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In this paper, a multi-agent optimization algorithm (MAOA) is proposed for solving the resource-
constrained project scheduling problem (RCPSP). In the MAOA, multiple agents work in a grouped envi-
ronment where each agent represents a feasible solution. The evolution of agents is achieved by using
four main elements in the MAOA, including social behavior, autonomous behavior, self-learning, and
environment adjustment. The social behavior includes the global one and the local one for performing
exploration. Through the global social behavior, the leader agent in every group is guided by the global
best leader. Through the local social behavior, each agent is guided by its own leader agent. Through the
autonomous behavior, each agent exploits its own neighborhood. Through the self-learning, the best
agent performs an intensified search to further exploit the promising region. Meanwhile, some agents
perform migration among groups to adjust the environment dynamically for information sharing. The
implementation of the MAOA for solving the RCPSP is presented in detail, and the effect of key parame-
ters of the MAOA is investigated based on the Taguchi method of design of experiment. Numerical testing
results are provided by using three sets of benchmarking instances. The comparisons to the existing algo-
rithms demonstrate the effectiveness of the proposed MAOA for solving the RCPSP.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The resource constrained project scheduling problem (RCPSP) is
to schedule project activities over time under a limitation of avail-
able resources (Brucker, Drexl, Mohring, Neumann, & Pesch, 1999).
The RCPSP is one of the most intractable NP-hard problems in the
field of operation research and management science (Mohring,
Schulz, Stork, & Uetz, 2003). The RCPSP is very common in a variety
of engineering fields, such as medical research (Hartmann, 1997),
and software development (Alba & Chicano, 2007). Many schedul-
ing problems can be formulated as the special cases of the RCPSP,
such as job-shop scheduling, flow-shop scheduling, open-shop
scheduling and project scheduling (Leung, 2004). It is very impor-
tant for both academic research and engineering applications to
develop effective solution algorithms for solving the RCPSP.

Over the past few decades, the RCPSP has attracted increasing
attention due to its challenge and extensive engineering back-
ground. Early solution methods mainly focus on heuristic priority
rules, e.g., minimum slack (MSLK), latest start time (LST) (Davis &
Patterson, 1975), earliest start time (EST), shortest processing time
(SPT), latest finish time (LFT), most total successors (MTS) (Cooper,
1977), worst case slack (WCS), and resource scheduling method
(RSM) (Kolisch, 1996). To obtain the solutions with a higher qual-
ity, meta-heuristics have been widely adopted during recent years.
Relevant research work in this area includes the following.
Hartmann (1998) proposed a permutation-based genetic algorithm
(GA) by employing a regret-based sampling method and LFT rule
for initializing the population, where the proposed single point
crossover that can always generate feasible offspring. Hartmann
(2002) further developed a self-adapting GA by adaptively adopt-
ing a parallel and serial scheduling generating scheme (SGS).
Bouleimen and Lecocq (2003) proposed an activity list based sim-
ulating annealing (SA) algorithm based on an alternated activity
and time incrementing process. Zhang, Li, and Li (2005) proposed
a particle swarm optimization (PSO) algorithm with both the prior-
ity-based and the permutation-based representation, showing that
the permutation-based PSO outperformed the priority-based PSO.
Debels and Vanhoucke (2007) presented an effective decomposi-
tion-based GA with a resource-based crossover. Chen, Shi, Teng,
Lan, and Hu (2010) proposed an efficient hybrid algorithm by com-
bining ant colony optimization (ACO) and scatter search (SS), and
Lam & Li, 2012 proposed a chemical reaction optimization (CRO).
Shi, Qu, Chen, et al. (2010) proposed an artificial bee colony
(ABC) algorithm, where each solution was represented by a
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random key. Wu, Wan, Shukla, and Li (2011) proposed a chaos-
based improved immune algorithm. Fang and Wang (2012) pro-
posed a shuffled frog-leaping algorithm (SFLA) by using an
extended activity list representation, and they presented a speed-
up method for evaluating new solutions based on some theoretical
analysis. Paraskevopoulos, Tarantilis, and Ioannou (2012) proposed
an event list-based evolutionary algorithm. More recently, Zamani
(2013) proposed a competitive GA with a magnet-based crossover
operator, Yannibelli and Amandi (2013) proposed a hybrid method
by integrating the simulated annealing into evolutionary algo-
rithm, Faghihi, Reinschmidt, and Kang (2014) proposed a novel
approach of construction project application of the GA based on
building information model, and Fahmy, Hassan, and Bassioni
(2014) proposed a PSO with stacking justification for solving the
RCPSP. Although many methods have been developed, it is still a
challenge to solve the large-scale RCPSP effectively.

