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ARTICLE INFO ABSTRACT

Stability of suction caissons used as foundations or anchors of offshore structures is a critical challenge in marine
structures engineering. To this end, many studies have been conducted including those concentrate on imple-
menting computational intelligence methods to model the response of suction caissons under loading. In this
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Form.‘llffﬁfm' regard, this paper aims at formulating uplift capacity of suction caissons using a hybrid artificial intelligence
;};bgg mtc:,]llhient approach computational tool based on model tree (M5) and genetic programming (GP), called M5-GP. The formulae are
- metho

developed in terms of several governing parameters using a reliable experimental database from the literature.
The results show that the M5-GP based relationships are able to predict the uplift capacity of suction caissons
precisely. Furthermore, to consider the safety in the design process, probabilistic equations are also given for
various risk levels. The new formulas compare favorably with the existing relationships in the literature regarding
prediction performance. In addition, the simplified formulation is compact, easy to use and physically sound.

Therefore, it is especially appropriate to be used in design practice.

1. Introduction

Suction caisson is one of the most widely used anchoring facilities in
offshore engineering applications. These tubular steel fabrications were
firstly introduced by (Senpere and Auvergne, 1982) as mooring anchors
to be used in an offshore project. Also called as suction piles, anchors and
buckets, suction caissons are an essential part of anchorage system uti-
lized in offshore drilling equipment (Chen and Randolph, 2007; Ehlers
et al., 2004; Zdravkovic et al., 2001).

Suction caissons have several advantages over other types of offshore
anchorage systems such as gravity anchors, drag anchors and conven-
tional driven anchor piles (Schneider and Senders, 2010). Design and
fabrication is quite easy as they are simply steel tubes closed at the top
(Fig. 1). The steel needed to build a suction caisson can be less than that
of an equivalent deep pile foundation. The installation process is not
complicated since the suction caisson is penetrated into the seafloor due
to its self-weight and then the suction is applied by pumping out the
trapped water between the seabed and the closed caisson top side. This
mechanism considerably facilitates the installation of suction caissons in
comparison with pile foundation derivation where several costly ancil-
lary equipment are required (Alavi et al., 2011; Colliat and Dendani,
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2002). On the other hand, this method of installation is relatively faster
than other types and due to difficult condition of marine construction, the
shorter the construction time, the greater the cost reduction (Cheng et al.,
2014). Additionally, suction caissons are usually able to carry greater
lateral loads than alternatives.

However, in general, the suction caisson systems, may not be as
reliable as offshore jackets (Clukey et al., 2000). A suction caisson failure
can lead to the collapse of an offshore structure followed by severe
negative consequences such as loss of lives, environmental pollution and
substantial financial costs. Therefore, precise estimation of suction cais-
son uplift capacity is an extremely important task to meet the reliable
design requirements. To this end, the intricate response of suction cais-
sons under loading should be evaluated carefully.

The main design considerations of a suction caisson are its submerged
weight, friction resistance of its wall surface, negative pressure generated
under tension and soil strength mobilized at the base (Alavi et al., 2010,
2011; Gandomi et al., 2011).

Artificial intelligence (AI)-based modelling of various engineering
problems is considered as a suitable alternative to traditional methods
like Finite Element Method (FEM). Recently, soft computing approaches
such as Artificial Neural Networks (ANNs), Evolutionary Algorithms, etc.
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L = Length of caisson

d = Diameter of caisson

D = Depth of loading point from seabed
P = Load applied to caisson

0 = Inclined load angle

Fig. 1. Cross section sketch of suction caisson.

are implemented in many of civil engineering applications including
estimation of the uplift capacity of suction caissons.

M5 model tree is a powerful soft computing tool that is able to classify
the data and present simple relationships. It has some advantages over
other soft computing approaches like ANNs, due to the fact that it is not
opaque and internal parameters do not require optimization. M5 model
tree has been successfully used for prediction purposes in several civil
engineering problems such as breakwaters stability, scour around pile
groups and scour under submarine pipelines (Etemad-Shahidi and Bali,
2012; Etemad-Shahidi and Ghaemi, 2011; Etemad-Shahidi et al., 2011).

