
European Journal of Operational Research 221 (2012) 27–37

Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

Discrete Optimization

Mixed-integer linear programming for resource leveling problems

Julia Rieck ⇑, Jürgen Zimmermann, Thorsten Gather
Clausthal University of Technology, Institute of Management and Economics, Operations Research Group, Julius-Albert-Str. 2, 38678 Clausthal-Zellerfeld, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 July 2011
Accepted 4 March 2012
Available online 16 March 2012

Keywords:
Project scheduling
Resource leveling
Minimum and maximum time lags
Lower and upper bounds
Cutting planes
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.ejor.2012.03.003

⇑ Corresponding author.
E-mail addresses: julia.rieck@tu-clausthal.de (J.

@tu-clausthal.de (J. Zimmermann).
We consider project scheduling problems subject to general temporal constraints, where the utilization
of a set of renewable resources has to be smoothed over a prescribed planning horizon. In particular, we
consider the classical resource leveling problem, where the variation in resource utilization during pro-
ject execution is to be minimized, and the so-called ‘‘overload problem’’, where costs are incurred if a
given resource-utilization threshold is exceeded. For both problems, we present new mixed-integer lin-
ear model formulations and domain-reducing preprocessing techniques. In order to strengthen the mod-
els, lower and upper bounds for resource requirements at particular points in time, as well as effective
cutting planes, are outlined. We use CPLEX 12.1 to solve medium-scale instances, as well as instances
of the well-known test set devised by Kolisch et al. (1999). Instances with up to 50 activities and tight
project deadlines are solved to optimality for the first time.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A project is a unique and temporary endeavor that can be sub-
divided into various activities that require time and renewable re-
sources, such as machines, equipment, or manpower, for their
execution. Usually, projects involve general temporal constraints
among activities resulting from technological or organizational
restrictions. Project scheduling consists of determining start times
for all activities such that temporal and/or resource constraints are
satisfied and some objective is optimized (see e.g. Józefowska and
We�glarz, 2006).

Resource leveling problems (RLPs) arise whenever it is expedi-
ent to reduce the fluctuations in patterns of resource utilizations
over time, while maintaining compliance with a prescribed project
completion time. In particular, in cases where even slight varia-
tions in resource needs represent financial burden or heightened
risks of accidents, a resource leveling approach helps to schedule
the project activities such that the resource utilization will be as
smooth as possible over the entire planning horizon (cf. Demeu-
lemeester and Herroelen, 2002). Under resource leveling, no re-
source limits are typically imposed. Therefore, only the time lags
between individual activities form the project constraints.

Resource leveling has received little attention in the academic
literature. A bunch of instances with 30 activities (cf. Kolisch
et al., 1999) remain to be solved optimally. In order to compensate
for that dearth of research, we consider exact methods for the
‘‘classical resource leveling problem’’, where variations in resource
ll rights reserved.

Rieck), juergen.zimmermann
utilizations within the project duration are to be minimized (cf.
Burgess and Killebrew, 1962). In addition, we study the ‘‘overload
problem’’, where costs are incurred if either a given supply of some
renewable resources or a threshold for the resource utilization is
exceeded (cf. Easa, 1989). New mixed-integer linear models and
domain-reducing preprocessing techniques are devised for both
problems. We obtain promising results on the well-known test in-
stances of Kolisch et al. (1999) using CPLEX 12.1. For the first time,
all problem instances with 30 activities are solved to optimality
with respect to the minimum project duration.

In Section 2, we formally describe the resource leveling problem
using two different objective functions and present its mathemat-
ical background. In Section 3, we investigate an interesting applica-
tion of resource leveling that substantiates both the objective
functions we have proposed and the structuring of the problem in-
stances we have used in our experimental performance analysis.
Section 4 is devoted to a literature review on exact solution meth-
ods for resource leveling, where we sketch the most common ap-
proaches and present known mathematical model formulations.
Based on those models, we proceed to describe methods for linear-
izing the corresponding objective functions and improving the
quality of the resulting formulations in terms of computation time
and solution gap (cf. Section 5). The results of a comprehensive
performance analysis are given in Section 6. Finally, conclusions
are presented in Section 7.
2. Problem description

In the remainder of this paper, we consider projects specified
by activity-on-node networks N = (V, A; d), where V is the set of
vertices and A is the set of arcs with weight d. Vertex set

http://dx.doi.org/10.1016/j.ejor.2012.03.003
mailto:julia.rieck@tu-clausthal.de
mailto:juergen.zimmermann @tu-clausthal.de
mailto:juergen.zimmermann @tu-clausthal.de
http://dx.doi.org/10.1016/j.ejor.2012.03.003
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

28 J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37
V :¼ {0, 1, . . . , n, n + 1} consists of n P 1 activities, 1, . . . , n, that
have to be carried out without interruption, and two fictitious
activities, 0 and n + 1, that represent the beginning and completion
of the underlying project, respectively. Each activity has to be
started no earlier than the project beginning, and must be com-
pleted by project termination.

We denote the start time of activity i 2 V by Si and assume that
every project begins at time zero, i.e. S0 :¼ 0. Then, Sn+1 equals the
project duration. If activity j cannot be started earlier than
dmin

ij 2 ZP0 time units after activity i (minimum time lag), i.e.
Sj � Si P dmin

ij , we introduce an arc hi, ji having weight dij :¼ dmin
ij

into network N. In the event that activity j can be begun as soon
as activity i has been concluded, i.e. dmin

ij ¼ pi, the minimum time
lag is referred to as a ‘‘precedence constraint’’. If activity j must
be started no later than dmax

ij 2 ZP0 time units after activity i (max-
imum time lag), i.e. Sj � Si 6 dmax

ij , we introduce a backward arc hj, ii
with weight dji :¼ �dmax

ij . The resulting arc set A contains at most
jVjjV � 1j arcs representing the temporal constraints Sj � Si P dij

among the start times of activities i, j 2 V.
A sequence of start times S = (S0, S1, . . . , Sn+1), where Si P 0,

i 2 V, and S0 = 0, is termed a ‘‘schedule’’. A schedule is said to be fea-
sible if it satisfies all temporal constraints of the project given by
minimum and maximum time lags. The set of all feasible schedules
is denoted by ST . Let �d P 0 be a prescribed maximum project dura-
tion (i.e. a project-completion deadline). The problem of finding an
optimal (feasible) schedule for some objective function
f : Rnþ2

P0 ! R to be minimized may be formulated as follows:

Minimize f ðSÞ
subject to Sj � Si P dij hi; ji 2 A

S0 ¼ 0
Snþ1 6

�d

Si P 0 i 2 V :

9>>>>>>=>>>>>>;
ð1Þ

For an activity i 2 V, inequality Si P 0 is already implied by S0 :¼ 0
and the assumption that no activity can be started prior to the pro-
ject beginning. Furthermore, since we assume in the following that
network N contains an arc hn + 1, 0i having weight dnþ1;0 :¼ ��d in
order to ensure compliance with the prescribed project deadline,
inequality Snþ1 6

�d also becomes redundant. As has been shown
by Bartusch et al. (1988), the feasible region ST of problem (1) is
non-empty, iff N contains no cycle of positive length, which can
be checked in polynomial time (cf. Ahuja et al., 1993, Section 5.5).

Due to the prescribed project deadline, the set of feasible start
times of activity i 2 V forms a proper time window [ESi, LSi], where
ESi is the earliest and LSi the latest start time of activity i with respect
to the given temporal constraints. By definition, ES0 = LS0 :¼ 0. For a
specified activity i 2 Vn{0}, both the earliest start time, ESi, which
equals the length of a longest path from node 0 to node i, and the lat-
est start time, LSi, which equals the negative of the longest path
length from node i to node 0, can be determined by applying some
label-correcting algorithm (see e.g. Ahuja et al., 1993, Section 5.4).
The total float, TFi :¼ LSi � ESi, i 2 V, is the maximum length of time,
by which the start of activity i may be delayed beyond its earliest
start time, without causing project completion to be delayed beyond
the final deadline given by �d. An activity i is termed ‘‘critical’’ if a de-
lay in its start will cause a delay in completing the entire project. The
total float is therefore zero for critical activities, and has some posi-
tive value for non-critical activities.