Multi-agent system (MAS) is an active research topic in artificial
intelligence and expert systems. In a reasonable way, multiple
agents collaborate with potential advantages for solving complex
problems. The MAS based methods have been used to solve the
RCPSP (Ren & Wang, 2011) and showed good performance, where
an agent represented a resource and the behaviors of agents like
collaboration, learning were adopted to handle the RCPSP.
Moreover, motivated by swarm intelligence, several population-
based algorithms (Liu, Wang, Liu, & Wang, 2011) have been widely
applied to solve optimization problems. The intention of this
research is to design a new multi-agent optimization algorithm
(MAOA) by adopting the key behaviors of agent and the popula-
tion-based mechanism of swarm intelligence to solve the RCPSP
effectively. To be specific, each agent represents a feasible solution,
which collaborates with others in a grouped environment via social
behavior, autonomous behavior, self-learning, and environment
adjustment. Through these elements, agents perform exploration
and exploitation in a collaborative way among search space to
obtain the promising solutions. We present the detailed imple-
mentation of the MAOA and the numerical comparisons with the
existing algorithms for solving the RCPSP. The results show that
the proposed MAOA is very competitive, especially for solving
the large-scale problems.

The rest of the paper is organized as follows: In Section 2 the
RCPSP is described; In Section 3, the framework of the multi-agent
optimization algorithm is provided after introducing the concepts
Fig. 1. An example of a project.

Fig. 2. A feasibl
of agent and multi-agent system. In Section 4, the detailed design
of the MAOA for solving the RCPSP is presented. Numerical tests
and comparisons as well as the investigation on the effect of
parameter setting are given in Section 5. Finally, the paper is ended
with some conclusions and future work in Section 6.

2. Resource constrained project scheduling problem

Generally, the RCPSP can be described as follows: A project
consists of J activities, where each activity j (j = 1,2, . . ., J) can be
processed with a duration dj without preemption. There exists
precedence relationship between several activities, which implies
that activity j cannot be started until its predecessors are all fin-
ished. Moreover, there are K types of renewable resources available
for the project. For each resource k (k = 1,2, . . .,K), its availability at
any time is Rk. The activity j requires rjk units of resource k during
its period of duration. The dummy activities 0 and J + 1 represent
the beginning and the end of the project, respectively. It is assumed
that d0 = dJ+1 = 0 and such dummy activities consume no resource.
The objective is to determine the start time of each activity to min-
imize the maximum complete time (makespan) of the project. For
mathematical models of the RCPSP, please refer to Leung (2004).

In Fig. 1, a simple RCPSP with 6 activities is illustrated. For sim-
plicity, only one type of resource is considered with an available
amount of 2. In Fig. 2, a feasible schedule for the project in Fig. 1
with a makespan value of 12 is shown.

3. Multi-agent optimization algorithm

3.1. Agent and multi-agent system

Agent is a concept in the field of artificial intelligence (Minsky,
1988). An agent can be viewed as a computer system situated in a
certain environment, such as a physical system or internet, with
flexible autonomous action (Wooldridge & Jennings, 1995).
Agents perceive input information though sensors and then per-
form resultant actions to affect the environment (Jennings,
Sycara, & Wooldridge, 1998), as shown in Fig. 3 (Wooldridge,
2009). Agents are also capable of making decisions of choosing
suitable actions to realize the goal independently without external
intervention from other agents or human interference. Meanwhile,
agent may have a variety of possible actions, including responsive-
ness, pro-activeness and social behaviors (Wooldridge & Jennings,
1995). Each agent can receive the information from the external
e schedule.

