
exchanging all genes’ alleles of the two groups for
layer 1 at one time. Our motivation for developing
group mutation arises from the concept of schema
that ‘‘It is more difficult to find the schema (H) with

long defining length d(H) and larger number of fixed

positions [15].’’ An example of exchange mutation
and group mutations is given in Table 3, where genes
3 and 7 are randomly chosen for mutations.

Let pr denote the probability of each locus being
selected, pm the mutation probability, pe the proba-
bility of using exchange mutation, and pg the prob-
ability of using group mutation.

Theorem 2. For CF problems, the probability of

finding good schema using group mutation is higher

than that using exchange mutation.

Proof. If the length of the chromosome is l, then
pr = 1/l. Assume that there are q members in one
group and r members in another cell. Then

pe ¼ ð1=lÞq � ð1=lÞr � pm ¼ l�ðqþrÞpm;

pg ¼
q
l
� r

l
� pm ¼

qr

l2
pm ¼ qr � l�2pm;

* 1 6 q < l and 1 6 r < l; ð1=lÞqr
< qrð1=lÞ2

) pe < pg: �

Therefore, theoretically, if we depend only on
exchange mutation, when the length of the chromo-
some is long the chance of having an effective
10 11 12 13 14 15 16 17

1 1 2 1 2 2 2 2

2 2 1 2 1 2 1 1

1 1 2 1 2 2 2 2

2 2 1 2 1 1 1 1
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exploitation for finding the optimal solution in the
near-optimal area is low, even though pm may be
set to 1. However, the group mutation can help to
enhance the GA’s ability of exploitation and make
it converge rapidly to a promising region.
4. Experimental design and research hypotheses

We used two performance measures to evaluate
the results: the value of the objective function (solu-
tion quality) and computation time. The solution
quality was evaluated in terms of total movement
cost and/or the number of EEs. The experiment
was divided into two portions: effects of GA param-
eters and comparison of GA operators. The param-
eters considered for study are crossover rate (Pc),
mutation rate (Pm), population size (Ps), and max-
imum number of generations (Mgen). The operators
evaluated include dynamic selection (DS) and group
mutation (GM). The other controlled factors
include encoding, population initialization, cross-
over, and halting method.

We tested the performance using 10 medium-size
data sets. Data set five was obtained from [6] and the
remaining data sets were randomly generated using a
uniform distribution. The characteristics and known
solution of these data sets are summarized in Table
4. We also generated the operation sequences, part
demand, and processing time for all data sets. The
demand of each part was generated from a range
of 0 to 50 and the processing time from 0 to 5. For
each data set, we ran the test 10 times with different
random number seeds. Since many clustering algo-
rithms are known to be sensitive to the column and
row orders in which the data is presented, we applied
the replicated clustering approach [24] to enable a
robust evaluation of the algorithm. We randomly
Table 4
Characteristics of data sets

Data Size Density (%) EE EE (%)

1 30 · 60 18.94 88 25.8
2 30 · 60 19.11 112 32.6
3 40 · 80 14.13 57 12.6
4 40 · 80 12.59 68 16.9
5 40 · 100 10.50 36 8.6
6 50 · 100 15.66 172 22.0
7 50 · 100 9.74 189 38.8
8 50 · 100 8.48 143 33.7
9 60 · 120 15.67 343 30.4

10 60 · 120 10.88 200 25.5

EE (%): percentage of EEs.
reordered the generated data sets and these scram-
bled data sets are then solved by our proposed algo-
rithm. We then compare the clustering results with
the known solutions.

4.1. Effects of parameters

We considered two levels for each parameter
obtained via literature and pilot tests. The values
selected for each parameter are shown in Table 5.
An experimental design with 16 cells was used to
represent the combinations of these parameters. In
total, there are 1600 data points for the experiment.

The following null hypotheses were formulated
for this experiment:

H1: The mean value of solution quality is the same
for the two crossover rates.

H2: The mean value of solution quality is the same
for the two mutation rates.

H3: The mean value of solution quality is the same
for the two population sizes.

H4: The mean value of solution quality is the same
for the two maximum numbers of generations.

The corresponding alternative hypotheses, which
can be formulated, for example, as H1 0: The mean
value of solution quality is different for the two
crossover rates, were omitted to save space.

4.2. Comparison of GA operators

We contrasted the performance of the GA: (1)
using roulette-wheel vs. dynamic selection strategy,
(2) using exchange vs. group mutation, and (3) using
dynamic selection vs. using a weighted-sum fitness
function. In this study, we take equal weight for
both objective functions. An experiment with six
cells was used to evaluate all cases. In total, there
were 600 (10 · 10 · 6) data points for the experi-
ment. We used the best combination of parameters
obtained from the previous phase for comparisons.

