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a b s t r a c t

In this paper, an adaptive robust control strategy is developed for the manipulation of drug usage and
consequently the tumor volume in cancer chemotherapy. Three nonlinear mathematical cell-kill models
including log-kill hypothesis, Norton–Simon hypothesis and Emax hypothesis are considered in the
presence of uncertainties. The Lyapunov stability theorem is used to investigate the global stability and
tracking convergence of the process response. For the first time, performance of the uncertain process is
investigated and compared for three nonlinear models. In addition, the effects of treatment period,
initial value of tumor volume (carrying capacity) and the uncertainty amount on dynamic system
behaviour are studied. Through a comprehensive evaluation, results are presented and compared for
three cell-kill models. According to the results, for a wide range of model uncertainties, the adaptive
controller guarantees the robust performance. However, for a given treatment period, more variation in
drug usage is required as the amount of model uncertainty increases. Moreover, for both the nominal
and uncertain models, less drug usage is required as the treatment period increases.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the drug delivery process in chemotherapy, normal
healthy cells may be killed in addition to the cancer cells [1,2].
Some control strategies have been proposed for the effective
killing of cancer cells and minimizing the negative aspects of
drugs on healthy cells. For this purpose, drugs delivery must be
regularly scheduled to maintain a specific level of the drug dosage
in the body. Therefore, understanding the effects of chemother-
apeutic drugs on tumors behaviour is important in development of
efficient treatment strategies.

Several models have been presented for the killing of cancer
tumor cells in chemotherapy process. In log-kill hypothesis as an
early model, it was shown that cell killing (using the chemother-
apeutic drug) is proportional to the tumor population [3]. Thus, it is
shown in this hypothesis that the volume of larger tumors is
reduced more rapidly than smaller tumors for a fixed dose of drug
[3]. After that, in some clinical observations, the predictions of log-
kill hypothesis fail in some cases such as Hodgkin’s disease and
acute lymphoblast leukemia (in these cases, larger tumors reduce
slower than the similar smaller tumors) [4–6]. Consequently, Norton
Simon hypothesis was proposed [4,5], in which the cell-kill was

considered to be proportional to the tumor growth rate. Finally, in
Emax hypothesis, the cell-kill rate was assumed to be proportional to
a saturable function of tumor mass [7]. This hypothesis is obtained
from the fact that chemotherapy drugs must be metabolized by an
enzyme before their activation. However, this metabolism is satur-
able because the amount of enzyme is fixed in the body.

For the above-mentioned hypotheses, open loop unconstrained
and constrained control methods have been proposed [6,8–11]. As
a constrained drug delivery control, bang-bang control strategy
has been used for the nonlinear models. The application of feed-
back control with a quadratic performance criterion for the
mathematical models of cancer chemotherapy has been studied
in the early works [8,9]. In other researches [10,11], considering
normal and tumor cells under the hypotheses of Gompertzian and
logistic growth, the rate of drugs administration was controlled.

Another open-loop control strategy utilized for chemotherapy
process is the control parameterization technique. In this method,
optimal control problem is transformed into a numerical problem
and the control variables are approximated with the constant
values in specified time intervals [12,13]. Using this optimal
control strategy, the dosage of specific drugs (e.g., paclitaxel) has
been determined for the reduction of breast and ovarian cancers
[14]. Moreover, it is concluded that treating with repeated shorter
periods allows more drug to be given without excess damage to
the bone marrow [14,15].

Mathematical details of optimal control techniques and their
therapeutic performances in different cell-kill hypothesis including
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treatment schedules have been studied in other researches, e.g., [6].
Moreover, some other approaches have also been investigated, such
as: optimal singular control in chemotherapy [16,17], the influence
of fixed and free final time of treatment on optimal chemother-
apeutic protocols [18], optimal control for a stochastic model of
cancer chemotherapy [19], optimal control for the tumor model
with immune resistance and drug therapy [20], a comparison
between linear and quadratic controls [21] and a comparison
between optimal control for different models [22]. In some other
researches, model simulation and experimental validation of intra-
tumoral chemotherapy using multiple polymer implants [23],
sensor-based cell and tissue screening for personalized cancer
chemotherapy [24] have been accomplished. A multi-objective
optimal chemotherapy control model for cancer treatment [25]
has also been proposed.

It should be noted that chemotherapy processes similar to
other dynamic systems are potentially accompanied with various
sources of uncertainty. The dynamic model inaccuracies are in
the form of structured and unstructured uncertainties; desc-
ribed through parametric or model (non-parametric) uncertain-
ties, respectively. These uncertainties are due to either sensor
fusion systems (direct measurement) or observers algorithms
(indirect measurement). As a result, previous control strategies
may not guarantee a robust performance in the presence of
uncertainties and for a wide range of operating conditions,
e.g., [8–14,16–22].

In a recent study [26], for achieving the robust performance
against uncertainties, three control approaches including optimal
linear regulation, nonlinear optimal control based on variation of
extremals and H1-robust control were developed. It was shown
that H1 controller has the most efficient performance for the
uncertain plants; however its conceptual design is rather complex.
For some previous linear controllers, e.g., [8–14,16–22] and two
other linear controllers recently proposed in [26] (H1-robust and
optimal linear regulation), the nonlinear model should be linear-
ized around its operating points. Therefore, choosing these oper-
ating points affects the performance of the controller, and the
controller has desired performance only in the areas close to these
operating points.

In this research, a nonlinear adaptive control strategy is devel-
oped for the chemotherapy process described through log-kill
hypothesis, Emax hypothesis and Norton–Simon hypothesis. The
nonlinear adaptive controllers are designed based on Lyapunov
stability theorem which guarantees the global stability and track-
ing convergence of the problem. Unlike the linear controllers in
[8–14,16–22,26] that require the linearization around the operat-
ing points, the proposed nonlinear controller does not require
linearization and its performance is not related to some operating
points or areas. As a result, the nonlinear controller could achieve
to its goal with the desired performance independent from the
points (or states) during the process.

Moreover, unlike the previous works, parametric uncertainties
associated with the dynamic models are also included. It should be
mentioned that the linear controllers [8–14,16–22,26] are affected
from the parameters of the original nonlinear model and their
uncertainties especially in linearization procedure. However, for
the proposed nonlinear adaptive controller, the nonlinear model
parameters are considered to be completely uncertain and their
magnitudes do not affect the controller design. The amount of
tumor volume is manipulated by adaptive variation of drug usage.
For the first time, performance of the uncertain process is
investigated and compared for three nonlinear models (with an
adaptive controller). In addition, the effects of treatment period,
initial value of tumor volume (carrying capacity) and the uncer-
tainty amount on dynamic system behaviour are studied. Results
are presented and compared for three cell-kill models.