Action 
output 

Sensor 
input

Environment

Agent

Fig. 3. An abstract view of an agent.
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environment and react in a timely manner to affect or adapt to the
environment. Besides, each agent interacts with the external
sources and other agents through social behavior.

Multi-agent system (MAS) is a group of loosely connected
autonomous agents that act in a certain environment (Balaji &
Srinivasan, 2010). A MAS usually contains three elements: a set
of agents, A = {a1,a2, . . .,an}, an environment where agents live
and act, and a set of reactive rules that govern the interaction
between agents and the environment (Liu, Jing, & Tang, 2002).
The agents retain their inherent characteristics and also communi-
cate with other agents through social behavior. Agents are usually
well organized in a certain architecture, such as hierarchical orga-
nization, holonic organization, coalition and group, as shown in
Figs. 4–7, respectively (Balaji & Srinivasan, 2010). To improve the
overall performance, effective rules can be used for agents to well
interact with the environment and other agents. Next, we will pre-
sent the MAOA inspired by the mechanism of the multi-agent
system.
Agent 1

Coalition 1

Agent 2

Agent 7

Coalition 3 Agent 3
3.2. Multi-agent optimization algorithm (MAOA)

The key characteristics of a multi-agent system include envi-
ronment, behaviors of agents, and interactions among agents.
Inspired by the mechanism of the MAS including autonomous
behavior, social behavior and self-learning behavior of agents, we
will design a multi-agent based optimization algorithm. In
addition, the interaction between agents and environment is also
Agent 1

Agent 3 Agent 2

Agent 4

Agent 5

Agent 6

Agent 7

Fig. 5. Holonic organization.
considered, which is simulated through adjustment of the
environment.
3.2.1. Environment and its adjustment
In the MAOA, each agent denotes a solution. The relationships

between individual agents are depicted by an organized architec-
ture. All the agents and their relationships form an environment.
To solve a specific optimization problem, the representation of an
agent and the organized architecture should be defined. In this
paper, a grouped structure with N groups is employed, as shown
in Fig. 8, where each group consists of S agents. For each group,
the best agent of the group is elected as the leader.
Fig. 6. Coalition organization.
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Fig. 7. Group organization.
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Fig. 8. Leader-group organization.
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By adjusting the environment, it is useful for the agents to well
search the solution space. In the MAOA, environment is adjusted
by re-grouping all the agents. For each group one by one, to be
specific, it exchanges the second best agent in each group (namely
active agent) with the worst agent in the group with the best lea-
der agent (namely elite group). With such adjustment, information
is shared among groups and the search behavior within or among
groups can be adjusted accordingly so as to enhance the search
variety.

3.2.2. Social behavior, autonomous behavior and self-learning
In a multi-agent system, agents cooperate, coordinate, and

negotiate with one another (Wooldridge, 2009). Coordination and
cooperation among agents can be viewed as a kind of social behav-
ior. The MAOA adopts two phases of cooperation behaviors, includ-
ing the collaborative interaction in the whole environment (global
social behavior) and the cooperative interaction in the local group
(local social behavior). For the global social behavior, the leader
agent of the elite group cooperates with all the leader agents in
other groups one by one to well explore the whole solution space,
as shown in Fig. 9. For the local social behavior, the leader agent of
each group interacts with other agents in the same group to further
exploit their neighborhoods, as illustrated in Fig. 10.

Apart from the social behavior, each agent is also capable of act-
ing independently without external intervention, i.e., autonomy. In
the MAOA, autonomous behavior is realized by random neighbor-
hood exploitation and greedy selection. That is, each agent exploits
Leader agent 1

Agent 1 

Agent 2 

……

Agent 1

Agent 2

Agent S
2
-1

……
Best leader agent 

Interact between groups

Group 1

Elite Group

Agent S1-1

Fig. 9. Global social behavior of agents.
its neighborhood randomly, and then accepts the new neighbor
with a better quality.