Genetic Programming (GP) is a type of evolutionary algorithms in
which a supervised machine learning method explores program space
rather than data space (Banzhaf et al., 1998). Where a robust theoretical
model is not available, GP yields a computer program i.e. an interpretable
equation. This has made the GP a strong tool for solving complicated
engineering problems. Recently, GP has been used for the estimation of
shallow foundations settlement (Shahnazari et al., 2014), scour under
submerged pipelines (Azamathulla et al., 2011) and scour around piles
(Guven et al., 2009).

This study aims at developing new generic uplift capacity formulae
using an Al-based model, a compound of M5 model tree (M5) and genetic
programming (GP) called “M5-GP”. This paper is organized as follows:
The second Section explains the relevant technical literature. The third
addresses the details of the hybrid M5-GP method. In the fourth section,
the application of the hybrid M5-GP model for the development of pre-
dictive relationships are described. The fifth section analyzes the per-
formance of M5-GP and compares the results with those of available
models in the literature. Finally, the conclusions are drawn in section six.

2. Background

Many laboratory tests (Datta and Kumar, 1996; El-Gharbawy and
Olson, 2000; Gao et al., 2013; Guo et al., 2012; Hogervorst, 1980; Li
et al., 2014, 2015; Randolph et al., 1998; Rao et al., 2006; Tjelta, 1995;
Whittle and Germaine, 1998) and field experimental studies (Cho et al.,
2002; Dyvik et al., 1993) have been conducted to assess the behavior of
suction caissons including installation characteristics, vertical and hori-
zontal load capacities and stress conditions. But, such methods are
expensive and exposed to number of restrictions.

In some research programs the suction caissons were modelled
numerically to estimate the uplift capacity (Ahn et al., 2015; Aubeny and
Murff, 2005; Deng and Carter, 1999, 2002; Sukumaran et al., 1999;
Zdravkovic et al., 2001; Zeinoddini et al., 2011). Although numerical
models such as those based on FEM are not exposed to limitations of
experimental studies, they are restricted to special properties of each
model (Pai, 2005). Hence, it is necessary to develop comprehensive
mathematical models for prediction of the uplift capacity in a wide range
of conditions.

Moreover, many attempts have been made to implement Al ap-
proaches for estimation of the uplift capacity of suction caissons. The
methods used by different researchers are listed as follows: artificial
neural network (ANN) by Rahman et al. (2001), neuro-genetic network
(NGN) by Pai (2005), GP and simulated annealing (GP-SA) by Alavi et al.
(2010), tree-based genetic programming (TGP), linear genetic pro-
gramming (LGP) and gene expression programming (GEP) by Alavi et al.
(2011), multi expression programming (MEP) by Gandomi et al. (2011),
multivariate adaptive regression spline (MARS) by Samui et al. (2011),
support vector machine and ANN (SVM-ANN) by Muduli et al. (2013),
intelligent fuzzy radial basis function neural network inference method
(IFRIM) by Cheng et al. (2014) and Group method of data handling and
harmony search (GMDH-HS) by Shahr-Babak et al. (2016).

3. Methodology of data analysis

Conventional regression analysis for derivation of empirical correla-
tions relies on pre-defined relationships between inputs and output.
Hence, the main task is finding empirical coefficients of the functional
structure. However, a predefined function may not match the data for
complicated phenomena and leads to an inexact model.

Modern data mining methods, are used to discover relationships
hidden in datasets utilizing different optimization algorithms. Soft
computing methods can be used for complicated predictions, building
nonlinear relationships, categorizing data and deriving rule-based
models (Solomatine and Ostfeld, 2008).