The following null hypotheses were formulated
for this experiment:
Table 5
Experimental factors and their levels

Parameters Levels Values

Crossover rate (Pc) 2 0.7 1.0
Mutation rate (Pm) 2 0.1 0.5
Population size (Ps) 2 50 100
Generations (Mgen) 2 100 200
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H5: The mean value of solution quality is the same
for the GA with roulette-wheel and dynamic
evaluation.

H6: The mean value of computation time is the
same for the GA with roulette-wheel and
dynamic evaluation.

H7: The mean value of solution quality is the same
for the GA with exchange and group
mutation.

H8: The mean value of computation time is the
same for the GA with exchange and group
mutation.

The corresponding alternative hypotheses are
similar to previous cases and again were omitted
to save space.

5. Computational results and analysis

The GA and data generator were coded in Visual
C++ and solved on a personal computer with an
Intel Pentium IV (1300 MHz) processor to test our
implementation.

5.1. Effects of parameters

The results of the experiment are shown in Table
6. The number in each cell is the average relative
value for the 100 data points where, the relative
value is equal to the absolute value of the differences
between the calculated solution and the known solu-
tion divided by the known solution of each data set
Table 6
Summary: effect of parameters on solution quality

Index Combination (Pc, Pm, Ps, Mgen) Relative mean Stand

1 0.7, 0.1, 50, 100 1.87 1.34
2 0.7, 0.1, 50, 200 1.63 1.06
3 0.7, 0.1, 100, 100 1.66 1.24
4 0.7, 0.1, 100, 200 1.47 1.03
5 0.7, 0.5, 50, 100 1.61 1.25
6 0.7, 0.5, 50, 200 1.38 0.74
7 0.7, 0.5, 100, 100 1.36 0.80
8 0.7, 0.5, 100, 200 1.24 0.50
9 1.0, 0.1, 50, 100 1.99 1.64

10 1.0, 0.1, 50, 200 1.63 1.09
11 1.0, 0.1, 100, 100 1.60 1.03
12 1.0, 0.1, 100, 200 1.37 0.74
13 1.0, 0.5, 50, 100 1.60 0.92
14 1.0, 0.5, 50, 200 1.39 0.71
15 1.0, 0.5, 100, 100 1.24 0.62
16 1.0, 0.5, 100, 200 1.12 0.27
(see Table 4). In general, the smaller value the better
result. The highlighted cells are the top five best
combinations in average relative means, among
which combination 16 produces the best solution
for most data sets. Moreover, no matter which level
of crossover and mutation rate was used, the pro-
posed GA obtained more number of best solutions
if Ps and Mgen were set to 100 and 200, respectively
(combinations 4, 8, and 16).

The results of the analysis of variance (ANOVA)
for solution quality using the four parameters are
presented in Table 7. The results indicate that: all
the factors except crossover rate are significant at
the 0.001 level, thereby rejecting H2, H3, and H4;
and among the parameters, mutation rate, which
has the largest sum of square value, is the most
important one, followed by population size, and
then the stopping criterion. We also evaluated the
two-way interactions among the four parameters.
None of the interactions are significant. The mean
values indicate that: (1) mutation rate 0.5 is better
than 0.1; (2) population size 100 is better than 50;
and (3) 200 generations is better than 100 genera-
tions. These results are consistent with those
obtained from Table 6.

5.2. Comparison of GA operators

The ANOVA results of solution quality using the
two new operators are presented in Table 8. The
results indicate that: (1) the impact of both opera-
tors are significant at the 0.001 level, thereby reject-
ard deviation No. of known solution Ranking by mean

0 15
0 12
0 14
4 8
0 11
0 6
1 4

6 2

0 16
2 13
0 10
1 5

0 9
0 7
3 3

4 1



Table 7
ANOVA: effect of parameters on solution quality

Df Sum of
square

Mean
square

F-value Signifi-
cance

Main effects

Crossover
rate (Pc)

1 0.51 0.51 0.54 0.462

Mutation
rate (Pm)

1 30.85 30.85 32.80 0.000

Population
size (Ps)

1 24.56 24.56 26.12 0.000

# of generations
(Mgen)

1 16.97 16.97 18.05 0.000

Two-way interactions

Pc · Pm 1 0.26 0.26 0.28 0.598
Pc · Ps 1 1.59 1.59 1.69 0.193
Pc · Mgen 1 0.16 0.16 0.17 0.676
Pm · Ps 1 0.00 0.00 0.00 0.946
Pm · Mgen 1 0.72 0.72 0.76 0.382
Ps · Mgen 1 0.91 0.91 0.97 0.326

Error 1589 1494.34 0.94
Total 1599

Df: degree of freedom.