Let R be the set of renewable resources required for carrying
out the project activities. Every activity i 2 V has a given processing
time pi 2 ZP0, and requires rik 2 ZP0 units of resource k 2 R taken
up by processing activity i, commencing with its start time Si

(inclusively), through to its completion time Si + pi (exclusively).
An activity i is referred to as ‘‘event’’ if pi = 0; otherwise, it is re-
garded as a real activity. Every real activity i is presumed to be

performed during the half-open time interval [Si, Si + pi[. In case
of the fictitious activities, we set p0 = pn+1 :¼ 0 and r0k = rn+1,k :¼ 0
for all k 2 R. Given some schedule S, the set of (real) activities in
progress at time t, which is also termed the ‘‘active set’’, is given
by AðS; tÞ :¼ fi 2 V jSi 6 t < Si þ pig. Thus, rkðS; tÞ :¼

P
i2AðS;tÞrik rep-

resents the total amount of resource k 2 R required for those activ-
ities in progress at time t. The resource profiles rkðS; �Þ : ½0; �d� ! RP0

are step functions continuous from the right at their jump points.
If the resources necessary to carry out the activities involved

should be distributed evenly over the time horizon, we speak of re-
source leveling. Different objective functions are considered in the
literature (see e.g. Neumann and Zimmermann, 1999, 2000),
depending on how variations in resource utilizations are mea-
sured. In what follows, we consider two resource leveling functions
having broad areas of application.

In practice, companies often want to realize smooth resource
profiles for a given project duration, and aim at penalizing high re-
source utilizations more than low resource utilizations. Let ck P 0
be the cost incurred per unit of resource k 2 R, and per time unit.
The ‘‘classical resource leveling objective function’’ will then be gi-
ven by

f ðSÞ :¼
P
k2R

ck

Z
t2½0;�d�

r2
kðS; tÞ dt: ðRL1Þ

(RL1) represents the total squared utilization cost for a given sche-
dule S (cf. Burgess and Killebrew, 1962; Harris, 1990). A possible
application can be found in make-to-order manufacturing opera-
tions, where an even-workload distribution of resources is required
(cf. Ballestin et al., 2007). Moreover, (RL1) may be used for avoiding
large deviations from prescribed resource-utilization thresholds
Yk; k 2 R, since the conditionsP

k2R
ck
R

t2½0;�d� ðrkðS; tÞ � YkÞ2dt

¼
P
k2R

ck
R

t2½0;�d� rkðS; tÞ2dt � 2 Yk
P
i2V

rik pi þ �d Y2
k

� �
¼
P
k2R

ck
R

t2½0;�d� r
2
kðS; tÞdt þ K

are satisfied with some K 2 R.
Employers are usually required to pay overtime premiums to

employees who work more than the standard hours. Additional
costs for covering the positive deviations from the desired resource
utilizations Yk; k 2 R, will therefore be incurred (cf. Easa, 1989;
Bandelloni et al., 1994). In order to take this option into account,
we consider the ‘‘total overload cost function’’

f ðSÞ :¼
P
k2R

ck

Z
t2½0;�d�
ðrkðS; tÞ � YkÞþdt: ðRL2Þ

In case no thresholds Yk, e.g. the standard weekly hours, have been
prescribed, Yk may be chosen equal to the (rounded) average re-
source utilizations, i.e. Yk :¼

P
i2Vdrik pi=

�de.
If time t is discrete, the integrals appearing in (RL1) and (RL2)

could be replaced by summations. As has been shown by Neumann
et al. (2003), problem (1) is NP-hard in the strong sense in case of
both resource leveling variants. However, both objective functions
and the set of feasible solutions have nice properties that can be
exploited along the way to an optimal solution. Firstly, the feasible
region represents a convex polytope of dimension n + 1 if network
N contains neither any redundant time lags nor cycles of length
zero. An algorithm for eliminating redundant arcs may be found
in Habib et al. (1993) or Gather et al. (2011). The activities of some
cycle of length zero will be strictly interlinked and may be replaced
by a single node (cf. Neumann et al., 2003). Furthermore, every
binding temporal constraint, Sj = Si + dij, i, j 2 V, defines a facet of
the feasible region (cf. Hagmayer, 2006). Secondly, objective

Fig. 2. Resource profiles of schedules S1 and S2.

J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37 29
functions (RL1) and (RL2) are r-monotone, i.e. the condition
f(S) 6 f(S0) is implicitly specified for (partial) schedules S and S0,
where rk(S, t) 6 rk(S0, t) for all k 2 R and t 2 ½0; �d�. Moreover, since
both functions are continuous and locally concave, there invariably
exists always a quasistable schedule that will be optimal for the
problem under consideration (cf. Neumann et al., 2000).

Neumann et al. (2003) have shown that every quasistable sche-
dule marks an extreme point of some order polytope and may be
represented by a spanning tree of the corresponding order net-
work. As a result, there is an optimal schedule for problem (1) in
conjunction with (RL1) or (RL2) that may be defined by a spanning
tree of some order network, where every arc represents a binding
precedence or temporal constraint. Since we assume that the input
data, pi and dij, i, j 2 V, consists of integers and that S0 = 0, every
quasistable schedule will be integer-valued.

In order to illustrate the construction of a project network
N = (V, A; d), and demonstrate the different properties as well as
the non-equivalence of the two proposed objective functions, we
consider a project with five real activities and two renewable re-
sources (cf. Fig. 1). Let c1 :¼ 3 and c2 :¼ 1 be the respective costs
per unit of resources 1 and 2, and per time unit. In this case, an
optimal solution for the first model may be represented by
S⁄ = (0, 2, 4, 1, 0, 3, 6) and for the second model by Sq = (0, 1, 4,
2, 0, 3, 6), where Y1 :¼ 1, Y2 :¼ 2.

We typically obtain better objective function values using either
function (RL1) or (RL2) if we prohibit overlappings of some activi-
ties. Nevertheless, it might happen that an optimal solution does
not correspond to an extreme point of an order polytope belonging
to some inclusion-maximal strict order, i.e. a strict order with max-
imum number of precedence relations. In this context, we consider
a problem instance with three real activities and a single renew-
able resource. Activities 1 and 2 are critical while activity 3 has
the following start time window [ES3, LS3] = [1, 2]. Fig. 2 depicts
the resource profiles of two possible solutions, S1 and S2. Schedule
S1 = (0, 0, 4, 1, 6) is an optimal solution for both the classical re-
source leveling problem and the overload problem with Y = 2, in
spite of the fact that we have O1 = {(1, 2)} � O2 = {(1, 2), (1, 3)}
for the orders O1, O2 induced by schedules S1 and S2.

3. Practical application for resource leveling

An important and interesting application for resource leveling
can be found in the field of overhauling power plants. In what fol-
lows, we discuss revisions based on the example of nuclear power
plants. In Germany (and elsewhere in Europe), revisions must be
conducted once annually at every plant. In the course of a revision
of a nuclear power plant, all of its safety-related components, such
as engines, pumps, and transformers, as well as piping, and valves
are thoroughly inspected. Turbine maintenance is also carried out
and spent fuel rods are replaced by new ones (cf. Eidgenössisches
Fig. 1. Activity-on-node project network N with two renewable resources.
Nuklearsicherheitsinspektorat, 2009). Engines, transformers, and
generators must be subjected to general overhauls and reactor
pressure vessels hydrostatically tested for leakage at regular inter-
vals of 5–10 years.

All in all, around 5000 individual tasks (cf. Schreiber, 2007) that,
for planning purposes, may be clustered according to the mechan-
ical/electrical-engineering tasks and their respective locations
within plants have to be performed. The clustering results in 20–
50 work packages involving, e.g. inspection and maintenance of
all cooling-water pumps or inspection of all safety valves present
within the containment. The execution of these work packages is
complicated by the constraint that, e.g. the cooling of reactors
and fuel-rod pools must guaranteed at all times. Consequentially,
the (in Germany redundantly designed) cooling systems of the
plant cannot all be simultaneously released for inspection and
maintenance operations. Another complication arises from the
mandatory presence of independent experts who supervise nearly
all inspection and maintenance work packages on behalf of the
responsible regulatory agency (cf. Ilg, 2009).

Since nuclear power plants have to be shut down during a revi-
sion, and every day they are shut down entails around € 1 million
in lost earnings (cf. Das Gupta, 2009), it should be obvious that
revisions will be performed such that they will take no longer than
needed to complete the work package accounting for the greatest
length of time, or, in case of several work packages that must be
executed in succession, the length of time needed to complete
the longest sequence of such work packages. In view of the magni-
tude of the aforementioned lost of earnings, the personal costs in-
volved are more or less negligible. Power plant operations thus
engage around 1000 external specialists, in addition to their inter-
nal staff, for handling revisions in order that all work to be per-
formed will usually be completed within a time frame of less
than four weeks.

Detailed planning will be required if all work packages are to be
completed as quickly as possible using a large number of workers,
most of whom will be unfamiliar with the particular plant. Experi-
ence gained from recent revisions has shown that even utilization
of workers and even occupancy of confined areas within the reac-
tor building throughout the duration of revisions are of special
importance. In particular, it has turned out that the occupation of
the narrow annular catwalks within the containment must be
comprehensively planned and coordinated, since they provide ac-
cess to large numbers of pipes and valves that need to be inspected,
while their narrow confines and occupational safety also have to be
taken into account. Productive working by more than 15–20 per-
sons working in parallel is thus precluded.