In this study, major criteria to select the most suitable modelling
approach are accuracy and simplicity of the prediction formulae that are
constructed by implementing an Al-based model. It was inferred that a
combination of M5 and GP called hybrid M5-GP model is a suitable op-
tion among various possibilities.

3.1. M5 model tree

The M5 model tree is one of the most robust data mining tools that
can be implemented for prediction in engineering applications. This
approach which was presented by Quinlan (1992) separates complicated
problems into smaller parts and deals with a number of simpler problems
(Bhattacharya et al., 2007). M5 resembles an inverse tree with a root at
the top and leaves at the bottom. Three stages of M5 modeling procedure
are: building, pruning and smoothing.

Building: A tree is made of splitting the instance (dataset) space. The
intra-subset variability in the values is minimized by applying the clas-
sification condition down from the root to the node (via the branch). The
standard deviation of the values which reach the node indicates the ex-
pected error reduction in variability by testing each attribute at the node.
Hence, the attribute (input) causing the minimum expected error
reduction is obtained. This process goes on until a limited number of
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instances remain or the instances arrived at the node (leaf) are quite
similar. The standard deviation reduction (SDR) is used in the mentioned
process and defined as:

ITi|

SDR = sd(T) = >

where T is the set of instances arriving at the node, Ti are the sets that
result from classification based on the selected attribute and sd is the
standard deviation (Wang and Witten, 1996). After raising the tree, the
regression models are developed by the data of the leaves.

Pruning: In this stage, sub-trees are evaluated whether the error of the
linear model at the root is lower than /equal to the anticipated error. In
such manner, the sub-trees that are not capable of enhancing the model
accuracy are pruned. Then, discontinuities possibly occurred among
adjacent leaves will be treated in the next step.

Smoothing: In this step, the estimation of the leaf model is filtered
through the path toward the root. That value is merged with the value
presented by the linear model for that node. Therefore, the prediction
passed to the higher node i.e. P’ equals to (np + kq)/(n + k) where p is the
prediction passed to this node from the lower node, q is the predicted
value by the model at this node, n is the number of training data points
which arrives at the lower node, and k is a constant (Wang and Wit-
ten, 1996).

3.2. Genetic programming (GP)

Genetic programming (GP) is an evolutionary symbolic regression
approach that uses the principle of Darwinian natural selection. GP was
introduced by (Koza, 1992) for solving problems with different degrees
of complexity and is similar to genetic algorithm (GA). However, GP is
different from GA such that it represents the solution in the form of an
equation (computer program) instead of a set of numbers.

The procedure of GP is explained as follows:

(i) A population of individuals (programs) with a specific size is made
by random selection of functions containing mathematical oper-
ators like addition, subtraction, multiplication, etc., and the ter-
minals including constants and input parameters. The function
and terminal sets make the main structure of GP. Depending on
the complexity level of the problem, suitable operators should be
selected. Inappropriate selection may lead to derivation of too
complicated relationships.

(ii) The fitness quality of individuals in a population is assessed using
an appropriate statistical measure. For example, in case the root
mean squared error (RMSE) used as the criterion, its smaller value
proves the higher quality of fitness.

(iii) Considering a tree-based representation, the genotype is config-
ured in a way that top and middle of the tree is made of members
of the function set and the leaves involve members of the terminal
set. Then, new sets of models are created implementing genetic
operators such as crossover, mutation and reproduction (Koza,
1992). These new models made at each generation called
offspring and provide the base of the following generation.

(iv) The program is terminated after the creation of selected number of
generations has been completed. Finally, the relationship with the
best fitness is given as the best solution.

3.3. Hybrid M5-GP method

In order to employ the advantages of M5 and GP simultaneously, they
were coupled for modelling the uplift capacity (Bonakdar et al., 2015).
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The database was categorized by M5 model tree algorithm to different
categories. After the classification of the data, GP is used as a non-linear
approach to estimate the uplift capacity of the suction caissons based on
the categorized data. The procedures of hybrid M5-GP modelling is
presented in Fig. 2 via a simple example.