2. Cell-kill models in cancer chemotherapy process

As it is mentioned, several approaches have been developed for
modeling the process of tumor cells killing; which is also called
chemotherapeutic induced cell-kill. In an early work by Schabel,
Skipper and Wilcox, it was hypothesized that cell-kill due to a
chemotherapeutic drug was proportional to the tumor population
[3]. This hypothesis was obtained based on in-vitro studies in the
murine leukemia cell-line L1210. According to this hypothesis, a
specified dose of drug kills a constant fraction of the cells
independently from the tumor size. Moreover, there is a relation-
ship between the drug dosage and the percentage of the killed
leukemia cells. Consequently, large tumors are diminished more
rapidly than smaller tumors with a specific dosage of drug. This
proposed hypothesis is called as the log-kill mechanism in the
literature. This model is valid for experimental leukemia because
the growth dynamics of the cancer is constant during the course of
observation. However, it failed when applied to the experimental
solid tumors of human in which tumor size approached a plateau
level (in which tumor dynamics is approximated by Gompertzian
growth curves) [27,28].

After that, Norton and Simon [4,5] found that the log-kill model
contradicts some clinical observations, such as acute lymphoblas-
tic leukemia and Hodgkin’s disease. In these cases, reduction in
small tumors was histologically faster than in similar larger
tumors. Consequently, Norton and Simon hypothesized that the
cell-kill is proportional to the growth rate of the tumor (e.g., as an
exponential, logistic, or Gompertzian functions). In a recent work,
a simple realistic biophysical model of tumor growth in the
presence of a constant continuous chemotherapy is studied, and
it was shown that if an extended Norton–Simon hypothesis holds,
the system may have multiple equilibria [29]. Therefore, the tumor
carrying capacity and/or the drug pharmacodynamics (and/or the
drug pharmacokinetics) are affected by the bounded stochastic
fluctuations which cause the transition from a small equilibrium to
a far larger one, not compatible with the life of the host. Finally, in
another hypothesis, it was mentioned that some chemotherapeu-
tic drugs must be metabolized by an enzyme before being
activated. Due to the fixed amount of enzyme, this reaction is
saturable. Accordingly, Holford and Sheiner [7] proposed Emax

hypothesis in which the cell-kill is described in terms of a
saturable function of Michaelis–Menton form. The concentration
effects of drugs is essentially considered and discussed in Emax

model. This model introduces theoretical support from the physi-
cochemical principles (by inclusion the law of mass action);
governing the binding of drug to the receptor [30].

In this section, Skipper’s log-kill hypothesis (called Model 1),
Emax hypothesis (called Model 2) and Norton–Simon hypothesis
(called Model 3) are considered. General dynamics of these
systems is presented through differential equations as [3–6]:

dx
dt

¼ rxFðxÞ�Gðx; tÞ ð1Þ

where x is the tumor volume, r is the tumor growth rate, FðxÞ is the
generalized growth function and Gðx; tÞ describes the pharmaco-
kinetic and pharmacodynamic effects of the drug. While the tumor
burden and toxicity level are defined as the time-integral of the
drug concentration, the Growth function (Gompertzian) is
expressed as:

FðxÞ ¼ ln
Θ

x

� �
ð2Þ

where Θ is the constant of scaling. For the mentioned hypotheses,
Gðx; tÞ is described as:

For log � kill hypothesis Model 1ð Þ : Gðx; tÞ ¼ δ
x
Θ

� �
uðtÞ ð3� 1Þ
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For Emax hypothesis Model 2ð Þ : Gðx; tÞ ¼ δx uðtÞ
xþλ

ð3� 2Þ

For Norton�Simon hypothesis Model 3ð Þ
: Gðx; tÞ ¼ δ FðxÞ uðtÞ ð3� 3Þ

where λ and δ are constant coefficients of the model and uðtÞ is the
chemotherapy drug concentration (density); e.g., in the plasma
compartment. uðtÞ ¼ 0 means the absence of drug effect and
uðtÞ40 denotes the amount or strength of the drug effect. It
should be mentioned that for simplicity in next formulations,
simulation results and discussions, ‘drug usage’ is used instead of
‘drug concentration’. Using ~x ¼ x=Θ; ~λ ¼ λ=Θ and ~δ ¼ δ=Θ for scal-
ing the models given by Eq. (3-1) and dropping the ‘� ’ in the
quantity ~χ ; χ ¼ x; λ; δ; the following differential equations are
obtained [6]:

Model 1ð Þ dx
dt

¼ �rx lnðxÞ� δ x uðtÞ ð4� 1Þ

Model 2ð Þ dx
dt

¼ �rx lnðxÞ� δ x
λþx

uðtÞ ð4� 2Þ

Model 3ð Þ dx
dt

¼ � lnðxÞ rx�δ uðtÞ½ � ð4� 3Þ

with the initial condition of xð0Þ ¼ x0; where the tumor volume is
normalized by using the mentioned change of variables as
0ox0o1.

3. Development of adaptive control strategy for cell-kill
hypotheses

In this section, the adaptive control strategy is developed for
proposed cell-kill hypotheses in cancer chemotherapy process. The
goal of adaptive control strategy is tracking the desired volume of
the cancer tumor (defined by the chemotherapy physician), while
the cell-kill models are associated with uncertainties. The feed-
back signal used in these controllers is the volume of tumor. Using
the Lyapunov theorem, the stability of closed-loop control systems
(for all three models) and the convergence of tumor volume
reduction to the desired value (xd) are presented. Moreover, it is
shown that using the adaptation law for updating the estimated
parameters of the system, the estimation error of model para-
meters is remained bounded. A schematic of the cancer che-
motherapy process using proposed nonlinear adaptive controllers
for drug delivery of different tumor models is shown in Fig. 1.