A resource leveling approach that will allow maintaining com-
pliance with a prescribed project completion time thus appears
advisable. The individual work packages of a revision are identified
with activities of a so-called revision project. Workers, supervisors,
as well as the aforementioned densely-occupied, confined areas
are modeled by a set of renewable resources. Consideration of
the classical resource leveling objective function leads to low re-
source utilizations of all resources at all times. In particular, if a
serious incident should occur, restricting the number of workers
working in confined areas allows safe and orderly evacuations.

30 J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37
The total overload cost function could be used with a threshold of Y
in order to bring down peak periods, when more than 15 workers
are simultaneously working on the annular catwalks within the
containment.

4. Literature review

This section is devoted to surveying exact methods for solving
resource leveling problems. Solution procedures presented in the
literature may be segregated into three different categories:

� Enumeration schemes that enumerate the feasible integral start
times of project activities.
� Enumeration schemes that enumerate the spanning trees

(extreme points) of all feasible order networks (order poly-
topes) of the underlying project.
� Mixed-integer programming (MIP) models that consider time-

indexed binary variables for the activities involved.

The first and the third categories require a discretization of the
time horizon. Since the components S�i ; i 2 V , of at least one optimal
schedule S⁄ are integers (assuming that pi; dij 2 ZP0; i; j 2 V ; cf. Sec-
tion 2), we are able to restrict the possible start times of activity
i 2 V to a set of discrete times, Wi :¼ fESi; . . . ; LSig# T :¼ f0;1; . . . ; �dg.

For resource leveling problems with precedence constraints, ex-
act methods based on enumeration schemes that enumerate the
(feasible) integral start times of project activities have been pre-
sented by Ahuja (1976), as well as Younis and Saad (1996). Ahuja
(1976) considered the sum of the squared changes in the resource
profiles, whereas Younis and Saad (1996) treated the sum of the
absolute deviations of the resource request from a desired resource
profile. Moreover, Bandelloni et al. (1994) devised a dynamic pro-
gramming approach based on the integral floats of activities. For
problems with general temporal constraints, Neumann and Zim-
mermann (2000) proposed a time-window based branch-and-
bound procedure that uses, and continues, the concepts of the
aforementioned approaches. Among other functions, (RL1) and
(RL2), were investigated.

Nübel (1999) and Gather (2011) proposed tree-base enumera-
tion schemes that enumerate all quasistable schedules (extreme
points of order polytopes), where different techniques for avoiding
redundancies were employed. In order to enumerate the extreme
points of all order polytopes STðOÞ, the corresponding spanning
trees were generated by consecutively fixing activities’ start times.
More precisely, let set X contain a pair ðC; SCÞ for every partial sche-
dule SC (i.e. for each subtree) that has already been constructed.
Then, the procedure is initiated using C ¼ f0g and S0 = 0. In each
iteration, a pair ðC; SCÞ is removed from X. If C ¼ V , an extreme
point of some order polytope has been found; otherwise, the cur-
rent partial schedule SC is extended as follows: For every
j 2 V n C, a set Dj of tentative start times, t 2 ½ESjðSCÞ; LSjðSCÞ�, for
which there is an activity i 2 C such that

(i) t = Si + dij, i.e. temporal constraint Sj � Si P dij is binding, or
(ii) t = Si � dji, i.e. temporal constraint Si � Sj P dji is binding, or

(iii) t = Si + pi, i.e. precedence constraint Sj � Si P pi is binding, or
(iv) t = Si � pj, i.e. precedence constraint Si � Sj P pj is binding,

is determined. Then for every t 2 Dj, the corresponding extended
partial schedule SC

0
, where C0 ¼ C [fjg and Sj = t, is added to X.

Nübel (1999) and Gather (2011) introduced the concept of so-
called ‘‘T-minimal trees’’ in order to avoid constructing two differ-
ent trees that represent one and the same quasistable schedule.
Additionally, Gather (2011) employed an enhanced variation on
the bridge-concept devised by Gabow and Myers (1978), which
has the advantage that no partial tree, except for the current one,
must be stored. A workload-based lower bound for removing enu-
meration nodes is considered under both approaches. Apart from
the calculation of the lower bound, the methods are almost inde-
pendent of the scaling of the time axis.

Mixed-integer models for resource leveling problems are in-
spired by the work of Pritsker et al. (1969), Easa (1989), and Selle
(2002). We start off by considering a basic discrete-time formula-
tion proposed by Pritsker et al. (1969) employing binary variables
xit that allocate a feasible start time t 2Wi to each activity i 2 V, i.e.

xit :¼
1; if activity i starts at time t

0; otherwise:

�
ð2Þ

The problem of finding an optimal feasible schedule for an
objective function f may then be formulated as follows:

Minimize f ðxÞ
subject to

P
t2Wi

xit ¼ 1 i 2 V ð3ÞP
t2Wj

t xjt �
P

t2Wi

t xit P dij hi; ji 2 A ð4Þ

x00 ¼ 1 ð5Þ
xit 2 f0;1g i 2 V ; t 2Wi: ð6Þ

Constraints (3) ensure that each activity receives exactly one start
time. Since Si ¼

P
t2Wi

t xit for all i 2 V, inequalities (4) guarantee
that the temporal constraints given by minimum and maximum
time lags will be satisfied. Condition (5) sets the start time for the
project to zero.

In order to present a time-indexed formulation for the objective
functions (RL1) and (RL2), auxiliary variables zkt P 0, which indi-
cate the total resource requirements for resource k 2 R and time
t, are introduced. A (real) activity i is in progress, and requires re-
sources at some time t, if Si 2 {t � pi + 1, . . . , t}. Inequalities (7) thus
estimate the resource requirements of all activities for resource k
and time t

zkt P
P
i2V

rik
Pminft;LSig

s¼maxfESi ;t�piþ1g
xis k 2 R; t 2 T n f�dg ð7Þ

and the objective functions may be specified by (cf. Selle, 2002)

f ðxÞ :¼
P
k2R

ck
P�d�1

t¼0
z2

kt ðRL1aÞ

f ðxÞ :¼
P
k2R

ck
P�d�1

t¼0
jzkt � Ykj: ðRL2aÞ

The resulting models contain jV j þ jV j2 � ðnþ 2Þ þ jRjðjTj � 1Þ þ 1
constraints, as well as

P
i2V jWij binary and jRjðjTj � 1Þ continuous

variables, whereas function (RL1a) is quadratic, and function
(RL2a) is piecewise linear.

In the case of the ‘‘overload problem’’ with precedence con-
straints and one renewable resource, a float-based model has been
presented by Easa (1989). The projects considered are given by
activity-on-arc networks, without fictitious or dummy activities
being required for modeling some types of simple, or special, pre-
cedence relationships (cf. Kelly, 1961). Here, binary variables xiq

that state the extent of shifting, q 2 {1, . . . , TFi}, of activity i 2 V be-
yond its earliest start time are used, i.e.

xiq :¼
1; if activity i is shifted q time units after ESi

0; otherwise:

�
ð8Þ

Condition (8) implies that xiq :¼ 0, iff Si = ESi is satisfied.
We extended the Easa (1989) model in order to deal with gen-

eral temporal constraints and a set of renewable resources. In
doing so, we obtained a model that describes our overload problem

Fig. 3. Resource profile ~r1ð�Þ and lower bounds on resource requirements.

J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37 31
and may be used for comparison purposes. Besides auxiliary vari-
ables zkt P 0, auxiliary variables zikt P 0 that indicate the require-
ments of resource k 2 R at time unit t 2 {ESi, . . . , ECi + TFi � 1} of
an activity i 2 V are considered, where ECi represents the earliest
completion time of activity i.