Window 1 of Fig. 2 displays the application of M5 model tree to the
database. This leads to classification of the data into several subsets as
demonstrated in window 2. The subsets are actually the nodes at the end
of the inverse tree and referred to as leaves. M5 model tree is also capable
of developing linear models by the data of each leaf, however, the
functional relationship is not necessarily linear. Hence, Genetic Pro-
gramming is useful in the next stage.

As illustrated in window 3 of Fig. 2, the GP model is applied to the
existing data at each subset created by M5. GP optimizes the model and
gives an equation for each leaf as shown in the window 4. Therefore, the
solution based on M5-GP is the output of GP applied to sub-sets catego-
rized by M5.

4. Modelling of uplift capacity of suction caissons

As illustrated in Fig. 1, the most significant parameters affecting the
uplift capacity are as follows (Pai, 2005; Rahman et al., 2001):

LD
Q :f<3727 97 Sm Tk) (2)

where, Q: uplift capacity of suction caisson; L/d: ratio of embedded
length of the caisson (L) to its diameter (d); D/L: ratio of the depth of
load application (D) to embedded length of the caisson (L); 6: angle that
the inclined load makes with the horizontal; S,: undrained shear
strength of the soil at the caisson tip; Ty = k/v: ratio of the permeability
of the soil (k) and the steady velocity at which the caisson is pulled from
the ground (v);

Considering the mentioned important predictors and using the hybrid
M5-GP method, the best equations are selected based on a multi-
objective strategy. The criteria consist of choosing the simplest models,
including maximum number of inputs and presenting the best fitness on
the training and testing datasets. For the assessment of the proposed
models, parameters such as correlation coefficient (CC), root mean
squared error (RMSE) and mean absolute error (MAE) were calculated.
Their relationships are as below:

2 =i -y

cC = 3)
VE -3 (-3
1
RMSE = NZ(X‘ —y)? 4)
N

where, x; and y; are measured and predicted values and N is the number
of samples.

4.1. Database

The database made of the results of 12 experiments were collected by
(Rahman et al., 2001). This database that includes 62 cases has been
considered in various studies in which the prediction models were
developed for the uplift capacity of suction caissons (Alavi et al., 2011;
Cheng et al., 2014; Gandomi et al., 2011; Shahr-Babak et al., 2016). It is
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Fig. 2. Procedures of hybrid M5-GP method.

noteworthy that such analyses are just valid for the range of different
parameters in the selected database.

The measurements of effective parameters such as L/d, D/L, 6, S, Tk,
and Q are available in the database. For the estimation of the uplift ca-
pacity, 51 data were picked up for the training of the algorithm and the
remainder (11 data) were used to test the ability of the models for
generalization. To this end, the testing set was never employed in the
building of the model. The statistics of different inputs and output vari-
ables included in the model derivation are displayed in Table 1.

Table 1
Statistics of the model parameters.
Minimum  Maximum  Standard Skewness  Average
deviation
Inputs
L/d 0.23 4 0.77 1.09 1.59
D/L 0 0.69 0.17 2.89 0.06
6 (Rad) 0 /2 0.6 —1.58 0.4n
Sy(kPa) 1.8 38 10 1.35 11.75
Tk 1.00E-05 0.04 0.01 4.25 2.20E-
03

Output

Q (kPa) 10.1 387.2 81.67 1.74 90.06

4.2. Classification of the data and derivation of the formulae

As explained above, at first, M5 is applied to the data and categorizes
it, so the homogeneous subsets are created. The splitting parameter is the
undrained shear strength of the soil at the caisson tip (S,) and the split-
ting value is 12.28 kPa. Once the subsets are classified by the application
of the M5 model, the data at each leaf is used for the estimation using the
GP model. The significant input parameters are the terminal set of the GP
model and the function set involves various mathematical operators to be
tested for optimization of the GP model. As described before, several
important criteria were considered for choosing the best formula among
many possible solutions.