3.1. Adaptive control design in log-kill hypothesis

Dynamics of the log-kill hypothesis (Model 1, Eq. (4-1)), can be
rewritten as:

Model 1ð Þ �1
δ

_x
x
� r
δ
lnðxÞ ¼ uðtÞ ð5Þ

Property. The left-hand side of Eq. (5), by considering an arbitrary
variable ϕ instead of _x, is linearly parameterized in terms of the
system parameters as [31]:

�1
δ

ϕ

x
� r
δ
lnðxÞ ¼ Y1ðϕ; xÞ θ1 ð6Þ

The regressor matrix Y1 and the vector θ1 contain known
functions and unknown parameters of the system, respectively as:

Y1 ¼ �ϕ
x � lnðxÞ

h i
; θ1 ¼ 1

δ
r
δ

h i T
ð7Þ

The adaptive control law is defined as:

u ðtÞ ¼ �1
δ̂

ð_xd�α ~xÞ
x

� r̂

δ̂
lnðxÞ ð8Þ

The accent 4 is used for estimated values of parameters. δ̂ and
r̂ are estimates of the system parameters δ and r, respectively.
These estimated parameters are obtained via an adaptation law, as
will be presented next. ~x ¼ x�xd is the error vector for the tumor
volume with respect to the desired volume (xd), and α is a positive
constant. Using Property, and substituting ϕ¼ _xd�α ~x in Eq. (6), the
control law (Eq. (8)) is rewritten as:

u ðtÞ ¼ Y1ð_xd�α ~x; xÞ θ̂1 ð9Þ
where θ̂1 is the vector of estimated parameters. Now, the adapta-
tion law for updating the vector of estimated parameters is
introduced as:

_̂θ1 ¼ ~x x Γ Y1
TsgnðδÞ ð10Þ

where Γ is a symmetric positive definite constant matrix. It will be
shown in the following Lyapunov stability proof that the adapta-
tion law by Eq. (10) provides the tracking performance in the
presence of parametric uncertainties. The Lyapunov theorem [31]
is used for proving the stability of the system and asymptotic
tracking of the desired tumor volume (xd) during chemotherapy.
For this purpose, a Lyapunov function candidate is used as:

V ¼ 1
2

ð ~x 2þ δj j ~θ1
T
Γ�1 ~θ1Þ ð11Þ

where ~θ1 ¼ θ̂1�θ1 is the error vector for parameters estimation.
According to Eq. (11), the Lyapunov function is always positive
(VZ0). The time derivative of V is obtained as:

_V ¼ ~x ð_x� _xdÞþ δj j _̂θ1
T
Γ�1 ~θ1 ð12Þ

where _~θ1 ¼ _̂θ1, because θ1 is the vector of the constant actual
parameters and therefore _θ1 ¼ 0. Substituting the dynamics of
Model 1, Eq. (4-1) in Eq. (12), yields:

_V ¼ �r ~x x lnðxÞ�δ ~x x uðtÞ� ~x _xdesiredþ δj j _̂θ1
T
Γ�1 ~θ1 ð13Þ

Substituting the control law (given by Eq. (8)) in Eq. (13) yields:

_V ¼ �r ~x x lnðxÞþδ
r̂

δ̂
~x x lnðxÞþδ

δ̂
~x _xd�

δ

δ̂
α ~x 2 � ~x _xdþ δj j _̂θ1

T
Γ�1 ~θ1

ð14Þ
By adding and subtracting α ~x 2, and arranging Eq. (14), it can

be written as:

_V ¼ �α ~x 2�δ ~x x �ð_xd �α ~xÞ
x � lnðxÞ

h i
~θ1þ δj j _̂θ1

T
Γ�1 ~θ1 ð15Þ

Substituting ϕ¼ _xd�α ~x in Eqs. (6) and (15) is modified as:

_V ¼ �α ~x 2�δ ~x x Y1ð_xd�α ~x; xÞ ~θ1þ δj j _̂θ1
T
Γ�1 ~θ1 ð16Þ

Then, using the adaptation law given by Eq. (10) and Γ ¼ ΓT in
Eq. (16), the time derivative of Lyapunov function is obtained as:

_V ¼ �α ~x 2 r0 ð17Þ
Fig. 1. Nonlinear adaptive control of drug delivery in cancer chemotherapy process
for cell-kill models with parametric uncertainty.
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According to Lyapunov stability theorem, through Eqs. (11) and
(17), the proposed control method guarantees the global stability
and tracking convergence ( ~x-0 or x-xd as t-1). In other word,
if the drug is consumed according to the law suggested by the
controller, the actual volume of tumor (x) converges to its desired
value (xd).

Proof. The Lyapunov function V in Eq. (11) is positive definite in ~x
and ~θ1. Since _V is negative definite ( _Vr0), V is also bounded and
therefore, ~x and ~θ1 are bounded. We know that the desired tumor
volume (xd) and its time derivative (_xd) are bounded. Therefore,
according to ~x ¼ x�xd, x is bounded and consequently according to
system dynamics by Eq. (4-1), _x is also bounded. As a result,
_~x ¼ _x� _xd is bounded from the boundedness of _x and _xd. Finally, to
apply Barbalat’s lemma [31], the uniform continuity of _V should be
checked. Differentiating Eq. (17) with respect to time, yields:
€V ¼ �2α ~x _~x ð18Þ

This implies that €V is bounded since ~x and _~x are bounded. Thus,
_V is uniformly continuous. Using Barbalat’s lemma, it is proved
that ~x-0 as t-1 and the vector of parameters estimation error
~θ1 remains bounded. Using Eq. (7), the estimation error of two
parameters of the model ( ~δ and ~r) will be remained bounded.
Therefore, the objective of the proposed adaptive controller
(tracking convergence, ~x-0) is achieved; while, the identification
of the actual parameters is not obtained (which is not a goal for
the controller).