Minimize
P
k2R

ck
P�d�1

t¼0
zkt ðRL2bÞ

subject toPTFi

q¼1
xiq 6 1 i 2 V ð9Þ

ESj � ESi þ
PTFj

q¼1
q xjq �

PTFi

q¼1
q xiq P dij hi; ji 2 A ð10Þ

zikt P 1�
PTFi

q¼1
xiq

 !
rik þ

Pminft�ESi ;TFig

q¼1
xiq rik

i 2 V ; k 2 R; ESi 6 t < ECi ð11Þ

zikt P
Pmaxft�ESi ;TFig

q¼1þminft�ECi ;TFig
xiqrik i 2 V ; k 2 R; ECi 6 t < ECi þ TFi ð12Þ

zkt P
P
i2V

zikt � Yk k 2 R; t 2 T n f�dg ð13Þ

xiq 2 f0;1g i 2 V ; q 2 f1; . . . ; TFig: ð14Þ

Constraints (9) guarantee that the decision variables, xiq, for an activity i
will equal unity at, at most, one time (in the event that the activity is
shifted, i.e. whenever Si > ESi). Since we are able to compute the start
time of activity i 2 V from Si ¼ ESi þ

PTFi
q¼1q xiq, inequalities (10) ensure

that the temporal constraints involved will be satisfied. Provided that
an activity i is not shifted beyond its earliest start time, inequalities
(11) will arrange matters such that the resource requirements will be
met at every point in time t 2 {ESi, . . . , ECi� 1}. Furthermore, if an
activity i is shifted, inequalities (12) guarantee that the resource
requirements will be considered for all times while activity i is in pro-
gress at its temporally shifted position. Finally, constraints (13) identify
the deviations of the total resource requirements from a prescribed re-
source rate or threshold at time t. The model incorporates
jV j þ jV j2 � ðnþ 2Þ þ

P
i2V ðTFi þ pi � 1Þ þ jRjðjTj � 1Þ constraints,

along with jRjðjTj � 1Þ þ
P

i2V ðTFi þ pi � 1Þ real-valued auxiliary vari-
ables and

P
i2V TFi binary variables.

From a contemporary perspective, the discrete-time models
presented above represent the sole practicable means for describ-
ing resource leveling problems. Event-based model formulations
(cf. Koné et al., 2011) and flow-based model formulations (cf. Arti-
gues et al., 2003) are less applicable, since general temporal con-
straints or the duration of the overlapping of activities, which are
needed for determining the values of objective function (RL1a)
and (RL2a), can hardly be prescribed.

5. Improvements in modeling

MIP-models with linear constraints and a linear objective func-
tion are proved to be a key factor for obtaining exact solutions to
combinatorial optimization problems in reasonable time. However,
objective functions (RL1a) and (RL2a) are nonlinear. In order to
determine how nonlinearity affects a solver’s performance, Gather
(2011) solved the model (RL1a), (3)–(7) using the CPLEX-solver for
quadratic programs. Since the running times were quite long, pre-
processing and linearization techniques will need to be considered
in order to reduce, or simplify, such optimization problems. The
methods developed below will be of assistance in finding optimal
solutions to benchmark problems that thus far have never been
solved to optimality. In Section 5.1, we determine upper and lower
bounds on resource requirements in order to limit the domains of

auxiliary variables. Section 5.2 considers analytical techniques for
linearizing objective functions (RL1a) and (RL2a). Finally, in Sec-
tion 5.3, we introduce additional constraints that may be employed
as cutting planes in the model.

5.1. Upper and lower resource requirement bounds

A tighter linear programming relaxation usually facilitates the
solution process within a branch-and-bound or branch-and-cut
framework, since fewer nodes need to be evaluated. In our prepro-
cessing step, we start off by restricting the domains of auxiliary
variables to be employed by the model. To that end, we identify
Pkt P 0 with the minimum and Hkt P 0 with the maximum
requirements for resource k 2 R that can occur at time
t 2 f0; . . . ; �d� 1g, for the case of any feasible schedule.

The values of Pkt ; k 2 R; t 2 f0; . . . ; �d� 1g, may be obtained by
considering the unavoidable time interval, [LSi, ECi[, for every activity
i 2 V. Obviously, every real activity i must be in progress during its
unavoidable time interval, regardless of its start time, Si 2 [ESi, LSi].
The corresponding resource profiles, ~rkð�Þ; k 2 R, have at most
2n + 1 jump points (start and completion times of activities
0, . . . , n), s 2 f0; . . . ; �d� 1g. The active set eAðsÞ at jump point s indi-
cates the set of real activities that must at least be in progress at time
s, no matter at which start times the activities will be scheduled.
Fig. 3 illustrates the resource profile ~r1ð�Þ for the problem instance
depicted in Fig. 1, which has three jump points s 2 {0, 3, 4}. Since
the resource requirements remain constant while activities are in
progress, the condition Pkt ¼ Pks :¼

P
i2 ~AðsÞrik will be satisfied for

t 2 {s, . . . , s0 � 1}, where s, s0 are successive jump points, or for
t 2 fs; . . . ; �d� 1g, where s is the final jump point.

For a real activity i, the interval [LSi, ECi[will be non-empty
whenever 0 < LSi � ESi < pi. The lower bounds Pkt will therefore be
strongly dependent upon the prescribed maximum project dura-
tion �d of the underlying project, i.e. tight project deadlines will
yield better lower bounds.

The values of Hkt ; k 2 R; t 2 f0; . . . ; �d� 1g, may be computed in
inverse manners. For every activity i, we regard the interval [ESi,
LCi[as its execution interval, i.e. we assume that i starts at its earliest
start time and requires a processing time of pi :¼ LCi � ESi for com-
pletion. Since [Si, Si + pi[# [ESi, LCi[holds for any feasible start time
of activity i, the corresponding resource profiles, r̂kð�Þ, provide upper
bounds Hkt on the resource requirements for resource k at time t.
Fig. 4 shows the resource profile r̂1ð�Þ for the sample project instance
having five jump points t 2 {0, 1, 2, 3, 5}. The upper bounds for every
resource k and each point in time t 2 {t, . . . , t0 � 1} may then be
determined from Hkt ¼ Hkt :¼

P
i2ÂðtÞrik, where t, t0 are pairs of suc-

cessive jump points, or t 2 ft; . . . �d� 1g, in the event thatt is the final
jump point.

Until now we have dealt with the earliest and latest start and
completion times for the activities. However, we are also able to
determine time-orientated precedences among project activities,
based on computations of temporal scheduling. If the length lij of
the longest path from node i to node j on project network N ex-
ceeds or equals the duration pi of activity i, then both activities can-
not be executed simultaneously. In order to determine upper
bounds Hkt ; k 2 R; t 2 f0; . . . ; �d� 1g, that will be as tight as

Fig. 4. Resource profile r̂1ð�Þ and upper bounds on resource requirements.

Fig. 5. Flow network G1ðeV ; eAÞ and minimum origin–destination flow.

32 J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37

possible, we make use of the known values of the components of
the distance matrix (lij)i,j2V and the concept of so-called antichains
(cf. Möhring, 1984; Schwindt, 2005).

Definition 1. Let O be a strict order within activity set V. A set
U # V, such that neither (i, j) 2 O nor (j, i) 2 O holds for any two
activities i, j 2 U, is termed an antichain in O.

An antichain is a set of activities, such that any two distinct
activities, i and j, may overlap under a feasible schedule. For an
antichain U, we define a weight wkðUÞ :¼

P
i2Urik for every resource

k 2 R. A maximum-weight antichain Umax
k # V for resource k is thus

an antichain that produces the maximum weight Hk P wk(U)
among all antichains U in O.

The weight Hk; k 2 R, of a maximum-weight antichain Umax
k # V

equals the total number of units of resource k required for project
execution, in the most unfavorable case. Weight Hk may be effi-
ciently determined by computing a minimum origin–destination
flow on a flow network GkðeV ; eAÞ. Vertex set eV ¼W [W 0 [fa;xg
consists of nodes W = Vn{0, n + 1} for (usually) real activities, nodes
W0 representing copies of activities, as well as an origin node a and
a destination node x. We identify the copy of activity i with node
i + n. In doing so, we are able to transform the node weights rik of
the underlying activity-on-node network N into arc capacities of
flow network Gk. Set eA will contain arcs ha, ii, and hi, i + ni, i 2W;
hj, xi, j 2W0, as well as arcs hi + n, ji, i, j 2W, i – j, iff the length lij
of a longest path from node i to j in activity-on-node network N ex-
ceeds or equals the duration of activity i. Two non-negative
weights, kij and jij, are associated with each arc hi; ji 2 eA represent-
ing the lower and upper arc capacities, respectively. We set kij = -
jij :¼ rik for arcs hi, i + ni, i 2W, as well as kij :¼ 0 and jij :¼1 for
all other arcs in Gk.

A minimum origin–destination flow on network Gk; k 2 R, may
be determined within Oðn3Þ by two successive applications of the
FIFO preflow-push algorithm for the maximum-flow problem
involving upper arc capacities (see e.g. Ahuja et al., 1993, Sect.
7.7). The intensity of the solution flow equals the sought maximum
resource requirement. The calculation of weight Hk allows impos-
ing more stringent restrictions on the upper bounds, i.e. we are
able to set Hkt :¼min{Hkt, Hk}, k 2 R; t 2 f0; . . . ; �d� 1g.

