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Demand-response (DR) is regarded as a promising solution for future power grids. Here we use a
Stackelberg game approach, and describe a novel DR model for electricity trading between one utility
company and multiple users, which is aimed at balancing supply and demand, as well as smoothing
the aggregated load in the system. The interactions between the utility company (leader) and users
(followers) are formulated into a 1-leader, N-follower Stackelberg game, where optimization problems
are formed for each player to help select the optimal strategy. A pricing function is adopted for regulating
real-time prices (RTP), which then act as a coordinator, inducing users to join the game. An iterative
algorithm is proposed to derive the Stackelberg equilibrium, through which optimal power generation
and power demands are determined for the utility company and users respectively. Numerical results
indicate that the proposed method can efficiently reshape users’ demands, including flattening peak
demands and filling the vacancy of valley demands, and significantly reduce the mismatch between
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1. Introduction

Traditional power grids are confronting the challenges of
increased demand, and grid stability and environmental pollution
[1,2]. Smart grids are envisioned as novel power-grid systems
incorporating a smart metering infrastructure capable of sensing
and measuring the power consumption of users [3-5], along with
demand-response (DR) programs that promise solutions for
enhancing the efficiency of future power girds [6-8]. DR considers
energy usage changes of users in response to varying electricity
prices or to incentive payments with the aim of balancing supply
and demand and reducing power generation costs through
alleviation of the peak load and shifting demand from on-peak to
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off-peak times [9-11]. Hence, it hopes to achieve better utilization
of generated power and to bring economic benefits for both the
utility supplier and users. Using a DR program, it becomes possible
for the utility supplier to motivate users to jointly flatten
the demand curve and match supply to demand [12,13], ensuring
the stability of the grid [14-17].

Given the interoperation parameters among different entities in
the DR program, game theory provides a naturally suitable frame-
work for modeling interactions among different participators with
various objectives [18-20]. Recently, Stackelberg games, which are
used to study hierarchical decision-making processes of multiple
decision makers, have attracted attention in the design of energy
management schemes [21]. The Stackelberg game has been used
to model electricity trading between the retailer and customers
[22], with the aim of minimizing the customer’s daily payments
while maximizing the retailer’s profit by optimizing electricity
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prices. Chen et al. [23] proposed a Stackelberg game-based power
scheduling scheme between a service provider and residential
consumers with similar objectives; the inconvenience cost
incurred by delaying loads to a cheaper price period is also consid-
ered, alongside minimization of electricity bills. A bi-level pro-
gramming technique has been used [24] to design a Stackelberg
game for modeling the demand response in electricity retail mar-
kets with the aim of reducing the comfort losses of consumers as
well as the costs of purchasing electricity in the lower sub-
problems, which is subject to the retailer’s upper sub-problem of
reducing imbalances caused by deviations in wind power produc-
tion from day-ahead forecasts. Kilkki et al. [25] proposed a Stackel-
berg game scenario for electricity markets, wherein the retailer is
taken as the main perspective, with the goal of profit maximiza-
tion. A simulation framework was designed involving customers’
uncertainties of electricity storage space heating loads, upon which
partial imbalance could be eliminated by offering additional dis-
counts to customers. Maharjan et al. [26] presented a Stackelberg
game framework involving multiple utilities and consumers aimed
at maximizing each game player’s revenue.

In general, the players in a game, together with their strategies
and utility functions, differ from each other according to the speci-
fic system model [27]. Most DR models presented so far aim to
maximize the profit of a utility/retailer/service provider without
considering load fluctuations in the power system [22-24,26].
However, in practice, it is also important to flatten loads in the sys-
tem in order to avoid building expensive backup generators to
compensate for the peak load [15,28], and a reduced peak load is
advantageous for maintaining the stability of the power grid [29].

In this paper, we present a novel demand-response model
between one utility company and multiple users. Unlike previous
studies, which dealt solely with profit maximization for the utility
company and cost minimization for the user, this study aimed to
balance supply and demand as well as flatten the aggregated loads
in the system while guaranteeing the profit of the utility company
and cost minimization for the user through carefully defining the
objective function at each side. The main contributions from this
paper are as follows:

(1) A price-based DR model is proposed for modeling the elec-
tricity trading process between the utility company and
users, with the aim of balancing supply and demand, as well
as smoothing the aggregated load in the system.