Moreover, agent can be improved by learning from the acquired
knowledge (Zhong, Liu, Xue, & Jiao, 2004). In the MAOA, a self-
learning procedure is used by a special problem-dependent local
search. via such a kind of self-learning, the exploitation with some
problem characteristics can be enhanced.

3.2.3. MAOA
With the above description, a framework of the MAOA is illus-

trated as Fig. 11.
In the MAOA, an environment is firstly constructed by dividing

all the agents into several groups; then, agents perform evolution
through the social behavior as the global exploration as well as
through the autonomous behavior and the self-learning as the local
exploitation; by moving agents among groups, environment can be
adjusted so that information can be shared for further well evolu-
tion with the agent-based search behaviors. Next, we will present
the detailed implementation of the MAOA for solving the RCPSP.

4. MAOA for RCPSP

4.1. Encoding and the initialization of environment

To solve the RCPSP, the extended activity list (EAL) (Fang &
Wang, 2012) is used to represent agent, which contains three lists:
(1) an activity list p ¼ fp1;p2; . . . ;pJg; (2) start time of each
Leader agent 1

Agent 1 

Agent 2 Agent S1

……

Environment

Interact within the group

Fig. 10. Local social behavior of agents.
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Fig. 11. Flowchart of the MAOA.
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activity {s1,s2, . . .,sJ,}; (3) finish time of each activity {f1, f2, . . ., fJ,}.
Fang and Wang (2012) pointed out that search operators with such
an encoding scheme can perform efficiently.

To obtain good initial agents in the MAOA, agents are initialized
using the regret-based biased random sample method with the LFT
priority rule (Hartmann, 1998). To be specific, the activity list of
each agent is constructed by repeatedly selecting an unscheduled
activity from the eligible activity set (denoted as D), which con-
tains all the activities whose predecessors have already been
scheduled. To determine which unscheduled activity in D is to be
selected at each decision stage, a roulette wheel selection strategy
is employed and the LFT priority rule is used to generate the fol-
lowing probability gj of being chosen for eligible activity j:

gj ¼ ðlj þ 1Þ
X
i2D

ðli þ 1Þ
,

ð1Þ

where lj ¼max
i2D

LFTi � LFTj þ 1 is the priority value of activity j and

LFTj is the latest finish time of activity j.
After the activity list of each agent is constructed, the serial

scheduling generating scheme (SSGS) (Kolisch & Hartmann,
3 1 2 4 dπ :

n1=3, n2=4Random index: 

1 3 2 5 rπ :

q1=3

Predecessor activities: ∅ Succe

1 3 5 2 4 6 1NAπ

Located before Block

Step 2: 

Step 3: 

Step 1: 

Subsequence: 1 3 2 

Fig. 12. An example
1999) is adopted to evaluate the activity list and transform it to
a schedule. Once a schedule is generated, the start and finish times
of each activity are obtained. Since these times are needed when
performing search operators, we adopt list (2) and list (3) to store
them. In such a way, computational efficiency can be improved,
since it takes too much computational time by using SSGS each
time to obtain start and finish times.

After agents are initialized, they are randomly divided into N
groups, where each group consists of S agents. That is, the size of
the whole population is N � S.
4.2. Social behavior

For the RCPSP, Zamani (2013) designed a magnet-based cross-
over (MBCO) with the advantage that the offspring can inherit par-
tial sequences from both parents. Moreover, a set of offspring can
be obtained via MBCO to achieve well exploration. Encouraged
by the advantage of the MBCO, it is employed as the global social
behavior to perform the interaction between the leader agent in
each group and the global best leader agent to generate a set of off-
spring. Then, the best offspring agent will be adopted to replace the
corresponding leader agent with probabilityq. To be specific, the
best generated offspring replaces the leader agent if the offspring
is better or a random number rd 2 (0,1) is larger than q; otherwise,
the offspring is abandoned. The procedure of the MBCO is as
follows:

Step 1: Randomly determine a contiguous block of the activity list,
called Block, in the global best leader agent (denoted as
pd).

Step 2: Find the first activity of the leader agent (denoted as pr)
that belongs to the Block. Denote the location index of
the found activity in pras q1. Then, copy pr

k (k = 1, . . .,q1)
to the offspring directly.