3.2. Adaptive control design in Emax hypothesis

Dynamics of the Emax hypothesis (Model 2, Eq. (4-2)), can be
rewritten as:

Model 2ð Þ �1
δ

1þλ

x

� �
_x� r

δ
xþλð ÞlnðxÞ ¼ uðtÞ ð19Þ

Similarly, using the same Property given in previous section,
the left-hand of Eq. (19) can be linearly parameterized in terms of
the system parameters as:

�1
δ

1þλ

x

� �
ϕ� r

δ
xþλð ÞlnðxÞ ¼ Y2ðϕ; xÞ θ2 ð20Þ

where the regressor matrix Y2 and the vector θ2 contain known
functions and unknown parameters of the system, respectively as:

Y2 ¼ �ϕ �ϕ
x �x lnðxÞ � lnðxÞ

h i
; θ2 ¼ 1

δ
λ
δ

r
δ

r λ
δ

h iT
ð21Þ

The adaptive control law for Model 2 is defined as:

u ðtÞ ¼ �1
δ̂

1þ λ̂

x

 !
ð_xd�α ~xÞ� r̂

δ̂
ðxþ λ̂ÞlnðxÞ ð22Þ

while δ̂, λ̂ and r̂ are the estimated parameters of the system (see
previous section). Substituting ϕ¼ _xd�α ~x in Eq. (20), the control
law is rewritten as:

u ðtÞ ¼ Y2ð_xd�α ~x; xÞ θ̂2 ð23Þ
where θ̂2 is the vector of estimated parameters. The adaptation
law for updating the vector of estimated parameters is introduced
as:

_̂θ2 ¼ ~x x Γ Y2
TsgnðδÞ ð24Þ

In this section, the following Lyapunov function candidate is
used,

V ¼ 1
2

ðxþλÞ ~x2þ δj j ~θ2TΓ�1 ~θ2Þ
�

ð25Þ

where ~θ2 ¼ θ̂2�θ2 is the error vector for parameters estimation.
According to Eq. (25), since λ is a positive constant and the tumor
volume is always positive (xZ0); the Lyapunov function is always
positive (VZ0). The time derivative of V is obtained as:

_V ¼ ðxþλÞ ~xð_x� _xdÞþ
1
2
_x ~x 2þ δj j _̂θ2

T
Γ�1 ~θ2 ð26Þ

where _~θ2 ¼ _̂θ2, and _θ2 ¼ 0 (with the same reason discussed for
Model 1). It is desired to reduce the tumor volume in chemother-
apy process. Therefore, the time derivative of tumor volume is
negative during the treatment (_xo0). From Eq. (26) we have:

_Vr ðxþλÞ ~xð_x� _xdÞþ δj j _̂θ2
T
Γ�1 ~θ2 ð27Þ

Using the dynamics of Model 2 (Eq. (4-2)) in Eq. (27), we have:

_Vr�r xþλð Þ ~x x lnðxÞ�δ ~x x uðtÞ� xþλð Þ ~x _xdþ δj j _̂θ2
T
Γ�1 ~θ2 ð28Þ

Substituting Eq. (22) in Eq. (28), yields:

_Vr�rðxþλÞ ~x x lnðxÞþδ
r̂

δ̂
ðxþ λ̂Þ ~x x lnðxÞþδ

δ̂
ðxþ λ̂Þ ~x _xd

�δ

δ̂
ðxþ λ̂Þ α ~x2�ðxþλÞ ~x _xdþ δj j _̂θ2

T
Γ�1 ~θ2 ð29Þ

Adding and subtracting ðxþλÞ α ~x 2 to Eq. (29) and its rearran-
gement, yields:

_Vr�ðxþλÞα ~x2þ δj j _̂θ2
T
Γ�1 ~θ2�δ ~x x � ϕ �ϕ

x �x lnðxÞ � lnðxÞ
h i

~θ2

ð30Þ
where, ϕ¼ _xd�α ~x. Substituting Eq. (20) in Eq. (30), yields:

_Vr�αðxþλÞ ~x2�δ ~x x Y2ð_xd�α ~x; xÞ ~θ2þ δj j _̂θ2
T
Γ�1 ~θ2 ð31Þ

Using the adaptation law given by Eq. (24) and Γ ¼ ΓT in
Eq. (31), the time derivative of Lyapunov function is obtained as:

_Vr�α ðxþλÞ ~x 2r0 ð32Þ

Since λ40 and the tumor volume is positive (xZ0), then
xþλ40. Therefore, according to Lyapunov stability theorem,
through Eqs. (25) and (32), proposed control method guarantee
the global stability and tracking convergence.

The continue of stability proof is presented in Appendix A. As it
is concluded in Appendix A, the objective of the proposed adaptive
controller (tracking convergence, ~x-0) is achieved; while, the
identification of the actual parameters is not obtained (which is
not a goal for the controller).

3.3. Adaptive control design in Norton–Simon hypothesis

Dynamics of the Norton–Simon hypothesis (Model 3, Eq. (4-3)),
can be rewritten as:

Model 3ð Þ 1
δ

_x
lnðxÞþ

r
δ
x¼ uðtÞ ð33Þ

Similarly, using the same Property given in Section 3.1, the left-
hand of Eq. (33) can be linearly parameterized as:

1
δ

ϕ

lnðxÞþ
r
δ
x¼ Y3ðϕ; xÞ θ3 ð34Þ

where ϕ is an arbitrary variable; the regressor matrix Y3 and the
vector θ3 contain known functions and unknown parameters of
the system, respectively as:

Y3 ¼ ϕ
lnðxÞ x
h i

; θ3 ¼ 1
δ

r
δ

h iT
ð35Þ
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The adaptive control law for Model 3 is defined as:

u ðtÞ ¼ 1
δ̂

ð_xd�α ~xÞ
lnðxÞ þ r̂

δ̂
x ð36Þ

Substituting ϕ¼ _xd�α ~x in Eq. (36), the control law is rewritten
as:

u ðtÞ ¼ Y3ð_xd�α ~x; xÞθ̂3 ð37Þ
where θ̂3 is the vector of estimated parameters. The adaptation
law for updating the vector of estimated parameters is introduced
as:

_̂θ3 ¼ � ~x lnðxÞ Γ Y3
TsgnðδÞ ð38Þ

In this section, the following Lyapunov function candidate is
used,

V ¼ 1
2

~x2þ δj j ~θ3TΓ�1 ~θ3Þ
�

ð39Þ

where ~θ3 ¼ θ̂3�θ3 is the error vector for parameters estimation.
According to Eq. (39), the Lyapunov function is always positive
(VZ0). The time derivative of V is obtained as:

_V ¼ ~x ð_x� _xdÞþ δj j _̂θ3
T
Γ�1 ~θ3 ð40Þ

where _~θ3 ¼ _̂θ3, and _θ3 ¼ 0 (with the same reason discussed for
Model 1). Substituting the dynamics of Model 3, Eq. (4-3), into
Eq. (40), results in:

_V ¼ �r ~x x lnðxÞþδ ~x lnðxÞ u ðtÞ� ~x _xdþ δj j _̂θ3
T
Γ�1 ~θ3 ð41Þ

Substituting the control law given by Eq. (36) into Eq. (41),
yields:

_V ¼ �r ~x x lnðxÞþδ
r̂

δ̂
~x x lnðxÞþδ

δ̂
~x _xd�

δ

δ̂
α ~x2� ~x _xdþ δj j _̂θ3

T
Γ�1 ~θ3

ð42Þ
Adding and subtracting α ~x 2 to Eq. (42) and its rearrangement,

yields:

_V ¼ �α ~x 2þδ ~x lnðxÞ ð_xd �α ~xÞ
lnðxÞ x

h i
~θ3þ δj j _̂θ3

T
Γ�1 ~θ3 ð43Þ

Substituting ϕ¼ _xd�α ~x in Eq. (34), Eq. (43) is modified as:

_V ¼ �α ~x 2þδ ~x lnðxÞY3ð_xd�α ~x; xÞ ~θ3þ δj j _̂θ3
T
Γ�1 ~θ3 ð44Þ

Using the adaptation law given by Eq. (38) and Γ ¼ ΓT in
Eq. (44), the time derivative of Lyapunov function is obtained as:

_V ¼ �α ~x 2r0 ð45Þ

According to Lyapunov stability theorem, through Eqs. (39)
and (45), proposed control method guarantee the global stability
and tracking convergence.

Proof. The Lyapunov function V is positive definite in terms of ~x
and ~θ3 (Eq. (39)). Since _V is negative definite ( _Vr0), V is also
bounded and therefore, ~x and ~θ3 are bounded. With a similar
reasoning presented for the Model 1 in Section 3.1, the variables x,

_x, ~x and _~x are bounded. Differentiating _V given by Eq. (45), with
respect to time, yields:
€V ¼ �2α ~x _~x ð46Þ

Table 1
Nominal parameters for the log-kill hypothesis (Model 1), Emax hypothesis (Model 2)
and Norton–Simon hypothesis (Model 3) [6].

Model 1 Model 2 Model 3
ri 0.1 0.1 0.1
δi 0.45 0.225 4
λ 0.25
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Fig. 2. Desired tumor volume during cancer chemotherapy process with 30 days,
tf1 ¼ 30 days (xd1) and 15 days, tf2 ¼ 15 days (xd2) treatment period, for 90% of
carrying capacity, x0 ¼ 0:9.
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(Norton–Simon) after implementation of the adaptive controller in tracking the
desired tumor volume reduction for 30 days treatment period (xd1) with 90% of
carrying capacity, x0¼0.9.
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This implies that €V is bounded since ~x and _~x are bounded. Thus,
_V is uniformly continuous. Using Barbalat’s lemma, it is proved
that ~x-0 as t-1 and the error vector for parameters estimation
~θ3 remains bounded. Using Eq. (35), the estimation error of two
parameters of the model ( ~δ and ~r) will be remained bounded.
Therefore, the objective of the proposed adaptive controller

(tracking convergence, ~x-0) is achieved; while, the identification
of the actual parameters is not obtained (which is not a goal for
the controller).

4. Simulations, results and discussion on adaptive control in
cell-kill hypotheses

For the problem simulation and investigation the effect of
designed adaptive controllers, realistic model parameters are
adopted from [6], as listed in Table 1. These parameters are scaled
as non-dimensional values; obtained via experimental observa-
tions on different kinds of cancers (in which various drugs such as
Taxol for the reduction of breast and ovarian cancers have been
used). The adaptive control algorithms are developed in MATLAB
with the procedure discussed in previous section. Tumor volume is
normalized such that 0rxr1 in all mentioned models. Results
are presented for two interval times of treatment as tf1 ¼ 30 days
and tf2 ¼ 15 days. Two desired scenarios for tumor reduction are
considered as (can be prescribed by the cancer physician):

xd ¼ ðx0�bÞ expð�a tÞþb ð47Þ
where a is the rate of tumor reduction in cancer chemotherapy
that should be adjusted by the physician and b is the desired
steady state value for tumor volume (final value). x0 and xd are the
initial and desired values of tumor volume, respectively. It should
be mentioned that the exponential functions for reducing the
tumor volume are considered (Eq. (47)) which is in accordance
with the scenarios used in the previous optimal controls such as

Fig. 4. Estimated and real values of parameters 1=δ (upper blue solid and dashed
lines) and r=δ (lower red solid and dot lines) for Model 1 (log-kill) with bounded
error during the chemotherapy process using the presented adaptation law. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 5. Required drug usage for Model 1 (log-kill), Model 2 (Emax) and Model3 (Norton–Simon) after implementation of the adaptive controller in tracking the desired tumor
volume reduction for 15 days treatment period (xd2) with (a) and (c): 90% of carrying capacity, x0 ¼ 0:9; (b) and (d): 50% of carrying capacity, x0 ¼ 0:5.
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[3–6, 8–14, 26]. However, without loss of generality, other func-
tions for desired tumor volume reduction can be used. For two
scenarios with interval times of treatment tf1 ¼ 30 days and
tf2 ¼ 15 days, these parameters are selected:

xd1 : a¼ 0:15; b¼ 0:01 for 30 days treatment period

xd2 : a¼ 0:4; b¼ 0:01 for 15 days treatment period ð48Þ

Desired scenarios for tumor reduction in interval times of
tf1 ¼ 30 days and tf2 ¼ 15 days; and for the initial condition as
90% of carrying capacity (x0 ¼ 0:9) are shown in Fig. 2. Time
response of the tumor volume in tracking of first desired scenario
(xd1 by Eq. (48)), in treatment time of 30 days is shown in Fig. 3a,
for x0 ¼ 0:9. As it is observed, after implementation of controller,
desired tracking objective is obtained in all three cell-kill hypoth-
eses. To achieve the desired tracking behaviour, the drug usage
must be adjusted according to the schedules presented in Fig. 3b.

Fig. 4 shows the estimated and real values of system para-
meters 1=δ and r=δ in Model 1, log-kill hypothesis (while an initial
20% error is assumed for each parameter). As it is observed,
adaptive controller guarantees the estimation with an acceptable
bounded error during the chemotherapy. Similarly, the effective-
ness of adaptive control strategy in estimation of dynamic system
parameters (with a bounded estimation error) can be investigated
for two other models. For the sake of brevity, related results are
not presented. The existence of bounded error for parameters
estimation is in accordance with the Lyapunov stability analysis

presented for each model in Section 3. There, it is proved for each
model that the parameters estimation error ( ~θ i) has a bounded
value that may not converge to zero.