(2) The interactions between the utility company and users is
formulated into a 1-leader, N-follower Stackelberg game,
where a pricing function is adopted for regulating real-
time prices (RTP) and acts as a coordinator to induce users
to join the proposed game.

(3) An iterative algorithm is proposed between the utility
company and users to derive the Stackelberg equilibrium,
through which the optimal power generation and demands
are determined for the utility company and users
respectively.

The rest of the paper is organized as follows: In Section 2, the
system model is presented in detail including the formulation of
the Stackelberg game and description of an iterative algorithm
for reaching the outcome of the game. Section 3 provides the
numerical analyses of the proposed method. Conclusions and
future works are presented in Section 4.

2. System model

Fig. 1 shows the system model with advanced metering infras-
tructures enabling two-way communication between one utility

-
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Fig. 1. System model between the utility company and multiple users.

company and a set N of multiple users with the number N = |N|.
The utility company should provide power to users at certain
prices, and each user n € N will manage their energy consumption
when receiving the announced prices from the utility company.

2.1. Utility company model

Let C(g,) be the cost function for the utility company generating
a quantity of power g; during slot t (t € T, T = |T|), which is a mono-
tonically increasing function of the generation quantity and is
strictly convex [10]; the most commonly used cost function is as
follows [9,22,30].

a
Ce(g,) :fgf +bg +c (M

where a,, b, and c, are the generation coefficients, which are pre-
determined and may vary between different slots of the day.

The marginal cost function (where the marginal cost is defined
as the change in the cost when the produced quantity changes by
one unit) can be defined as follows

Ci(g) = atg, + b (2)

With price-based DR programs, the utility company is responsi-
ble for regulating real-time prices to induce users to participate in
the DR program, such that the utility company and users can
jointly help calculate the quantity of generated power, as well as
the demand, so as to reduce the difference between supply and
demand.

To guarantee profit for the utility company, it is clear that real-
time prices used to bill users should not be lower than the mar-
ginal cost. An efficient pricing function has been proposed [15],
whereby the utility company regulates the price p{g;) for slot t
by multiplying a time-dependent profit coefficient A; (4, > 1) with
the marginal cost, i.e.,

pi(g) = 1Ci(8g) = Ac(ag + b)) A >1 3)

The effectiveness of the pricing function in (3) has been vali-
dated [15], and coordinates the interactions between the utility
and users, and helps to minimize the generation cost of the utility
company.

According to (3), the daily prices can be expressed as
P(8)=[P1(81). P2A82).--.. Prlgr)] or [p(g)]_; where g=[g1, &...,
gr] denotes the power generation vector across a day.
These prices are then used to encourage users to shift demand to
off-peak times.

From the utility company’s perspective, besides considering a
reduction in the generation cost, it is also desirable to smooth
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the hourly generation [15,31], so as to avoid building expensive
backup generators to compensate for peak load. A reduced peak
load is thus beneficial for maintaining the stability of the power
grid [15,29]. Accordingly, we assume that the objective of the util-
ity company is to determine the optimal generation vector through
minimizing variations in generation [16,29,32], while meeting the
requirements of the user [16], through which supply and demand
can be matched. To this end, the optimization problem is formu-
lated as follows

min Uyc(g) = (g —8)’ (42)

teT

s.t. L < g <min (g, L") (4b)

where Uyc denotes the utility function of the utility company, g rep-
resents the average power generation during the day; i.e, =5 1
g¢/T, and L, is the sum of power demands of all users at slot ¢, i.e.,
Li=>"nen oy and I, denotes the demand of user n during slot t.
Note that (4b) regulates g; such that it will always be equal to or
greater than L;; the primary reason for adopting this constraint is
to guarantee that generation can meet users’ requirements at all
times [16]. L™ denotes the maximum power demand of all users
at slot t, and g; is the maximum generation capacity of the utility
company during slot t.