Step 3: Divide the activities pr
k (k = q1 + 1, . . ., J, pr

kR Block) into
three categories: predecessor activity, successor activity
and free activity according to whether the activity is a pre-
decessor or successor of a block activity. For the predeces-
sor activities and successor activities, they are located
before and after the Block one by one as the same order
in pr, respectively. For each free activity that is neither a
predecessor nor a successor of any block activity, it is
located before and after the Block respectively to obtain
a set of offspring.
6 5 

4 6 

2 4 
Block:

1 3 

Copy subsequence:

Free activities:

ssor activities: {6} Free activities:{5}

2NAπ

Located after Block

5 4 6 

1 3 2 4 5 6 

of the MBCO.



Fig. 13. Procedure of social behavior.

(a). A feasible schedule.

(b). Forward scheduling.

(c). Backward scheduling.

Fig. 14. A single iteration of FBI.
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For the project in Fig. 1, an example of the MBCO is illustrated in
Fig. 12. Assume pd = {3, 1, 2, 4, 6, 5}, pr = {1, 3, 2, 5, 4, 6}, and the
randomly determined Block is {2, 4}. The first activity in pr that
belongs to the Block is activity 2, and the corresponding location
q1 is 3. Then, the subsequence {1, 3} is copied to the offspring
directly, and activities {5, 6} are classified, where 6 is a successor
activity and 5 is a free activity. Thus, 6 should be located after
the Block, and 5 can be located before or after the Block. So, it
obtains two offspring pNA1 = {1, 3, 5, 2, 4, 6} and pNA2 = {1, 3, 2, 4,
5, 6}.

The activity sub-sequence with a higher average resource uti-
lization rate can be inherited through the resource-based crossover
(RBCO) (Fang & Wang, 2012). It was pointed out that makespan is
inversely proportional to the average resource utilization (Fang &



Procedure of environment adjustment 

Agb is the global best agent and belongs to group k, Awk is the worst agent in group k.

FOR group i=1 to N and i k

Rank the agents in group i and determine the active agent Aai

Determine Awk

Aai moves to group k and Awk moves to group i

END FOR

Fig. 15. Procedure of environment adjustment.
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Wang, 2012). The agent can be improved with the guidance of a
better agent via RBCO. So, we adopt the RBCO as the local social
behavior for each agent to improve itself with the guidance of
the leader agent in its own group. The RBCO is performed between
an agent M and the leader agent F as follows:

Step 1: A time interval with length L is randomly selected for
agent F between 0.25MSF and 0.75MSF, where MSF is the
makespan of F. Then, determine time t1 2 [0, MSF � L] such
that time interval [t1, t1 + L] has a minimal resource utiliza-
tion rate (RUR) which is calculated as follows:
RUR ¼ 1
K

XK

k¼1

1
Rk

X
t2ðt1 ;t1þLÞ

X
j2AðtÞ

rjk

( )
ð2Þ

where A(t) is the set of activities being processed at time t.
Table 1
Combination of parameter values.

Parameters Factor level

1 2 3 4

N 2 5 7 10
S 5 10 15 20
q 0.6 0.7 0.8 0.9
Step 2: Determine two positions p1 and p2 (crossover points), 16
p1 6 p2 6 J, where p1 is the maximal position that satisfies
f p1
6 t1 and p2 is the minimal position that satis-

fiessp2 P t1 þ L. Then, generate the new agent pNA as
follows:

pNA
i :¼ pF

i ; i ¼ f1;2; . . . ; p1g [ fp2; . . . ; Jg ð3Þ

pNA
i :¼ pM

j ; j ¼minfpM
j R pNA

k ; k ¼ 1;2; . . . ; i� 1g ð4Þ

The procedure of social behavior in the MAOA with the above
global behavior and local behavior is shown in Fig. 13.