To illustrate the concept of antichains, we consider flow net-
work G1ðeV ; eAÞ for the first resource (k = 1) of our sample instance
depicted in Fig. 5. Every arc hi; ji 2 eA is associated with a parameter
triad composed of the lower and upper arc capacities and the num-
ber of flow units /ij traversing the arc in an optimal solution. A
minimum origin–destination flow on the network has the intensity
H1 = 5.

The drawback of the general concept of antichains is that it in-
volves pretending that all activities can be in progress at all times.
However, at time t only activities i 2 V, for which t 2 [ESi, LCi], could
be processed. This fact warrants the combination of the two
aforementioned concepts (start time windows and antichains) for
generating upper bounds Hkt. We therefore determine the weight
of a maximum-weight antichain, Umax

kt , at every jump point
t 2 f0; . . . ; �d� 1g in resource profiles r̂kð�Þ. Hence, we consider
the algorithm described above in order to compute a minimum ori-
gin–destination flow on a (modified) flow network GktðeV ; eAÞ. Net-
works Gk and Gkt differ solely in their definitions of arc
capacities. We set ki,i+n :¼ 0 and ji,i+n :¼1 for all activities
i 2W n bAðtÞ. The intensity of the solution flow equals the maxi-
mum resource requirement Hkt at time t. Table 1 summarizes
the resultant minimum and maximum resource requirements Pkt,
Hkt, k = 1, 2, t = 0, . . . , 5 for our sample instance. The values of the
parameters H11 and H21 have been reduced by max{r31, r41} = 1
and max{r32, r42} = 1, since activities 3 and 4 cannot be executed
simultaneously.

5.2. Elementary linearization techniques

In order to make use of fast exact algorithms provided by com-
mercial MIP-solvers, we study linearization techniques for objec-
tive functions (RL1a) and (RL2a), where we focuse on exact
linearization methods, since we do not want to ‘‘lose’’ any opportu-
nities for finding an optimal solution.

Until now objective function (RL1a) is based on the auxiliary
variables 0 6 zkt 6 Hkt, k 2 R; t 2 f0; . . . ; �d� 1g. In order to linearize
(RL1a), we divide the interval of resource requirements [0, . . . , Hkt],
into Hkt equal parts [0, 1], [1, 2], . . . , [Hkt � 1, Hkt]. In addition, a
continuous auxiliary variable, ykth, is introduced for each part,
where

0 6 ykth 6 1 k 2 R; t 2 T n f�dg;h 2 f1; . . . ;Hktg: ð15Þ

The auxiliary variables zkt in model (3)–(6), and the auxiliary vari-
ables ykth may then be linked using the relation

zkt ¼
PHkt

h¼1
ykth k 2 R; T n f�dg: ð16Þ

The assumption that the resource requirements rik are non-neg-
ative, along with the fact that the objective function is convex will
force the variables ykth to take on values of either 0 or 1, which is
why we merely need to demand that the condition ykth 2 [0, 1],
rather than the condition ykth 2 {0, 1}, be satisfied.

Moreover, we were readily able to compute a direction factor,
2h � 1, for every variable ykth, which equals the difference between
h2 and (h � 1)2. Combined with auxiliary variables ykth 2 [0, 1], we
obtain an exact approximation for objective function (RL1a) that
depends on zkt 2 N0. The stepwise-linear objective function may
now be written as

f ðxÞ :¼
P
k2R

ck
P�d�1

t¼0

PHkt

h¼1
ð2h� 1Þ ykth: ðRL1bÞ

Table 1
Minimum and maximum resource requirements for the sample instance.

t 0 1 2 3 4 5 t 0 1 2 3 4 5

P1t 0 0 0 1 0 0 P2t 0 0 0 2 0 0
H1t 2 2 5 5 5 3 H2t 3 4 5 4 4 3

J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37 33

Another possibility to linearize objective function (RL1a) involves
considering additional binary variables gkth; k 2 R; t 2 f0;
. . . ; �d� 1g; h 2 f0; . . . ;Hktg, designating the resource requirement
of resource k at time t. We then obtain

gkth :¼
1; if h units of resource k are required at time t

0; otherwise:

�
The introduction of constraints (17) guarantees that just a sin-

gle resource utilization level h for a resource k will exist at time t.

PHkt

h¼0
gkth ¼ 1 k 2 R; T n f�dg ð17Þ

The resource requirements for resource k at time t may then be
determined from the inequalities

zkt P
PHkt

h¼0
h gkth k 2 R; T n f�dg ð18Þ

and the classical resource leveling objective function will finally be
given by

f ðxÞ :¼
P
k2R

ck
P�d�1

t¼0

PHkt

h¼0
h2 gkth: ðRL1cÞ

The total overload cost function (RL2a) contains the term
jzkt � Ykj which may be replaced by max{zkt � Yk, Yk � zkt}. In order
to linearize the resulting max-function, we introduced auxiliary
variables vkt P 0; k 2 R; t 2 f0; . . . ; �d� 1g, that represent the devi-
ations of total resource requirements from the resource rate. Then,
the resource leveling function could be replaced by the linear
function

f ðxÞ :¼
P
k2R

ck
P�d�1

t¼0
vkt: ðRL2cÞ

However, inequalities (7) must also be substituted by

vkt P
P
i2V

rik
Pminft;LSig

s¼maxfESi ;t�piþ1g
xis � Yk k 2 R; T n f�dg: ð19Þ
5.3. Additional constraints

Christofides et al. (1987) proposed a set of inequalities to allow
formulating precedence constraints. Those inequalities may be ex-
tended to the case of problems involving general temporal con-
straints. The following formulation ensures that the minimum
and maximum time lags between activities will be observed.

PLSi

s¼t
xis þ

PminfLSj ;tþdij�1g

s¼ESj

xjs 6 1 hi; ji 2 A; t 2 T ð20Þ

Compared to inequalities (4), which comprise at most jVj2 con-
straints, inequalities (20) require jVj2jTj constraints.

Furthermore, the reformulation of inequalities (3) according to

xit þ
PLSi

s¼ESi
s–t

xis ¼ 1 i 2 V ; ESi 6 t 6 LSi ð21Þ
enables the solver to generate special order sets of Type 1 within
the branch-and-bound tree. This formulation includesP

i2V ðLSi � ESi þ 1Þ more constraints than inequalities (3).
6. Computational results

This section covers the results of computations undertaken in
order to investigate the performance of the various resource level-
ing formulations, where we distinguish between

� Model M1: (RL1b), (3)–(7), (15), (16) and
� Model M2: (RL1c), (3)–(7), (17), (18), for the case of the classical

resource leveling problem as well as between
� Model M3: (RL2b), (9)–(14) and
� Model M4: (RL2c), (3)–(6), (19) for the case of the overload

problem.

We start off by describing the composition and generation of
the problem instances used for testing the model formulations
(cf. Section 6.1). In an experimental performance analysis, we call
CPLEX 12.1 to solve medium-scale problem instances to optimal-
ity. The solutions of the branch-and-cut procedures used by CPLEX
are compared to those for tree-based branch-and-bound methods
involving a sophisticated constructive lower bound (the best exact
methods known from the literature) (cf. Gather et al., 2011). Our
new methods usually outperform the state-of-the-art tree-based
algorithms. Instances with up to 50 activities and tight project
deadlines are solved to optimality for the first time (cf. Section 6.2).
6.1. Benchmark instances

The computational tests have been performed on two test sets, T1

and T2, generated by the ProGen/max problem instance generator
(cf. Schwindt, 1998). The design of both test sets highlights several
control parameters that affect the behavior of scheduling algo-
rithms. In particular, parameters for the network structure, the
activities and the resources are considered. We identified the first
test set with the instances provided by Kolisch et al. (1999). Since
this benchmark covers exclusively instances involving as many as
30 activities, where each activity requires just one resource, even if
jRj > 1 resources are available, we decided to generate a second
benchmark set. This second test set, T2, incorporates instances
involving as many as 50 activities, where every activity may require
more than a single resource for its execution, if jRj > 1.

The control parameters used by ProGen/max in order to specify
the networks to be constructed may be described as follows.
Parameters for the network structure are the number n of (usually
real) activities, and the restrictiveness of Thesen (RT) that mea-
sures the degree to which precedence constraints restrict the total
number of feasible activity sequences. We obtain RT = 0 for a par-
allel network and RT = 1 for a series network. The parameters for
any activity i 2 V are the resource utilization rik; k 2 R, and the pro-
cessing time pi. The resource parameters involved are the number
jRj of differing renewable resources, and the resource factor (RF),
which denotes the average fraction of the jRj resources used per
activity.