Note that the objective in (4a) differs from profit maximization
as defined in [22-24,26]; however, the proposed model indirectly
accounts for profit because the pricing function in (3) has been val-
idated to guarantee low generation costs [15]. To some extent,
reducing costs is equivalent to increasing profits. Moreover, the
objective defined in (4a) brings additional advantages besides
smoothing the hourly generation (or minimizing the generation
variance). In power systems, the load factor (LF) is utilized as a
measure of efficiency for electrical energy usage, which is defined
as the ratio of the average energy demand to the maximum
demand during a period. A greater value of LF indicates higher
energy usage efficiency. As proven in previous studies [29,33],
minimizing the variance of the generation in (4a) is practically
equivalent to maximizing the load factor, which is defined as
follows:

1 — Laue (5)

Lmax

where Lgg = > et L/T denotes the average load in the system, and
Linax = max L, (Vt € T) represents the maximum load during a single
slot.

2.2. User model

The utility function for each user n is defined as

Un(l) = Z@n,r(ln.t) - Zpt(gt) g (6)

teT teT

where I, = [l 1, lh2,. . ., I, 7] represents the power demand vector of
user n, and p,(g,) - I, represents the payment of user n for consum-
ing power I, during slot t, where p,(g,) (Vt € T) are received from
the utility company. ¢, «(I,) denotes the satisfaction gain of user
n as a function of its consumed power I,,; at slot t. Without losing
generality, ¢,(l,.) adopts the quadratic function form defined as
follows [30,34]

0

j”lﬁ.[, One >0 0,>0 (7)
where w,, is a user preference parameter characterizing user types,
which varies between users and may also vary along different time
slots [34], and 0, is a predetermined constant [14]. As indicated by

@pilne) = Onelae —

(7), a user with a greater wj prefers to consume more I, in order to
improve his/her satisfaction level.

Each user should obtain its optimal power demand vector by
maximizing its utility function.

max  Uy(l,) = Z(pn,t(lﬂ-l) - Zpt(gt) “ng (8a)

teT teT

sl <l <l (8b)
where [, (l;t) represents the minimum (maximum) power demand
of user n at slot t.

In addition, a user may not wish to reduce daily power con-
sumption but may be willing to shift the consumption from peak
to off-peak time [10,30,35]; thus, a temporally-coupled constraint
in (8c) can be included to couple the power consumption across
the time horizon so as to constrain the cumulative consumption
at a user designated value (e.g., daily target power consumption,
denoted as Ly).

> e =Ly (8¢c)

teT

2.3. Problem formulation between the utility company and users

In a realistic power system, it is expected that generation
always matches demand; smart metering and two-way communi-
cations enable the supply and demand sides to interact by
exchanging price and demand information. For instance, the price
vector announced by the utility company will affect how the users
determine their optimal power demands; in contrast, the adjusted
power demands of the users will inversely impact on the utility
company’s generation plan, as the utility company would like to
adjust generation in order to balance demand and supply, which
thus pushes the utility company to regulate the new price vector.
As a consequence, the adjusted power demands of a user will
inherently affect how other users determine their power demands,
due to the new price vector. Thus, these factors naturally lead to
interactions between the utility company and users.

The Stackelberg game is suitable means to illustrate the concept
behind the presented system model, where the utility company
acts as the leader announcing prices to followers, which are the
N users. Given those prices, users will react by playing a non-
cooperative game, as each user’s decision will inherently affect
how other users make decisions.

The formal definition of the 1-leader, N-follower Stackelberg
game is the following:

¢ = (UtilityCompany UN.{Quc}, {@}pcn. Uue. Us) )

e Player set UtilityCompany UN:
The utility company acts as the leader and the users in set N
take the roles of followers in response to the utility company’s
strategy.

e Strategy set Quc and Q,:

Que = {glg e R",L; < g, <min (g5, L™™*)} denotes the feasible
strategy set of the utility company referring to (4b), from which
the utility company chooses its strategy g (the daily power
generation vector). And each user will select its strategy I, (daily
power demands) from its feasible strategy set Q, = {I,|I, € R",
I, <l <1} which is defined based on (8b).

o Utility functions Uyc and U,:
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The utility function evaluates the selected strategy of a player in
the game. Uyc denotes the utility function of the utility company
which is defined in (4a) and (6) defines the utility function of each
user n, i.e., U,.