Similar to Fig. 3, time response of the tumor volume in tracking
of second desired scenario (xd2 by Eq. (48)), in treatment time of
15 days is shown in Fig. 5a and b, for x0 ¼ 0:9 and x0 ¼ 0:5,
respectively. As it is observed, after implementation of the con-
troller, desired tracking objective is obtained in all three cell-kill
hypotheses. The corresponding variation in drug usage is pre-
sented in Fig. 5c and d. According to Fig. 5c and d, generally more
drug usage is required for tumors with larger volume (as physi-
cally expected).

According to Figs. 3 and 5 for first and second desired scenarios,
under steady state conditions, adaptive controller predicts less
amount of drug usage in Norton–Simon and Emax hypotheses,
respectively. However, in the first days of treatment, more drug
usage is predicted in the Emax hypothesis (in comparison with log-
kill). This may be an adverse effect of adaptive controller in Emax

hypothesis, due to negative side aspect of high drug consumption
in the beginning of treatment.

Finally, it should be mentioned that in both Figs. 3 and 5, the
amount of drug usage in Norton–Simon hypothesis (Model 3) is
significantly less than those of log-kill and Emax hypotheses. This is
because, according to Eq. (4-3), control input u ðtÞ is multiplied by
function ln ðxÞ which itself is a large quantity around the small
values of tumor volume (i.e., ln ðxÞ-1 as x-0). Moreover,
according to Table 1, the magnitude of δ in Model 3 is 10–20
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Fig. 6. Required variation of drug usage in chemotherapy process with nominal plant (blue solid line) and uncertain plants with 10% (red dashed line), 20% (violet dashed–
dot line) and 50% (black dot line) uncertainty while x0 ¼ 0:9; in perfect tracking of desired tumor reduction within 30 days (xd1) for (a) Model 1, log-kill, (b) Model 2, Emax and
(c) Model 3, Norton–Simon. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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times of those used in Models 1 and 2. Consequently, due to these
reasons, the amount of drug usage in Norton–Simon hypothesis is
essentially low.

As it is shown in Figs. 3 and 5, adaptive controller guarantees
the desired tracking of tumor reduction in both scenarios with 30
and 15 days of treatment. Moreover, as it is found out by
comparing Figs. 3b and 5c (and physically expected), in all three
models, more drug usage is required in the second scenario (xd2)
with shorter period of treatment (15 days) in comparison with the
first scenario (xd1) that has longer treatment period (30 days), both
for x0 ¼ 0:9.

4.1. The effect of parametric uncertainty on dynamic behaviour of
cell-kill models

To investigate the effect of uncertainties, parameters of the
uncertain models are assumed to be varied with 10%, 20% and 50%
of nominal values as:

ð1�χÞ rio ri o ð1þχÞ ri;
ð1�χÞ δio δi o ð1þχÞ δi;

ð1�χÞ λo λo ð1þχÞ λ
i¼ 1;2;3; χ ¼ 0:1; 0:2; 0:5 ð49Þ

while the nominal values of ri; δi and λ are given in Table 1. It is
observed that in the presence of various amounts of uncertainties

given by Eq. (49), desired tracking objectives of Fig. 2 are obtained
(in all cell-kill models). For the perfect tracking of desired
objective in the first scenario within 30 days (xd1 by Eq. (48)),
drug consumption must be scheduled according to Fig. 6; for the
uncertain models with x0 ¼ 0:9. For the sake of brevity, similar
results for x0 ¼ 0:5 and second scenario (xd2) are not presented.

In the presented simulation, the uncertain actual values of ri; δi
and λ are considered to be equal to ð1�χÞ ri, ð1þχÞ δi and ð1þχÞ λ,
respectively. Accordingly, as shown in Fig. 6, as the amount of
uncertainty (χ) is increased, more drug usage is required to
achieve the desired behaviour for tumor reduction (xd1). A sig-
nificant increase in drug usage is observed in the presence of 50%
uncertainty (in comparison with nominal model and uncertain
models with 10% and 20% uncertainty). It should be mentioned
that 50% uncertainty in model parameters is a theoretical assump-
tion that may not be occurred in practice (this case is considered
for comparison purpose).

Finally, the variation of drug usage in three models and for the
uncertain plants with 20% uncertainty is shown in Fig. 7; for two
desired scenarios (while x0 ¼ 0:9). Due to similar behaviour, results
are not presented for uncertain plants with 10% and 50% uncer-
tainty. Again and similar to what was observed for the nominal
plants in Figs. 3c and 5c; under steady state conditions, adaptive
controller predicts less amount of drug usage in uncertain Norton–
Simon and Emax models, respectively. In addition, comparing
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Fig. 7. Required drug usage for 20%-uncertain Model 1, log-kill (blue solid line),
Model 2, Emax (red dashed line) and Model 3, Norton–Simon (violet dashed–dot
line), for tracking the desired tumor reduction in (a) 30 days (xd1) and (b) 15 days
(xd2) treatment period (while x0 ¼ 0:9). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The effect of 10% (blue solid line), 20% (red dashed line), 50% (violet dashed–
dot line) and 90% (black dots) uncertainty in initial guess of θ1 on error vector of
tumor volume ( ~x) in Model 1, log-kill hypothesis (while, 30 days treatment with
x0 ¼ 0:9). Lower plot is the focus of upper plot around ~x ¼ 0, in first 10 days. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Figs. 7, 3c and 5c reveals that in the presence of model uncertain-
ties, more drug usage is required in perfect tracking of tumor
reduction (in comparison with nominal plants).

4.2. The effect of uncertainty in initial guess of parameters in
adaptive control law

In this section, the effect of uncertainty in initial guess of
parameters used in adaptive control law is investigated on
dynamic response of the cell-kill models. It is assumed that there
is 10%, 20%, 50% and 90% uncertainty in initial guess for para-
meters θi; i¼ 1;2;3, given by Eqs. (7), (21) and (35). For the sake
of brevity and due to similar behaviour, the following results are
only presented for Model 1 (log-kill hypothesis); with 30 days
treatment. According to Fig. 8, the error vector for tumor volume
( ~x ¼ x�xd) is a small value which finally converges to the zero; for
various amounts of uncertainty in initial guess of θ1 (in Fig. 8, the
log-kill model itself is certain; i.e., nominal model is used).