4.3. Autonomous behavior

The permutation based swap (PBS) is widely used as local
search in solving the RCPSP (Chen et al., 2010). To perform the
autonomous behavior for each agent, the permutation based swap
operator PBS(pi;piþ1) is employed in the MAOA. To be specific, it
randomly selects two adjacent activities (pi;piþ1) that have no
precedence relationship, and then swaps such two activities to
generate a new agent. Clearly, the PBS operator does not break
the precedence constraint of an EAL. Therefore, the newly gener-
ated agent is still feasible.

4.4. Self-learning

According to the characteristics of the RCPSP, Li and Willis
(1992) presented a forward–backward improvement (FBI) to
adjust a solution by iteratively adopting the SGS forward and back-
ward until the makespan cannot be further reduced. For the for-
ward scheduling, the activities are shifted to right as much as
possible in a descending order of finish times; for the backward
scheduling, activities are shifted to left in an increasing order of
start times. A single iteration of the FBI for the schedule in Fig. 2
is illustrated in Fig. 14.

In the MAOA, the above FBI is used as the self-learning for the
best leader agent to perform further exploitation.
4.5. Environment adjustment

With the social behavior, autonomous behavior and self-
learning, agents can be improved through the self-evolution and
the cooperation within or among groups. To share the information
among different groups, environment needs to be adjusted.
In the MAOA, environment is adjusted every T = 10 generations.
The procedure of the environment adjustment is illustrated in
Fig. 15.
5. Experimental results

We code the MAOA in C++ and run it on a PC with 2.3 GHz CPU.
To compare it with typical existing algorithms, we use three well-
known data sets PSPLIB for numerical tests, which were generated
by the problem generator ProGen designed by Kolisch and
Sprecher (1997). The benchmark data sets include 480 J30
instances (each with 30 activities), 480 J60 instances (each with
60 activities), and 600 J120 instances (each with 120 activities).
Generally, the average percentage deviation from the lower bound
(AveDevLB) is used as performance metrics for comparison. The
optimal solutions for J30 instances and the critical-path length
reported by Stinson, Davis, and Khumawala (1978) for J60 and
J120 instances are widely used as lower bounds, which can be
got from the website of PSPLIB: http://www.om-db.wi.tum.de/
psplib/datasm.html. To be specific, the AveDevLB is defined as
follows:

AveDevLB ¼ 1
R

XR

i¼1

MSi � LBi

LBi
ð5Þ

where MSi is the makespan of the ith instance obtained by an algo-
rithm, LBi is the lower bound known of the ith instance, and R is the
number of the used instances. Clearly, the smaller the AveDevLB is,
the better the algorithm is.

http://www.om-db.wi.tum.de/psplib/datasm.html
http://www.om-db.wi.tum.de/psplib/datasm.html


Table 2
Orthogonal table and responsive value for the MAOA.

Experiment number Factors ARV (%)

N S q J30 J60 J120

1 1 1 1 0.1461 11.5239 34.1836
2 1 2 2 0.1454 11.3365 33.7435
3 1 3 3 0.1422 11.1417 33.7883
4 1 4 4 0.1387 11.0108 33.6737
5 2 1 2 0.1423 11.1522 33.7905
6 2 2 1 0.1446 11.0031 33.8101
7 2 3 4 0.1358 10.9135 33.1563
8 2 4 3 0.1407 10.9924 33.4574
9 3 1 3 0.1389 11.0002 33.6371

10 3 2 4 0.1345 10.9477 33.2819
11 3 3 1 0.1426 11.2544 33.8613
12 3 4 2 0.1457 11.1869 33.8757
13 4 1 4 0.1348 11.0054 33.5442
14 4 2 3 0.1388 10.9968 33.6129
15 4 3 2 0.1446 11.2642 33.7921
16 4 4 1 0.1465 11.4329 34.0032

Fig. 16. Factor level trend of the MAOA for J30.

Fig. 17. Factor level trend of the MAOA for J60.
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5.1. Parameters setting

The MAOA contains three key parameters: the number of
groups (N), the group size (S) and the acceptance probability q
used in the MBCO. To investigate the effect of these parameters
on the performance of the MAOA, we carry out test by using the
Taguchi method of design-of-experiment (DOE) (Montgomery,
2005). We set 4 levels for each of the three parameters as
Table 1. For each combination of the orthogonal array L16(43), we
randomly choose 48 instances from J30, J60 and 60 instances from
J120 as Fang and Wang (2012) to calculate average response vari-
able (ARV) values as Eq. (5). For each run, the maximum number of
the generated schedules is set as 5000. The numerical results are
listed in Table 2, and the trend of each parameter for different sets
is illustrated in Figs. 16–18.