The desired outcome of a given hierarchical decision-making
game takes the form of the Stackelberg equilibrium (SE). The defi-
nition of a Stackelberg equilibrium strategy (SES) together with an
SE for a two-person game is given in Appendix A. As an extension,
the SE of a 1-leader, N-follower game corresponds to the status at
which the leader maximizes its utility given the reaction set of the
followers while the followers respond to the leader’s announced
strategy by playing according to a specific equilibrium concept
[36]. Following Definition 1 in Appendix A, an SES for the leader
(utility company) in the game ¢ should satisfy

max )ch(g*,L) = min max Uyc(g,L) = Uy, (10)

Le Ry(g* 8€Quc LeRy(g)

where L = [l;,L,...,ly] represents the strategy profile of all the
users, and Ry(g) denotes the best response set of N users to the strat-
egy g8 € Quc of utility company, clearly, Ry(g) is included in the joint
strategy sets of all the users, i.e., Ry(8) C Q1 x Q,,...,Qy. The latter
two terms in (10) imply that, depending on the status of SE, the util-
ity company minimizes the variation in the generated power in
response to the set of all the users, wherein the reaction set contains
all the users’ optimal power demand vectors as responses to the
utility company’s strategic choices.

Furthermore, if the quantity Uj, in (10) admits a unique value,
it means the utility company will not accept a utility value that is
higher than Uj, which thus constitutes a secured utility level for
the utility company.

Accordingly, the SE for the proposed game can be defined as a
strategy profile (g*,L") [36], where g* is an SES for the utility com-
pany satisfying (10), and L* € Ry(g*) denotes the strategy profile
that is in equilibrium with g*, and that provides optimal strategies
for all the users.

In conventional game theory, a player’s utility is a function of
both players’ strategies (e.g., in a two-person game) [37]. Accord-
ingly, in the remainder of the paper, we write Uyc and U, as a func-
tion of both the utility company’s and users’ strategies because the
decision made by either side will affect how the other side chooses
the strategy, as mentioned above. However, it should be noted that
even as we write U, in the form U,(g,1,,l_,) (where I_, denotes all
other N-1 users’ strategies except user n), U, is not directly affected
by the utility company’s strategy g or I_,,, but directly related to the
utility company’s price vector p(g) (i.e., a function of the utility
company’s strategy g as indicated in (3)), which actually acts as
the coordinator between the utility company and users. Moreover,
as described earlier, the strategy chosen by user n will also affect
how the other N-1 users choose their strategies, due to the inher-
ence among them. For consistency, we apply the U,(g,1I,,1_,) form
and declare that U,(g,l,,1 ) is affected by the utility company’s
strategy g and all other N-1 users’ strategies I_,,.

2.4. The existence of the Stackelberg equilibrium

In this subsection, the existence of SE is discussed. As men-
tioned in Section 2.3, when provided with the utility company’s
prices, users will play a non-cooperative game in reaction to these
prices. It has been shown that a unique NE exists in a strictly con-
cave N-player game [38]. In the following, we show that a non-
cooperative game among users is equivalent to a strictly concave
N-player game.

First, by observing (6), it is straightforward that U, is continu-
ous and differentiable in Q, such that U, can be found analytically.
Taking user n as an example, when receiving the price vector p(g)
from the utility company, the best-response function can be
obtained by taking the first derivative of U, with respect to [,,;; i.e.,

U,
Oly s

= Wnt — enln.t - pt(gt) (11)

By setting (11) to zero, the best-response function is obtained as
follows:

Wne — Py(8;)
. (12)

Furthermore, if the Hessian matrix H(U,) is definite negative,
then U, is strictly concave. By taking the second derivative of U,
with respect to I,, we obtain H(U,,) as follows

o*U, {—on whent=s

Ol Ol s ~lo whent # s

e (De(8) =

(13)

where s denotes any slot in the time horizon T. From (13), we may
observe that all the diagonal elements of H(U,) are negative due to
(7), and the off-diagonal elements are zero. Therefore, H(U,,) is neg-
ative definite.

Second, one may observe that the user strategy set Q, (Vn € N)
is convex, closed and bounded, since the set Q, is already defined
as a convex constraint (see Section 2.3).

From the above, we may conclude that a non-cooperative game
among users is equivalent to a strictly concave N-player game and
it follows that, a unique Nash equilibrium (NE) exists among N
users [38].