In this study, two models were proposed using the hybrid M5-GP
approach. The main objective of developing the first model, called
“M5-GP-1”, was to present a simple formula which is both physically
sound and easy to use. So, the terminal and function sets of the GP were
chosen such that the final solution is not complex while it has a suitable
accuracy. The equations of “M5-GP-1” model are as follows:

Li1)(5+6)"s0?

for §, <1228 Q=1.105 ( o (6-a)
k
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Table 2

M values for different levels of risk.
Allowable risk (%) M
2 2.05
5 1.65
10 1.28
33 0.44
50 0.00

D + 1)3.7 (g n Q)Z.SS;_G

(Z
or S,>12.28 0 =0.083 (6-b)
! (&) o)™

The second model presented in this research, called “M5-GP-2”,
mainly accounts for the accuracy. Hence, the function set of the GP was
arranged in a way that the prediction errors are minimized considerably,
however, the configuration of the given formula is not so simple. The
relationships of “M5-GP-2” are as below:

for S, < 12.28 (7-a)

1.2

140)"s, D L

0= 0,272% exp {1.2 (Z + 1) +2.23T; — 0.0004S2exp (g)}
k

for S,>12.28
D )2 (x4 o) (105 ) 8
0= 11.964 E+1) (2+6) (107 exp{0‘36<g)+0.185u

e () /(5+0))]

As can be seen, all the effective parameters are involved in the
developed relationships. It is noteworthy that the simple configuration
of the equations of the “M5-GP-1” model significantly facilitates the
design practice. In addition, a parametric study can be easily per-
formed for further verification of the model. According to the pro-
posed equations, trend of the prediction due to variations of L/d, D/L,
0, S, and Ty can be evaluated. It can be observed that the uplift ca-
pacity increases with the increase of D/L and S,. When the load di-
rection i.e. # changes from horizontal to vertical condition, the uplift
capacity enhances. Increase in L/d and Ty leads to the decrease of
uplift capacity. The findings of parametric study are in good

(7-b)

__s00 b
(o]
(-
- ]
> 400 | v
Q
(1]
Q. ...
8 300 L I
£ ® .
- [ 3
S 200 f -
k=] .’
g aPe
= 100 F . @
2 f @ M5.GP-1
o .
0 100 200 300 400 500

Measured Uplift Capacity (kPa)

(a)
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agreement with the results presented by Deng and Carter (2000);
Rahman et al. (2001) and Wang et al. (2008).

The equations of the “M5-GP-2” model include an additional expo-
nential term in comparison with the structure of the “M5-GP-1” model. In
this way, contributions of input parameters are further considered and the
simple initial form is modified. This improves the prediction ability of the
relationships, however, the configuration becomes more complicated.

Reliability of the prediction of the uplift capacity is extremely
important for design of suction caissons in practice. However, it is not
possible to evaluate the uncertainty incorporated in the formulas and the
failure risk of the suction caissons is not considered. In order to conquer
this limitation, the proposed formulas were modified for probabilistic
design utilizing the standard deviation of data. The “M5-GP-1” model
was revised as:

for S, <1228 Q= (1.105+0.223M) o (8-a)
k
D 1) (2 4 g) 5516
for S,>12.28 Q= (0.083 + 0.026M) (L ())2 (2 ) “  (8-b)
L\ Y- 5 13.1
60
and the “M5-GP-2” model was modified as:
for S, < 12.28 (9-a)
12
Z4+0) 7S, D
0 = (0.272 + 0.024M) % exp {1.2 (Z + 1) + 2.23T;
k
L
- 0.0004Siexp (—)}
d
for S,>12.28 (9-b)

_ G+ G0t a0y L
0 = (11.964 + 1.433M) s exp 0.36(

40188, + 1.69exp((§)/(§+9))}

These equations can be used for various levels of allowable risk by
substituting suitable values for M. Table 2 shows the M values obtained
from the normal distribution curve for the different desired levels of risk.
For instance, for the risk of 10%, M equals to 1.28.