Finally, to complete the investigation, it is assumed that the
uncertainty exists in both of the model parameters (i.e., as
described by Eq. (49)) and initial guess of parameters used in
adaptive control law (i.e., uncertainty in θi; i¼ 1;2;3). Fig. 9 shows
the error vector of tumor volume ( ~x) for the nominal plant and

Fig. 9. Time response of the tumor volume error ( ~x) in Model 1 (log-kill) for the
nominal (blue solid line) and 50%-uncertain (red dashed line) models; with 20%
uncertainty in initial guess of θ1 (while, 30 days treatment with x0 ¼ 0:9). Lower
plot is the focus of upper plot around ~x ¼ 0. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The effect of discontinuous feedback (with 2-days sampling time),
measurement error, and bounded disturbance on the time response of tumor
volume including: The desired tumor volume, the actual tumor volume, the tumor
volume with a bounded error, the discontinuous signal of desired tumor volume
(used in the controller), and the discontinuous signal of the tumor volume (that has
a bounded error and used in the controller) for Model 1; while, 30 days treatment
(xd1) is used for x0 ¼ 0:9.
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50%-uncertain plant (i.e., χ ¼ 0:5 in Eq. (49)); in the presence of
20% uncertainty in initial guess of θ1 with respect to the nominal
model. As it is observed, in both cases, the error vector for tumor
volume ( ~x) is a small value which finally converges to the zero.
Therefore, proposed control strategy is robust against the uncer-
tainties in initial guess of parameters used in construction of
control law (either for nominal plant or uncertain plants of the
log-kill models). For the sake of brevity, similar results for other
cases of Models 2 and 3 and other amounts of uncertainty are not
presented.

4.3. The effect of sampling time, measurement noise and modelling
mismatch on the controller performance

In this section, the performance of the controller is evaluated
and shown using discontinuous feedback (with high sampling
time) and with the existence of measurement error, and bounded
disturbances and/or non-parametric uncertainties in the system;
similar to a realistic chemotherapy process.

For the sake of brevity, the robustness analysis is only pre-
sented for the controller of Model 1 and with the first scenario
(xd1) and x0 ¼ 0:9. For this purpose, first the controller robustness
is evaluated with a discontinuous feedback of tumor volume with
2 days sampling time. In other words, the volume of patient’s

tumor should be measured one time in every 2-days. Moreover,
the bounded measurement error of tumor volume (corresponds to
the sensing instrument) is considered to be a combination of a
constant and time-varying terms as: Δx¼ 0:05þ0:05 sin ð2tÞ.
Accordingly, at the beginning of the chemotherapy process, shown
in Fig. 10, the tumor volume is about x� x0 ¼ 0:9 and the max-
imum measurement error is more than 10% of the tumor volume.
However, after 6 days of the process that the tumor volume
decreases to x� 0:4, the maximum measurement error is about
25% of the tumor volume. Finally, at the end of the cell-killing
process (after 20 days of treatment) that the tumor volume
decreases to x� 0:05, the maximum measurement error is about
200% of the tumor volume (Fig. 10). Also, dist ¼ 0:01�0:01 sin ðtÞ is
considered as a bounded disturbance (and/or modeling uncertainty)
exists in the cell-kill Model 1 as: _x¼ �rx lnðxÞ� δ x uðtÞþdist. 20%
uncertainty is also considered in initial guess of model parameters.

The desired tumor volume, the actual tumor volume, the
discontinuous signal of desired tumor volume, and the discontin-
uous signal of the tumor volume (that has a bounded error and
used in the controller) are shown in Fig. 10. As it is shown in
Fig. 10, the tumor volume is measured at the beginning of each
2 days and this measurement is used as the feedback signal in
adaptive controller during 2 days. The corresponding drug usage
and parameters adaptation of Model 1 are shown in Fig. 11a and b,
respectively. It should be mentioned that since the dynamics of the
chemotherapy (Eq. (4-1)) is slow, employing the drug usage with
2 days sampling time (Fig. 11a) can effectively control the tumor
volume (Fig. 10). As it is observed in Fig. 11b, adaptive controller
guarantees the estimation with an acceptable bounded error
during the chemotherapy which is in accordance with the Lyapu-
nov stability analysis presented for Model 1 in Section 3.1.

As the second part of robustness analysis of the proposed
control strategy against disturbances and/or modelling uncertain-
ties, the controller designed for Model 1 (in Section 3.1) is now
used for Model 2. Since Model 2 (Eq. (4-2)) has a different
structure in comparison with Model 1 (Eq. (4-1)), the performance
of the controller is evaluated in the presence of model mismatch.
Accordingly, using continuous feedback signal, the time response
of the tumor volume in tracking of first desired scenario (xd1 in
treatment time of 30 days), is shown in Fig. 12a for x0 ¼ 0:9. As it is
observed, by implementation of controller designed for Model
1 on Model 2, the tumor volume reduction is obtained; however a
bounded tracking error exists due to the model mismatch. The
corresponding drug usage is also presented in Fig. 12b. Similarly,
the same investigation can be performed for other cases. But, for
the sake of brevity, just the performance of controller developed
for Model 1 was studied on Model 2.

Next, using the discontinuous feedback signal of tumor volume
(with 2-days sampling time) and a bounded measurement error
(Δx¼ 0:02þ0:005 sin ðtÞ), the performance of the controller
designed for Model 1 is evaluated on Model 2. Accordingly, the
desired tumor volume, the actual tumor volume, the discontin-
uous signal of desired tumor volume, and the discontinuous
signal of the tumor volume (that has a bounded error and
used in the controller) are shown in Fig. 13a for x0 ¼ 0:9 and
of 30 days treatment period (xd1). As shown in Fig. 13a, at
the beginning of the chemotherapy process when the tumor
volume is about x� x0 ¼ 0:9, the maximum measurement error
(Δx¼ 0:02þ0:005 sin ðtÞ) is more than 2.5% of the tumor volume.
However, after 10 days of the process that the tumor volume
decreases to x� 0:17, the maximum measurement error is about
15% of the tumor volume. Finally, at the end of the cell-killing
process (after 20 days of treatment) that the tumor volume
decreases to x� 0:005, the maximum measurement error is about
150% of the tumor volume (Fig. 13a). According to Fig. 13a, by
implementation of controller designed for Model 1 on Model 2,
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the tumor volume reduction is obtained; however a bounded
tracking error is observed due to the measurement error, discon-
tinuous control signal and model mismatch. The corresponding
drug usage with 2-days sampling time is also shown in Fig. 13b.