A series project network (i.e. RT > 0.5) usually contains more
indirect temporal constraints (given by the transitive closure) than
a parallel one. Incorporating more constraints substantially re-
duces the search space by introducing more restrictions that must
be satisfied. Moreover, if a large number of resource requirements
are identically zero (i.e. RF < 0.5), then fewer activities will be com-
peting for the available renewable resources. In order to generate
some rather difficult and practically-relevant instances (cf. the
application of resource leveling problems in Section 3), we choose

34 J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37
resource factors exceeding 0.5 and set the restrictiveness of Thesen
to be either 0.3 or 0.6 within test set T2. Table 2 lists the parameter
values for both test sets, T1 and T2. Test set T1 consists of 810 prob-
lem instances (270 for each n), and T2 contains 600 instances (120
for each n).

6.2. Performance study

In a comprehensive performance analysis, we studied the clas-
sical resource leveling problem and the overload problem by con-
sidering the four different model formulations, M1, . . . , M4. Each
instance is solved using CPLEX 12.1 and ILOG’s Concert interface
for communications with the solver. Those tests are performed
on an Intel 4-core processor with 2,66 GHz, 6 GB RAM under Win-
dows 7. CPLEX uses a branch-and-cut approach, and we include
problem-specific preprocessing techniques and cutting planes (cf.
Sections 5.1, 5.2, 5.3). The features of CPLEX allow generating gen-
eral cuts during optimization. Cuts are therefore added at the root
node, and at other nodes, whenever warranted by conditions. We
identified GUB-cover, clique, and cover cuts as being particularly
suitable for our purposes, since such cuts arise from considering
inequalities consisting of binary variables and integral coefficients
(covering, e.g. both temporal and resource constraints). Moreover,
effective zero-half cuts may be generated by taking account of re-
source constraints (7), (11), and (12), and effective mixed-integer
rounding cuts may be generated by taking account of resource con-
straints (19). Models and cutting planes are implemented in an ob-
ject-orientated manner using C++ and compiled with MS Visual
Studio.NET 2008. The total elimination of CPLEX–cuts would yield
average run times of around 100 s for instances involving 20 activ-
ities and tight project deadlines, which can normally be solved
within 3 s.

Since the resource leveling problems considered are NP-hard
optimization problems, we cannot expect that a branch-and-cut
approach will terminate within a reasonable time limitation, which
is why we allow a maximum computation time of three hours,
after which the best solution found up to that point is returned.
In order to determine the impact of expanding time-windows
[ESi, LSi], for activities i 2 V, we tested each instance using the
shortest possible deadline, �d :¼ ESnþ1. We subsequently extended
the prescribed maximum project duration to �d :¼ aESnþ1, where
a 2 {1.1, 1.5}, by overwriting the prescribed deadlines specified in
the test instances. Moreover, to improve the bounding accuracy
and to speed up the solver, particularly for large instances, an
upper bound on the objective function is supplied. Thereby, the
Ballestin et al. (2007) procedure was used for generating upper
bounds for those resource leveling problems under consideration.

Under preliminary tests, we have investigated the effectiveness
of constraints (20) and (21), where we considered 120 medium-
scale instances with 20 activities, three renewable resources, and
different project deadlines, �d :¼ aES21 (instances may be explicitly
identified by their names n-jRj-a). Table 3 lists the results of that
procedure using model M1. tcpu designates the average computa-
tion times, and Inst<3h the numbers of instances solved to optimal-
ity within the time limit. Column ‘‘# Opt’’ shows the total numbers
of optimally solved instances.

Table 2
Control parameters of test sets T1 and T2.

Parameter Test set T1 Test set T2

n 10, 20, 30 10, 15, 20, 30, 50
RT 0.25, 0.5, 0.75 0.3, 0.6
rik 1, . . . , 5 1, . . . , 5
pi 1, . . . , 10 1, . . . , 10
½jRj;RF� [1, 1.0], [3, 0.33], [5, 0.2] [1, 1.0], [3, 0.7], [5, 0.6]
Regarding the total number of instances solved within the time
limit, model M1 (with no additional constraints) produces the best
results. A comparison of run times shows that all model formula-
tions yield similar run times for instances having a tight deadline
�d. Inequalities (20) work well for instances having longer dead-
lines. Although considering more constraints than in the case of
the standard formulation, M1, obviously helps the solver to termi-
nate the enumeration quickly for instances that are, in general,
easy to solve, it hinders the solution process for more difficult in-
stances. In the remaining portion of this paper, we attach impor-
tance to the number of instances optimally solved and exclude
inequalities (20) and (21) from the model formulations.

We begin our analyses with test set T1 provided by Kolisch et al.
(1999). The solutions obtained from branch-and-cut procedures
are compared to those obtained from the tree-based branch-and-
bound methods of Gather et al. (2011). In order to arrive at fair
comparisons, the tree-based methods are terminated after six
hours (the program uses just one processor core). We report both
the average computation times, tcpu, and the numbers of instances,
(Inst<bh), that are optimally solved within a time limit of b hours.

Table 4 summarizes the results for the classical resource level-
ing problem and instances with n = 10, 20, 30 activities as well as
differing project deadlines, �d :¼ aESnþ1, a 2 {1.0, 1.1, 1.5}. The in-
stances are denoted by the same descriptors ‘‘rlp_jn’’ used in the
literature. We also introduced a suffix ‘‘�a’’ indicating the lengths
of time-windows, [ESi, LSi], for the various activities i 2 V.

In the case of small instances with ten activities, all solution
methods find optimal solutions within four seconds, but it is
apparent that the state-of-the-art tree-based algorithm outper-
forms the branch-and-cut procedures used by CPLEX. However,
the tree-based method is suitable for solving instances with 20
or more activities to a limited extent. Fewer than 80% of instances
contained in rlp_j20–1.0 were optimally solved, and the average
computation time exceeded 25 min. We therefore skipped pursu-
ing further details for the larger instances listed in the table. In
contrast, the branch-and-cut procedures are, indeed, able to cope
with many activities and differing project deadlines. All test in-
stances contained in rlp_j20 and rlp_j30 having a tight deadline,
(�d :¼ ESnþ1), are solved to optimality for the first time. Moreover,
extending the maximum computation time to 18 h provides opti-
mal solutions for eight of the eleven unsolved instances, employing
model M1, while, for the three remaining instances, the average
deviations of the feasible solutions from the associated lower
bound amount to 2.7%.

Table 5 summarizes the results for the overload problem. Model
M4 works particularly well. All instances with up to 30 activities and
tight, or moderate, project deadlines, (�d :¼ aESnþ1;a ¼ 1:0;1:1), are
solved to optimality for the first time. The tree-based method per-
forms well in case of small instances involving ten activities, but is
unsuitable for dealing with practically-relevant applications with
more than ten activities. Furthermore, model M3 is found to be of lit-
tle value as an alternative method to M4.

We continue our analyses using the new test set T2. In order to
investigate the increases in computation time occasioned by
increasing the number n of activities or the number jRj of re-
sources, we subdivided test set T2 into blocks of 40 instances (hav-
ing the same n and the same jRj). Table 6 lists the performance
results for the classical resource leveling problem based on models
M1 and M2 and the corresponding tree-based branch-and-bound
method. In addition to the parameters n, R, and a, we considered
extensions of the resource requirements of the activities (i.e.
rik :¼ 10rik, i 2 V ; k 2 R), which lead to large increases in the upper
bounds Hkt ; k 2 R; T n f�dg, where instance names obtained an addi-
tional suffix ‘‘�10’’.

As expected, the tree-based algorithm performs very well for
instances involving 10 activities. The average run times are

Table 3
Computation times and the numbers of instances solved (classical RLP).

Instances 20-3-1.0 20-3-1.1 20-3-1.5 # Opt.

tcpu Inst<3h tcpu Inst<3h tcpu Inst<3h

M1 2.410 40 260.844 40 2669.788 30 110
M1 [(20) 3.713 40 20.345 39 2240.655 27 106
M1n(4) [(20) 2.913 40 168.497 40 2031.113 28 108
M1 [(21) 2.073 40 232.258 40 2644.545 28 108
M1n(3) [(21) 2.380 40 168.350 39 2633.396 30 109

Table 4
Computation times and the numbers of instances solved (test set T1, classical RLP)

Instances M1 M2 Tree-based B&B

tcpu Inst<3h tcpu Inst<3h tcpu Inst<6h

rlp_j10-1.0 0.038 270 0.025 270 0.015 270
rlp_j10-1.1 0.120 270 0.061 270 0.065 270
rlp_j10-1.5 2.854 270 3.359 270 0.219 270
rlp_j20-1.0 0.575 270 0.981 270 1605.740 215
rlp_j20-1.1 9.281 270 14.566 270 – –
rlp_j20-1.5 405.195 263 771.905 234 – –
rlp_j30-1.0 59.195 270 28.391 269 – –
rlp_j30-1.1 356.071 266 425.693 259 – –

Opt. 2149 2112 1025

Table 5
Computation times and the numbers of instances solved (test set T1, overload
problem).