As discussed above, each time the utility company’s strategy is
revealed, there exists a unique NE among users, which provides the
best response strategy profile for users. In the presence of such a
strategy profile, the utility company will adjust its strategy in order
to minimize (4a). Note that if the users’ group response (i.e., the
NE) to the utility company’s announced strategy is not unique,
then it will result in ambiguity for the utility company when
choosing its strategy [39], which forms the basis of an analysis of
the existence of the SE.

In the presence of the strategy profile containing the best
response strategies of all the users, the utility company chooses a
strategy g € Quc aiming to minimize (4a), where the result of
(4a) - i.e., the variation in the generated power - either decreases
or remains unchanged each time a new strategy is selected.
Moreover, note the utility company’s utility value in the form of
(4a) has a lower bound (since the minimum “variance” is zero).
Therefore, there exists a secured utility value Uy for the utility
company, which satisfies (10). Following the definition of the SE
in Section 2.3, we conclude that an SE exists for the proposed
1-leader, N-follower Stackelberg game.

2.5. An iterative DR algorithm for SE

In Section 2.4, the NE was utilized to emphasize the existence of
the SE analytically, where users should react to the utility com-
pany’s strategy at the same time. However, in practice, it is not
appropriate for users to respond to the utility company simultane-
ously, as they may neutralize each other’s impact on the aggre-
gated demands. Instead, we aim to design an iterative DR
algorithm for reaching the SE in an asynchronous manner; i.e., sup-
posing no two users adjust their power demands at the same time
on receipt of the utility company’s prices and, more importantly,
information exchange between the utility company and a user is
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executed by hiding private information (e.g., user preference
parameter wy ).

Algorithm 1: An iterative DR algorithm for the SE

1: The utility company arbitrarily initializes
g% =g%g9....,2% and calculates the initial
P° = [p%,pY,....p% according to (3), denote g* = g°.
2: The utility company sends p° to all the users, and each user
updates its demand vector I;, according to
I = alrg max {Un(g bp,Ly) st L, <le<Ili}

3: Each user n sends I, back to the utility company.
Start iteration with index k for convergence to SE:
4: Upon the received I, from each user, the utility company
updates g** by solving
gk = arg min Uyc(g* L") = Yrr(g — 8)°
st Ly <glt<min (gf, L")
where L? = ZneNrr;,t
5: Based on g**, the utility company updates p* according to
(3) and triggers iteration k:
Sequential polling of one user at each time:
6: Sequentially select a user n to send p* at each time.
7: Upon the received p¥, user n updates l;"‘ according to
l,*l"‘ = arg max {Un(g, Iy, Ln) st. I, <l <1}
I, ’
8: User n sends l,*.l'k back to the utility company in case l;’k is

updated, and then the utility company updates g** by
solving

gt =arg min  Uyc(g", L") = Yoq(gh — &)
st Li <gk<min (gf, L)
where L} = Z’\r’n’]: 1lne + Inlf

2

m##n
9: The utility company calculates new p* accordingly and
polls next user.
If the polling is not finished,
Go to line 6.
else
The utility company evaluates the SE and triggers the
next iteration k+1 (go to line 5) in case the SE has not
arrived.
end if
10: Repeat 5 to 9 until no player deviates from the current
strategy, indicating the SE has arrived.
11: The utility company announces to the users that the SE
has arrived.

Algorithm 1 begins with the utility company arbitrarily initializing
the generation vector g° = [g9,29,...,gY%], and calculating the initial
price vector p°® = [p9,p3,...,pY% accordingly. Regard g° as the opti-
mal generation vector g* temporarily, see line 1.

During the initialization, the utility company broadcasts p° to
all the users through the two-way communication link, upon
which each user will update its demand vector I, by solving its
optimization problem (8); afterwards, each user sends I, back to
the utility company, see line 2 to 3.

In line 4, upon the received I, from each user, the utility com-
pany will update its generation vector g (k denotes the index
of iterations), by solving its optimization problem (4), wherein L,
is updated based on the newly received I’ from users.

In line 5, based on the g** obtained in line 4, the utility company
will update the price vector p*; next, the utility company triggers

One iteration for convergence to SE

_ Utility
Company

oo » Users

Sequential polling of one user at each time
Fig. 2. Interaction between the utility company and users.

the kth iteration to interact with users, i.e., the utility company
polls each user during iteration k. Fig. 2 depicts the interactions
between the utility company and users during one iteration, where
the utility company sequentially selects one non-repetitive user
(e.g., user n) to send p* at each time. On the receipt of p*, user n will
update l;"‘ by solving (8), see line 7.