Therefore, according to Figs. 10–13, the robust performance of
the proposed controller against discontinuous feedback (with high
sampling time), measurement error, and bounded disturbance
and/or modelling uncertainty is shown in addition to its previous
robustness to parametric uncertainties.

5. Conclusions

In this paper, an adaptive robust control strategy is developed
to adjust the drug delivery schedule and consequently tumor
reduction in cancer chemotherapy. To investigate the global
stability and tracking convergence of the process, Lyapunov
stability theorem is used. For the first time, the efficiency of
adaptive control strategy is studied on cancer chemotherapy in
the presence of model uncertainties. Proposed nonlinear control
approach is applied on three cell-kill models including log-kill
hypothesis (Model 1), Emax hypothesis (Model 2) and Norton–
Simon hypothesis (Model 3). In these models, cell-kill is propor-
tional to the tumor mass, a saturable function of tumor mass and
tumor growth rate, respectively.

Two desired scenarios for tumor reduction during treatment
periods of 30 days and 15 days are considered. Over the treatment
interval, performance of the controlled systems including the
amount of drug usage and tumor volume are investigated and
compared (for three nonlinear models under two desired scenar-
ios). The effects of treatment period, initial value of tumor volume
(carrying capacity) and the uncertainty amount on dynamic
system behaviour are studied. Through a comprehensive evalua-
tion, results are presented and compared for three cell-kill models.
Moreover, the performance of the controller using discontinuous
feedback signal and with the existence of measurement error, and
bounded disturbances and/or modeling uncertainties is evaluated.
According to the results, the following conclusions can be
extracted:

1. After implementation of controller, desired tracking objective is
obtained in all three cell-kill hypotheses for both scenarios
with treatment periods of 30 days and 15 days. Moreover, this
perfect tracking is also obtained for the chemotherapy process
in the presence of model parametric uncertainties.

2. During the chemotherapy process, adaptive controller guaran-
tees the estimation of model parameters with an acceptable
bounded error.

3. To suppress the tumor, generally more drug usage is required
for tumors with larger volume. In addition, for both nominal
and uncertain plants of the cell-kill models, more drug
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consumption is required in treatments of shorter periods
(while the initial and final volumes of tumor are kept fixed).

4. Under steady state conditions, adaptive controller predicts less
amount of drug usage in Norton–Simon and Emax hypotheses,
respectively. However, in comparison with the log-kill model,
more drug usage is predicted in the Emax model during the first
days of treatment (which may cause a negative side aspect due
to high drug consumption).

5. It is observed that the proposed adaptive controller is robust
against a wide range of model uncertainties. Moreover, as the
amount of uncertainty increases, more drug usage is required
to achieve the desired behaviour for tumor reduction. In other
words, the controller could rapidly adapt to the system uncer-
tainties and adjust the control input.

6. The proposed control strategy is robust against the uncertain-
ties in initial guess of parameters used in construction of
control law (either for nominal plant or uncertain plants of
the cell-kill models).

7. Also, the controller shows the robust performance against
discontinuous feedback of tumor volume (with high sampling
time), measurement error of tumor volume, and bounded
disturbances and/or modelling (non-parametric) uncertainties.

Finally, it should be mentioned that the proposed robust
adaptive controller can be applied on any other bioprocesses
related to the chemotherapy or other similar health treatments.
However, achievement of this purpose depends on the extraction
of governing dynamic model.
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Appendix A

In this section, the continue of the Lyapunov stability proof for
Model 2 (presented in Section 3.2) is presented.

Proof. The Lyapunov function V in Eq. (11) is positive definite in ~x
and ~θ2. Since _V is negative definite ( _Vr0), V is also bounded and
therefore, x, ~x and ~θ2 are bounded. Consequently according to
system dynamics by Eq. (4-2), _x is bounded. We know that the
desired tumor volume (xd) and its time derivative (_xd) are
bounded. Therefore, according to ~x ¼ x�xd, ~x is also bounded. As
a result, _~x ¼ _x� _xd is bounded from the boundedness of _x and _xd.
Thus, Y2ð_xd�α ~x; xÞ is also a bounded matrix. Moreover, since the
vector of actual parameters of the system (θ2) and the vector of
parameters estimation error ( ~θ2) are bounded, the boundedness of
θ̂2 is obtained from ~θ2 ¼ θ̂2�θ2. If second time derivative of the
desired tumor volume (€xd) is bounded, it can concluded that
_Y2ðx; _x; xd; _xd; €xdÞ is a bounded matrix. Using Eq. (32), and adding
the negative term ð1=2Þ _x ~x 2, _V ¼ �α ðxþλÞ ~x 2þð1=2Þ _x ~x 2r0 is
obtained. By replacing _x from Eq. (4-2) into the latter _V , yields:

_V ¼ �α ðxþλÞ ~x 2þð1=2Þ �r x lnðxÞ�δ
x

xþλ
u ðtÞ

� �
~x 2 ðA:1Þ

Substituting control law u ðtÞ given by Eq. (23) into Eq. (A.1), leads
to:

_V ¼ �α ðxþλÞ ~x2þ 1
2

� �
�r x lnðxÞ�δ

x
xþλ

Y2θ̂2
� �

~x2 ðA:2Þ

Differentiating _V with respect to time yields:

€V ¼ �α _x ~x 2�2α ðxþλÞ ~x _~x þ �r x lnðxÞ�δ x
xþ λY2θ̂2

� �
~x _~x

þ 1
2

� �
�r _x lnðxÞ�r _x�δ

λ_x

ðxþλÞ2
Y2θ̂2�δ

x
xþλ

_Y2θ̂2þY2
_̂θ2

� � !
~x2

ðA:3Þ

This implies that €V is bounded since x, _x, ~x, _~x, Y2, _Y2, θ̂2 and _̂θ2
are all bounded. Thus, _V is uniformly continuous. Using Barbalat’s
lemma, it is proved that ~x-0 as t-1 and the error vector for
parameters estimation ~θ2 remains bounded. Using Eq. (21), the
estimation error of three parameters of the model (~δ,~λ and ~r) will
be remained bounded.
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