Table 8
ANOVA: effect of new operators on solution quality

Main effect Mean square DF F-value Significance

Dynamic
selection (DS)

100.330 1 72.88 0.000

Group
mutation (GM)

135.967 1 98.76 0.000

DS * GM 37.277 1 27.08 0.000

Table 9
ANOVA: effect of new operators on computational time

Main effect Mean
square

DF F-value Significance

Dynamic
selection (DS)

0.157 1 9.91 0.002

Group
mutation (GM)

0.436 1 27.49 0.000

DS * GM 0.036 1 2.29 0.131
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ing H5 and H7; and (2) dynamic selection operator
can obtain better solution than group mutation;
however, the results may be biased by their interac-
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Fig. 4. Comparison of ope
tion (as the two operators are interacting with each
other). In Fig. 4, we depict the convergence pro-
cesses of the GA for data set #5. With conventional
roulette-wheel selection strategy, the solution seems
to converge to a total cost of $19,875 but the quality
is far worse than the reference solution $3474 [6].
Using dynamic selection strategy but using conven-
tional exchange mutation, the solution converged to
$6665, which is significantly improved but is still
worse than the reference solution. Using dynamic
selection and group mutation, the solution con-
verged to $2812 in 31 generations (about 24 sec-
onds). This solution is better than the reference
solution. This indicates the potential superior per-
formance of our proposed group mutation operator
and the dynamic selection strategy, which can play a
very important role in fast convergence.

The ANOVA results of computational time using
the two new operators are presented in Table 9. The
results indicate that: only group mutation has signif-
icant impacts on the computational time (significant
at the 0.001 level), thereby rejecting H8 and there is
no interaction between the two operators. This
implies that dynamic selection is a more efficient
operator than group mutation.
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Table 10
Paired t-test: dynamic evaluation and weighted sum

Mean SD t-Value Significance

(a) On solution quality

GA with DS 12,411.072 34,066,011.913 1.984 0.000
GA with weighted sum 14,902.592 49,474,994.888

(b) On computational time

GA with DS 52.184 216.240 1.984 0.014
GA with weighted sum 50.978 231.447
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We also compared the performance between the
proposed dynamic selection strategy and weighted-
sum fitness function – one of the most popular
approaches in handling multiple objectives. The
results of the paired t-test are in Table 10. We found
that: (1) the solution quality of the dynamic selec-
tion strategy is better than that of the weighted-
sum fitness function; and (2) the computational
times of the two approaches are not significantly
different.

6. Discussion

Exploring the search space broadly and exploit-
ing the best solution are two important principles
in a GA study. The successful design of a GA
depends on the balance of these two principles.
For the crossover operator, we found that a cross-
over performed better if Pc was greater than 0.7,
because a higher Pc expands the extent of explora-
tion. For the mutation operator, a Pm = 0.1 per-
formed better than Pm = 0.5. With more
explorations, we found that a Pm with value from
0.001 to 0.01 produced better and consistent results.
If Pm is too high, there will be much random pertur-
bation and the offspring may lose resemblance to
their parents. Furthermore, exchange mutation is
for exploring the near-optimal area in the entire
search space, while group mutation is for exploiting
the best solution in the near-optimal space. The dis-
turbance caused by the group mutations is far less
than that of the exchange mutations. Thus, it is rea-
sonable to set a comparatively high Pm.

Most previous GAs use the epsilon-constraint or
weighted-sum approach to solve multi-objective
problems. Thus, they involve only one of the impor-
tant objectives at a time or must increase the impor-
tance of certain objectives via weights to improve
evolution. We proposed a dynamic selection mecha-
nism to determine suitable regions of the search
space. Our method does not combine multiple
objectives as a single objective but instead analyzes
their correlations, simplifies and decomposes them
into sub-problems, and then switches their focus
when needed. As shown in Table 10, our proposed
method performed better than the popular
weighted-sum GA approach.

7. Conclusions

We have developed a two-layer chromosome
structure to deal with problems that need to handle
concurrent decisions. The hierarchical structure
allows us to shorten the length of the chromosome;
thus, it helps increase the probability of finding
good schemata. It also helps reduce the number of
active genes during operations and thus shorten
the performance time. We have proposed a new
dynamic selection strategy to deal with concurrent
decisions that involve highly correlated objectives.
We found that: without implementing the dynamic
selection logic the GA would not properly converge
to a good solution, and the dynamic selection strat-
egy performs better than the popular weighted-sum
approach without increasing computational time.
We have also developed a new group mutation
operator to increase the mutation probability. It
can be used to further improve the solution quality
for CF. However, if only use group mutation we
may not be able to obtain good performance. Far
better results are obtained when it was used with
the dynamic selection strategy. Selecting proper val-
ues for GA parameters such as Pc, Pm, Ps, and
Mgen is a critical decision. These parameters, except
Pc, have more impacts on solution quality than
computational time.

Several opportunities exist for further research.
For instance, in this study we only compared the
proposed dynamic evaluation strategy with the
weighted-sum fitness method for a CMS. It would
be interesting to see how well it performs compared
with other multi-objective handling methods,
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applied to other problem domains (e.g., scheduling
or network design), and with different relationships
between objectives (e.g., independent or low correla-
tion). It may also be interesting to test the perfor-
mance of group mutation in other clustering
domains and find out whether its performance will
be impacted by other GA operators such as cross-
over and selection method.
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