500 F

400

300 F

200 F

100 f

o ¥
0 100 200 300 400 500
Measured Uplift Capacity (kPa)

(b)

® M5-GP-1

Predicted Uplift Capacity (kPa)

Fig. 3. Estimated versus observed uplift capacity by M5-GP-1: a) Training set, b) Testing set.
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Uplift Capacity (kPa)

5. Performance analyses

Two models were developed for the prediction of uplift capacity of
suction caissons. Figs. 3 and 4 display estimated versus observed uplift
capacity using M5-GP-1 and M5-GP-2 for training and testing data sets.
The M5-GP-1 model gives correlation coefficient (CC) of 0.976 and 0.996
for the training and testing datasets, respectively. The correlation coef-
ficient (CC) given by M5-GP-2 model for the training and testing datasets
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Fig. 4. Estimated versus observed uplift capacity by M5-GP-2: a) Training set, b) Testing set.
500 500
e M5-GP-1 —M5-GP-1
400 e Measured E 400 | w— Measured
=3
z
300 S 300 }
g
©
(o]
200 | £ 200 |
=
-
100 100
o . 4 , . . o : . : . .
0 10 20 30 40 50 0 2 4 6 8 10 12

are 0.986 and 0.996.

Uplift Capacity (kPa)

Data number Data number
(a) (b)

Fig. 5. Comparison of measured and predicted uplift capacity by M5-GP-1: a) Training set, b) Testing set.

Comparisons of the measured and predicted uplift capacity of suction
caissons by the two M5-GP models are illustrated for the training and
testing sets in Figs. 5 and 6. The models perform quite better on the
testing data in contrast to the training data.

Explicit formulations proposed by different researchers for the pre-
diction of upload capacity of suction caissons are summarized in Table 3
(Alavi et al., 2011; Gandomi et al., 2011; Muduli et al., 2013). As can be
seen, various Al-based methods have been employed and in several cases
the normalized values of the input parameters have been used.

500 500
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Fig. 6. Comparison of measured and predicted uplift capacity by M5-GP-2: a) Training set, b) Testing set.
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Table 3
Recommended models for uplift capacity prediction.
Author Method Formula
Gandomi et al. (2011) MEP 2
Quiep = Su (24 (f) + f7dvio — 160Tx + 4e)
Alavi et al. (2011
avi et al. (2011) TP Qror = 406.56&."((%) 0 — (T + Sun (Sun + 6 - <ﬁ) -1)))
LGP 2 )
Quep = 406.56S,, (( (ILJ) -05 (3) ) + (%) -0.25 (g) +0.258un + 0.750, — 0.25Tjc, + 0.125)
() ()...0)
g Tt 4 £
Qorp = 406.56Log(e5n) (e o+ Sun (9n —e i ) + en)
MLSR Qusir = —4.56 (5) + 8.835, + 749.63Tx + 1.770 + 304.36 (g) —148.92
Muduli et al. (2013) cp Qop = 8.7395, <g> ~ 0.062(S, + 11.850) ( (g) - su) — (8.739 + 1.5955,Log(Ti))tanh(8) + 11.46
450 Along with suitable performance, M5-GP based formulae have some
+ MEP (Gandomi, 2011) other important advantages. The equations are relatively simple, physi-
400 =TGP (Alavi, 2011) i cally sound and easy to use in engineering practice. However, ANN
= LGP(Alavi, 2011) (Rahman et al., 2001), NGN (Pai, 2005), IFRIM (Cheng et al., 2014) and
g 30 GEP (Alavi, 2011) g GMDH-HS (Shahr-Babak et al., 2016) are black-box models that do not
2 300 | AMLSR (Alavi, 2011) X present a transparent relationship between the output and inputs. In
i ® GP (Muduli, 2013) 3 addition, these methods may need prior adjustment of settings. The
8 250 | ems-Gp-1 MS5-GP equations can uniformly handle data of any conditions while the
£ u M5-GP-2 FEM models are sensitive to the individual cases (Alavi et al., 2010).
S 200 | ¢
=] AKX .
S g 6. Conclusions
% 150 F )&'
o 100 k ‘ A combination of model tree (M5) and genetic programming (GP)
a. - o . . . .
called hybrid “M5-GP” model was used to predict the uplift capacity of
50 F X ! A suction caissons. A well-known database of the uplift capacity experi-
‘|' mental results was employed to develop the model. Uplift capacity, is a
o L . . A L A . . A