It can be seen from Figs. 16–18 that medium values are better
for N and S, while q prefers to a large value. Since the size of the
whole population is N � S, small N and S lead to a small population
so that the exploration ability at each generation will be weakened,



Fig. 18. Factor level trend of the MAOA for J120.

Table 3
The best combination of parameters for the MAOA.

Dataset N S q

J30 7 5 0.9
J60 5 10 0.9
J120 5 10 0.9

Table 5
Average deviations (%) for J30.

Algorithms Maximum number of
schedules

1000 5000 50,000

Kochetov and Stolyar (2003) 0.10 0.04 0
Mendes, Goncalves, and Resende (2009) 0.06 0.02 0.01
Chen et al. (2010) 0.14 0.06 0.01
MAOA 0.17 0.06 0.01
Debels, Reyck, Leus, and Vanhoucke (2006) 0.27 0.11 0.01
Debels and Vanhoucke (2007) 0.12 0.04 0.02
Fahmy et al. (2014) 0.22 0.05 0.02
Valls, Ballestin, and Quintanilla (2008) 0.27 0.06 0.02
Alcaraz, Maroto, and Ruiz (2004) 0.25 0.06 0.03
Agarwal, Colak, and Erenguc (2011) 0.13 0.1 –
Nonobe and Ibaraki (2002) 0.46 0.16 0.05
Hartmann (2002) 0.38 0.22 0.08
Coelho and Tavares (2003) 0.74 0.33 0.16
Fang and Wang (2012) 0.36 0.21 0.18
Hartmann (1998) 1.03 0.56 0.23
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while large N and S lead to a large population so that the whole
evolution of the population will not be sufficient. Medium N and
S may tradeoff the population size and the evolution generations
so as to balance the exploration and exploitation. As for q, a small
value will make the algorithm accept inferior new solutions too
much. According to the results of DOE tests, the recommended val-
ues of three parameters for J30, J60, and J120 are listed in Table 3,
respectively.

5.2. Results of MAOA

Same as the literature, the performances of the MAOA are tested
by setting the maximum number of generated schedules as 1000,
5000, 50,000, respectively. For each set, the algorithm is run inde-
pendently with all the instances. The obtained AveDveLB and the
average CPU times (AveTime) for J30, J60 and J120 are shown in
Table 4, respectively.

From Table 4, it can be seen that the MAOA has a better perfor-
mance as more schedules are generated. It implies that the MAOA
keeps the potential in finding better solutions if more schedules
can be explored. Moreover, the running time of the MAOA is
acceptable. Even for the large-scale J120 instances, the average
running time is less than 3 min. Besides, the running time
increases almost linearly with respect to the total number of the
generated schedules.
Table 4
Results for the MAOA.

Data set 1000 schedules 5000 sched

AveDveLB (%) AveTime (s) AveDveLB (

J30 0.17 0.10 0.06
J60 11.67 0.76 10.84
J120 33.87 3.41 32.64
5.3. Comparisons of MAOA with existing algorithms

Next, we compare the MAOA with 14 existing algorithms from
the literature. The AveDevLB values of all the comparative algo-
rithms for data sets J30, J60, J120 are listed in Tables 5–7,
respectively.

For J30 set, the MAOA ranked the 6th with 1000 schedules, the
5th with 5000 schedules and the 2nd with 50,000 schedules among
all the 15 algorithms. The average makespan obtained by the
MAOA with 50,000 schedules is much close to the optimal bound
with only 0.01% average deviation from the low bound.
Therefore, it can be concluded that the MAOA is an effective solver
for the RCPSP with small scale. For J60 set, the MAOA ranked the
ules 50000 schedules

%) AveTime (s) AveDveLB (%) AveTime (s)

0.51 0.01 5.02
3.42 10.64 33.54

16.74 31.02 171.33



Table 6
Average deviations (%) for J60.