Instances M3 M4 Tree-based B&B

tcpu Inst<3h tcpu Inst<3h tcpu Inst<6h

rlp_j10-1.0 0.589 270 0.009 270 0.009 270
rlp_j10-1.1 48.253 270 0.017 270 0.036 270
rlp_j10-1.5 470.901 248 0.258 270 0.142 270
rlp_j20-1.0 269.142 259 0.531 270 1680.259 226
rlp_j20-1.1 – – 3.898 270 – –
rlp_j20-1.5 – – 127.705 268 – –
rlp_j30-1.0 – – 43.288 270 – –
rlp_j30-1.1 – – 60.262 270 – –

Opt. 1047 2158 1036

Table 6
Computation times and the numbers of instances solved (test set T2, classical RLP).

Instances M1 M2 Tree-based B&B

tcpu Inst<3h tcpu Inst<3h tcpu Inst<6h

10-1-1.0 0.029 40 0.029 40 0.028 40
10-3-1.0 0.153 40 0.108 40 0.033 40
10-5-1.0 0.199 40 0.206 40 0.049 40
10-1-1.1 0.071 40 0.067 40 0.097 40
10-3-1.1 0.278 40 0.301 40 0.155 40
10-5-1.1 0.627 40 0.570 40 0.384 40
10-1-1.5 0.992 40 2.306 40 0.513 40
10-3-1.5 4.172 40 7.236 40 0.895 40
10-5-1.5 20.292 40 64.975 40 2.305 40
10-1-1.5–10 277.590 36 19.517 40 1.188 40
10-3-1.5–10 744.338 33 85.417 40 2.154 40
10-5-1.5–10 1181.030 26 391.993 40 5.029 40
15-1-1.0 0.154 40 0.154 40 0.146 40
15-3-1.0 0.291 40 0.356 40 25.722 40
15-5-1.0 0.513 40 1.194 40 29.397 40
15-1-1.1 1.164 40 1.762 40 136.953 40
15-3-1.1 5.665 40 11.713 40 382.971 40
15-5-1.1 7.586 40 8.275 40 688.150 40
15-1-1.5 151.005 40 277.711 39 775.556 40
15-3-1.5 262.679 38 1206.530 34 2813.005 37
15-5-1.5 824.416 40 2656.601 30 3930.287 37
20-1-1.0 0.336 40 0.691 40 1792.086 38
20-3-1.0 2.410 40 10.994 40 1540.256 35
20-5-1.0 2.410 40 41.639 40 3392.972 31

Opt. 933 943 938

J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37 35

invariably less than five seconds. Extensions of the time-windows
has a crucial impact on the performances of the MIP–approaches,
since both the number of binary decision variables, xit, i 2 V, t 2 T,
and the number of constraints increased with the increasing length
of the time horizon. In contrast, the tree-based method turns out to
be much more robust in relation to the deadlines for project com-
pletion. Considerations involving extended resource requirements
also lead to drastic increases in the numbers of auxiliary variables,
ykth, and binary variables, gkth; k 2 R; t 2 T n f�dg;h 2 f1; . . . ;Hktg. In
particular, the procedure using model M1 proved incapable of ter-
minating the enumerations for all of the respective instances. Com-
pared thereto, the procedure using model M2, which incorporates
exclusively binary variables, come off well. Based on the practi-
cally-relevant problem dimension of 15 activities, the performance
of model M1 must be regarded as acceptable. The computation
times of the tree-based method are highly dependent upon the
network structure, the activities and the resources involved.
Increasing numbers of activities leads to the existence of many fea-
sible order networks (i.e. order networks with no cycle of positive
length) that must be considered during enumeration. Furthermore,
the long running times are a consequence of the parallelism of pro-
ject networks (with RT < 0.5) and the existence of a large slack fac-
tor SF 2 {0.5, 1.0}. A positive slack factor avoids that activities are
firmly tied by temporal constraints. M2 yields the worst
performance. Since the number of instances solved to optimality
is relatively low for the tree-based method, and for model M2,
we investigated larger instances only with tight deadlines.

Table 7 summarizes the results for the overload problem in the
case of models M3 and M4, and the respective tree-based branch-
and-bound method. For small instances with ten activities no
superiority of the tree-based method over the procedure using
model M4 can be ascertained. Extensions of the time-windows
has no relevant impacts on computation times. Moreover, the
run times for instances having long project durations, as well as in-
stances having long project durations and extended resource
requirements are similar, since the number of auxiliary variables,
vkt ; k 2 R; t 2 T n f�dg, depends on the number of resources and
the time horizon. The procedure using model M3 fails to terminate
the enumerations within the time limit in some cases. Treating
binary decision variables, xiq, i 2 V, q 2 {1, . . . , TFi}, is obviously
not the best choice. For larger instances involving 15 or more activ-
ities, the procedure using model M4 yields the best results. All of
the problem instances under consideration are optimally solved
within 1.5 min, or less.

The computational studies that we have conducted thus far,
demonstrate the dominance of the branch-and-cut procedures
provided by CPLEX in combination with suitable model formula-
tions. However, since the procedure using model M1 should be con-
sidered in order to solve instances of the classical resource leveling
problem, and the procedure using model M4 should be considered
in order to solve instances of the overload problem, our further

Table 7
Computation times and the numbers of instances solved (test set T2, overload
problem).

Instances M3 M4 Tree-based B&B

tcpu Inst<3h tcpu Inst<3h tcpu Inst<6h

10-1-1.0 0.031 40 0.014 40 0.022 40
10-3-1.0 0.140 40 0.027 40 0.023 40
10-5-1.0 0.298 40 0.051 40 0.038 40
10-1-1.1 0.060 40 0.028 40 0.050 40
10-3-1.1 7.344 40 0.087 40 0.300 40
10-5-1.1 0.570 40 0.161 40 0.384 40
10-1-1.5 8.063 40 0.102 40 0.120 40
10-3-1.5 184.346 39 0.466 40 0.414 40
10-5-1.5 1078.888 36 2.141 40 1.393 40
10-1-1.5–10 3.012 40 0.049 40 0.128 40
10-3-1.5–10 163.805 39 0.388 40 0.438 40
10-5-1.5–10 777.612 35 2.677 40 1.494 40
15-1-1.0 0.309 40 0.096 40 9.733 40
15-3-1.0 0.975 40 0.071 40 20.043 40
15-5-1.0 14.390 40 0.112 40 23.640 40
15-1-1.1 1.843 40 0.272 40 47.848 40
15-3-1.1 105.933 39 0.875 40 262.949 40
15-5-1.1 85.256 38 2.127 40 518.701 40
15-1-1.5 36.413 39 3.116 40 42.996 40
15-3-1.5 320.092 30 80.794 40 1441.203 39
15-5-1.5 1268.314 18 88.531 40 1912.634 38
20-1-1.0 1.236 40 0.191 40 1566.697 38
20-3-1.0 16.086 39 1.172 40 2283.954 37
20-5-1.0 48.214 40 1.523 40 2751.409 31

Opt. 912 960 943

Table 9
Average numbers of cuts for test sets T1 and T2.

M1 M4

Instances GUB Clique Cover Zero-
half

GUB Clique Cover Zero-
half

T1

n = 10 159.2 57.2 82.2 10.6 4.9 7.7 6.8 34.8
n = 20 418.6 100.4 234.5 29.2 8.4 32.3 31.8 99.4
n = 30 487.3 149.8 372.0 45.0 36.0 66.5 100.2 140.9

T2

n = 10 360.2 42.0 136.2 17.6 6.0 13.3 9.7 71.4
n = 15 436.4 96.9 368.0 29.8 21.6 47.7 70.9 118.5
n = 20 578.4 126.8 588.4 34.7 47.7 90.6 227.2 151.4
n = 30 625.8 169.6 1008.5 49.1 52.2 125.6 343.2 209.1
n = 50 789.8 130.5 1320.5 57.5 53.6 98.5 615.7 263.2

36 J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37

analyses involve these methods. Table 8 shows that most instances
with up to 50 activities and tight project deadlines are solved to
optimality. Note that no algorithm known from the literature has
found optimal schedules for similar problem sizes or real-world in-
stances within reasonable time.

Table 9 lists the average numbers of cuts added during optimi-
zation, where we consider both test sets, T1, T2, and the effective
models, M1 and M4, and introduce GUB-cuts, clique, cover, and
zero-half cuts.

The numbers of cuts depend on the number n of activities in-
volved, the number jRj of resources, and the specified project
deadlines �d. In particular, for model M1, GUB-cuts and cover cuts,
and for model M4, cover and zero-half cuts, are created in the sub-
problems of the branch-and-bound tree. The total number of cuts
generated for model M1 significantly exceeded that for model M4.
Furthermore, fewer cuts are generated for test set T1 in comparison
Table 8
Computation times and the numbers of instances solved (test set T1, classical RLP and
overload problem).