0 50 100 150 200 250 300 350 400 450
Measured Uplift Capacity (kPa)

Fig. 7. Comparison of the uplift capacity obtained by different approaches.

Predictions made by MEP, TGP, LGP, GEP, MLSR and GP for the
testing dataset are demonstrated in Fig. 7. The prediction capabilities of
different models on the testing dataset are provided in Table 4. As shown
in Fig. 7 and Table 4, the “M5-GP-1" and “M5-GP-2” models are able to
predict the desired values accurately.

It can be seen that the M5-GP based solutions yield the best results
among different methods. The two M5-GP models have the similar values
of correlation coefficient (CC), however, “M5-GP-2” performs better than
“M5-GP-1” in terms of errors i.e. the RMSE and MAE.

The CC values in Table 4 show that the generalization capability of
M5-GP models is better than all other available models. The next models
exhibiting well performance are MEP, LGP, GEP, TGP, GP and MLSR
respectively. Among these, the MLSR is weaker due to significant
drawbacks of regression techniques. Regarding the RMSE and MAE
values, the “M5-GP-2” performs well followed by MEP, LGP and “M5-
GP-1".

Table 4
Performance indices of different models for uplift capacity prediction.

function of the most effective corresponding geotechnical and structural
parameters.

The findings regarding the employment of M5-GP and proposed re-
lationships are concluded as follows:

(i) The new equations developed by the hybrid model are easy to use
due to simple configuration and they are transparent because the
influence of input parameters on the output is physically inter-
pretable. Hence, the proposed formulae are suitable for practical
applications. Additionally, the equations were modified to ac-
count for different levels of risk to be considered in engineering
practice.

(ii) Different from FEM analysis, M5-GP model can systematically
evaluate the uplift capacity in all various conditions of the gov-
erning parameters. Effects of the predictors on the uplift capacity
were assessed and it was found that the new model can reasonably
reflect the influence of the variations of the input parameters. It is
noteworthy that the M5-GP is capable of giving more than one
model for a complicated system using different terminal and
function sets included in genetic programming process of its
algorithm.

(iii) The high accuracy of the proposed relationships by the M5-GP
model derived from the analysis of the data, is confirmed by

TGP (Alavi et al., LGP (Alavi et al., GEP (Alavi et al.,

MLSR (Alavi et al.,

MEP (Gandomi GP (Muduli et al., M5-GP-1 (Current M5-GP-2 (Current

2011) 2011) 2011) 2011) etal, 2011) 2013) study) study)
CcC 0.979 0.990 0.983 0.631 0.994 0.946 0.996 0.996
RMSE  20.79 16.03 23.49 152.45 16.14 46.89 20.57 9.51
MAE 15.56 12.21 16.18 131.06 9.86 19.59 14.58 7.64
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obtaining the appropriate values of correlation coefficient (CC),
root mean squared error (RMSE) and mean absolute error (MAE).

(iv) The estimations made by derived formulas were compared with
the results calculated by different available models representing
explicit formulations such as TGP, LGP, GEP, MEP and GP. It was
inferred that the new equations proposed by M5-GP model pro-
vides reliable predictions of the uplift capacity of suction caissons.
The new predictive models perform better than or similar to the
previously presented models.
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