Algorithms Maximum number of schedules

1000 5000 50,000

MAOA 11.67 10.84 10.64
Fang and Wang (2012) 11.44 10.87 10.66
Chen, Shi, Teng, Lan, and Hu (2010) 11.75 10.98 10.67
Mendes et al. (2009) 11.72 11.04 10.67
Debels and Vanhoucke (2007) 11.31 10.95 10.68
Debels et al. (2006) 11.73 11.10 10.71
Valls et al. (2008) 11.56 11.10 10.73
Kochetov and Stolyar (2003) 11.71 11.17 10.74
Alcaraz et al. (2004) 11.89 11.19 10.84
Fahmy, Hassan, and Bassioni (2014) 11.86 11.19 10.85
Agarwal et al. (2011) 11.51 11.29 –
Hartmann (2002) 12.21 11.70 11.21
Nonobe and Ibaraki (2002) 12.97 12.18 11.58
Hartmann (1998) 13.3 12.74 12.26
Coelho and Tavares (2003) 13.8 13.31 12.83
Kolisch and Drexl (1996) 13.51 13.06 –

Table 7
Average deviations (%) for J120.

Algorithms Maximum number of schedules

1000 5000 50,000

Chen et al. (2010) 35.19 32.48 30.56
Debels and Vanhoucke (2007) 33.55 32.18 30.69
MAOA 33.87 32.64 31.02
Fang and Wang (2012) 34.83 33.20 31.11
Valls et al. (2008) 34.07 32.54 31.24
Fahmy, Hassan, and Bassioni (2014) 35.60 33.78 32.40
Mendes et al. (2009) 35.87 33.03 31.44
Debels et al. (2006) 35.22 33.10 31.57
Alcaraz et al. (2004) 36.53 33.91 31.57
Kochetov and Stolyar (2003) 34.74 33.36 32.06
Agarwal et al. (2011) 34.65 34.15 –
Hartmann (2002) 37.19 35.39 33.21
Nonobe and Ibaraki (2002) 40.86 37.88 35.85
Hartmann (1998) 39.93 38.49 36.51
Coelho and Tavares (2003) 41.36 40.46 39.41
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5th with 1000 schedules, the 1st with 5000 schedules and the 1st
with 50,000 schedules among all the 15 algorithms. For J120 set,
the MAOA ranked the 2nd with 1000 schedules, the 4th with
5000 schedules and the 3rd with 50,000 schedules among all the
15 algorithms. The gap between the MAOA and the best algorithm
is less than 0.5%.

So, it can be concluded that the MAOA is effective in solving the
RCPSP with medium and large scales.

6. Conclusion

The main contribution of this paper is to present an effective
optimization algorithm inspired by multi-agent system and swarm
intelligence for solving the RCPSP. Search operators including
MBCO, RBCO, PBS and FBI are designed according to the social
behavior, autonomous behavior and self-learning inspired from
multi-agent system, and agents in the population are dynamically
re-grouped to adjust the environment. The effect of key parameters
of the MAOA is investigated, and the numerical tests using sets of
benchmark instances are provided. The comparisons with 14 exist-
ing algorithms show that the proposed MAOA is more effective in
solving the RCPSP with medium and large scales. With this
research, it shows that expert and artificial intelligent systems like
multi-agent system can be well used to develop effective optimiza-
tion algorithms for solving hard problems.
As for the limitations of this research, MAOA is a simple imita-
tion of multi-agent systems, and more reasonable search operators
inspired by the intelligent behaviors should be further studied.
Besides, as an optimization algorithm, the convergence of the
MAOA and the adaptive adjustment of parameter setting need to
be investigated. Future research could focus on the following
aspects:

(1) Build the mathematical model of the MAOA and analyze the
convergence property.

(2) Design self-adaptive strategies for parameter setting and
search behavior.

(3) Develop multi-objective MAOA.
(4) Extend the application of the MAOA to other kinds of com-

plex optimization problems.
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