Instances M1 M4

tcpu Inst<3h tcpu Inst<3h

20-1-1.1 4.266 40 2.530 40
20-3-1.1 260.844 40 35.129 40
20-5-1.1 85.700 40 52.288 40
20-1-1.5 1245.811 36 86.157 39
20-3-1.5 2669.789 30 340.235 39
20-5-1.5 3074.423 20 1395.448 34
30-1-1.0 9.983 40 12.529 40
30-3-1.0 18.389 40 14.155 40
30-5-1.0 61.198 40 101.538 40
30-1-1.1 387.526 36 196.596 36
30-3-1.1 691.950 38 608.064 38
30-5-1.1 1808.033 33 112.820 36
50-1-1.0 530.358 38 334.413 37
50-3-1.0 675.812 36 926.266 36
50-5-1.0 969.605 32 288.888 28

Opt. 539 563
to test set T2, a result that might have been expected, since the sol-
ver finds optimal solutions faster for former instances than for later
ones.
7. Conclusion

In this paper, we have devised new mixed-integer linear model
formulations for the classical resource leveling problem and the
overload problem. The models are based on smart discrete-time
formulations. Small-scale and medium-scale problem instances
could efficiently be solved using the standard solver CPLEX. In or-
der to facilitate the solution process, we have added problem-spe-
cific preprocessing techniques and cutting planes. Within this
context, we have restricted the domains of auxiliary variables
and considered analytical techniques for linearizing the various
objective functions. We have also identified GUB-cuts and clique,
cover, and zero-half cuts as particularly suitable for our purposes.

Instances involving small numbers of resources and tight pro-
ject deadlines need significantly less computing time in order to
receive optimal schedules than instances involving large numbers
of resources and an extended deadline. However, instances with 50
activities and small deadlines are solved to optimality for the first
time. Run times for instances contained in test set T1 are often
shorter than those for instances contained in test set T2, because
T2 usually involves higher values for the resource factor, RF. Since
the solver is able to find optimal solutions within acceptable time
periods, the models seem to be suitable for solving real-world
applications.

An important area for future research is the study of further re-
source leveling objective functions, e.g. considerations of incre-
ments in resource requirements from period t � 1 to period t.
Moreover, investigating hybrid heuristics for solving resource lev-
eling problems would appear to be a suitable future endeavor.
Acknowledgements

The benchmarks for the resource leveling problems presented
herein and the results obtained (i.e. upper and lower bounds)
may be downloaded from http://www.wiwi.tu-clausthal.de/abteil-
ungen/unternehmensforschung/forschung/.
References

Ahuja, H.N., 1976. Construction Performance Control by Networks. Wiley, New
York.

Ahuja, R., Magnanti, T., Orlin, J., 1993. Network Flows. Prentice Hall, Englewood
Cliffs.

Artigues, C., Michelon, P., Reusser, S., 2003. Insertion techniques for static and
dynamic resource-constraint project scheduling. European Journal of
Operational Research 149 (2), 249–267.

http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/
http://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/

J. Rieck et al. / European Journal of Operational Research 221 (2012) 27–37 37
Ballestin, F., Schwindt, C., Zimmermann, J., 2007. Resource leveling in make-to-
order production: modeling and heuristic solution method. International
Journal of Operations Research 13 (2), 76–83.

Bandelloni, M., Tucci, M., Rinaldi, R., 1994. Optimal resource leveling using non-
serial dynamic programming. European Journal of Operational Research 78,
162–177.

Bartusch, M., Möhring, R., Radermacher, F., 1988. Scheduling project networks with
resource constraints and time windows. Annals of Operations Research 16,
201–240.

Burgess, A., Killebrew, J., 1962. Variation in activity level on a cyclical arrow
diagram. Journal of Industrial Engineering 13, 76–83.

Christofides, N., Alvarez-ValdFs, R., Tamarit, J.M., 1987. Project scheduling with
resource constraints: a branch and bound approach. European Journal of
Operations Research 29 (3), 262–273.

Das Gupta, O., 2009. Alte Atomkraftwerke – Die Gelddruckmaschinen. Süddeutsche
Zeitung 06.07.2009.

Demeulemeester, E., Herroelen, W., 2002. Project Scheduling: A Research
Handbook. Kluwer, Bosten.

Easa, S.M., 1989. Resource leveling in construction by optimization. Journal of
Construction Engineering and Management 115, 302–316.

Eidgenössisches Nuklearsicherheitsinspektorat, E., 2009. Revision von
Kernkraftwerken. ENSI Newsletter 4 (Themenheft).

Gabow, H., Myers, E., 1978. Finding all spanning trees of directed and undirected
graphs. SIAM Journal on Computing 7, 208–287.

Gather, T., 2011. Exakte Verfahren für das Ressourcennivellierungsproblem. Gabler,
Wiesbaden.

Gather, T., Zimmermann, J., Bartels, J.-H., 2011. Exact methods for the resource
levelling problem. Journal of Scheduling 14 (6), 557–569.

Habib, M., Morvan, M., Rampon, J.X., 1993. On the calculation of transitive
reduction-closure of orders. Discrete Mathematics 111, 289–303.

Hagmayer, S., 2006. Struktur von Projektplanungsproblemen aus
polyedertheoretischer Sicht. Shaker, Aachen.

Harris, R.B., 1990. Packing method for resource leveling (pack). Journal of
Construction Engineering and Management 116, 39–43.

Ilg, P., 2009. Wie Atomkraftwerke in Deutschland geprüft werden. Financial Times
Deutschland 20.10.2009.

Józefowska, J., We�glarz, J., 2006. Perspectives in Modern Project Scheduling.
Springer, New York.

Kelly, J.E., 1961. Critical-path planning and scheduling: mathematical basis.
Operations Research 9, 296–320.

Kolisch, R., Schwindt, C., Sprecher, A., 1999. Benchmark instances for project
scheduling problems. In: We�glarz, J. (Ed.), Project Scheduling: Recent Models,
Algorithms, and Applications. Kluwer, Boston, pp. 197–212.

Koné, O., Artigues, C., Lopeza, P., Mongeauc, M., 2011. Event-based milp models for
resource-constrained project scheduling problems. Computers and Operations
Research 38, 3–13.

Möhring, R.H., 1984. Minimizing costs of resource requirements in project networks
subject to a fixed completion time. Operations Research 32, 89–120.

Neumann, K., Zimmermann, J., 1999. Methods for resource-constrained project
scheduling with regular and nonregular objective functions and schedule-
dependent time windows. In: We�glarz, J. (Ed.), Project Scheduling: Recent
Models, Algorithms, and Applications. Kluwer, Boston, pp. 261–287.

Neumann, K., Zimmermann, J., 2000. Procedures for resource levelling and net
present value problems in project scheduling with general temporal and
resource constraints. European Journal of Operations Research 127, 425443.

Neumann, K., Nübel, H., Schwindt, C., 2000. Active and stable project scheduling.
Mathematical Methods of Operations Research 52, 441–465.

Neumann, K., Schwindt, C., Zimmermann, J., 2003. Project Scheduling with Time
Windows and Scarce Resources. Springer, Berlin.

Nübel, H., 1999. Minimierung der Ressourcenkosten für Projekte mit
planungsabhängigen Zeitfenstern. Gabler, Wiesbaden.

Pritsker, A.A.B., Watters, L.J., Wolfe, P.M., 1969. Multi-project scheduling with limited
resources: a zero-one programming approach. Management Science 16, 93–108.

Schreiber, H., 2007. Eine Revision der Rekorde im Kernkraftwerk. Augsburger
Allgemeine Zeitung 26.10.2007.

Schwindt, C., 1998. Generation of resource-constrained project scheduling
problems subject to temporal constraints. Technical report wior-543, Institute
for Economic Theory and Operations Research, University Karlsruhe.

Schwindt, C., 2005. Resource Allocation in Project Management. Springer, Berlin.
Selle, T., 2002. Untere Schranken für Projektplanungsprobleme. Shaker, Aachen.
Younis, M.A., Saad, B., 1996. Optimal resource leveling of multi-resource projects.

Computers and Industrial Engineering 31, 1–4.

	Mixed-integer linear programming for resource leveling problems
	1 Introduction
	2 Problem description
	3 Practical application for resource leveling
	4 Literature review
	5 Improvements in modeling
	5.1 Upper and lower resource requirement bounds
	5.2 Elementary linearization techniques
	5.3 Additional constraints

	6 Computational results
	6.1 Benchmark instances
	6.2 Performance study

	7 Conclusion
	Acknowledgements
	References