Next, in line 8, user n sends l;'k back to the utility company, and
the utility company updates g** (by solving (4)). Here, it deserves
notice that the lower constraint is updated to Ly = S0 1'l},  + L

nt»
.k

wherein only ['; is newly received from user n, and all other N-1
users’ hourly aggregated loads remain the same as when interact-
ing with the last user.

In line 9, the utility company calculates the new p* according to
the updated g** obtained in line 8 and goes to line 6 to poll the
next user. In the case where all users have been polled, the utility
company will evaluate the SE for the kth iteration, and trigger the
next iteration k + 1 if the SE has not been obtained (the algorithm
then goes to line 5).

In this way, line 5 to line 9 will be repeated until the SE is obtained,
where the utility company cannot further reduce the generation
variation by updating the generation vector, indicating that it has
obtained its secured utility value. Accordingly, the utility company
announces to the users that the SE has arrived and each user chooses
an optimal strategy obtained by playing with the utility company.

In the proposed algorithm, the utility company selects users in
an asynchronous fashion, i.e., no two users update their strategies
simultaneously. This can be realized by supposing that the utility
company can determine a time when each user should update its
strategy. Note that each time new price information is received
from the utility company, a user will respond by reducing demand
during high-price periods, while increasing demand during low-
price periods, resulting in flattened demands. Such “flattened
demands” sent from the user to the utility company will naturally
contribute to the lowering of the generation variance from the per-
spective of the utility company, because constraint (4b) couples
users’ aggregated demands with generation, and the utility com-
pany will adjust generation to meet users’ flattened demands. Fur-
thermore, as the objective of the utility company is to minimize the
generation variance (equivalent to acquiring flattened generation),
through a number of iterations the generation variance will grad-
ually decrease and the algorithm will eventually converge to a
fixed point, i.e., either to zero or a lower bound of variance.

3. Numerical analyses

This section presents the numerical analyses and assesses the
performance of the proposed algorithm. For ease of illustration,
simulations are conducted based on one utility company and three
users. The entire time cycle is divided into 24 time slots represent-
ing the 24 h of a day. For the generation cost, the cost of the same
load can be different at different times of day. In particular, the cost
may be less at night compared to the day time [10]. For simplicity,
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we set the parameters in (1) to a, = 0.02 during daytime, i.e., from
8:00 to 24:00 and a;=0.01 in the remaining hours, b,=0.2 and
¢, =0, and the price coefficient /4, was selected to be 1.2 [15]. For
the user utility function, the parameter 0, was selected as 0.1 for
all users, and w, was set to different values of 5.0, 5.5, 6.0; the
effect of these differing values will be discussed later in the simu-
lation results. The target power demand of user 1, 2 and 3 is shown
as a dotted line in Fig. 4(a)-(c), respectively, where the target
power demand is defined as the power demand of a user without
the adoption of demand response management. In this study, we
obtained target power demands from an existing electric power
market, which provided daily loads for certain local regions [40];
however, we changed the order of magnitude from GW to kW to
account for the limited number of users in the sample. The mini-
mum and maximum of each user’s demands are set to certain per-
centages of the target demands, as given in Table 1 [16]. For
simplicity, the maximum generation capacity was assumed to be
equal to the maximum total power demands of all the users
[34]; therefore, we have g/ => ncn IL, for all t € T. In the case
whereby the temporally-coupled constraint in (8c) is included,
we suppose that a user would like to consume a fixed amount of
power equal to the sum of the target demands.

Fig. 3 shows the real-time prices obtained from Algorithm 1 by
distinguishing two cases: with and without the temporally-
coupled constraint of (8c). In the following, the performance will
be analyzed with various scenarios.

3.1. Optimal power demands of users

Fig. 4 shows each user’s power demands with and without con-
straint (8c) as shown by the blue and orange line, respectively, and
also in comparison to each user’s target demands. In general, for
either case (with or without (8c)), a user demanded more power
than the target amount during off-peak times, and curtailed their
demand during peak times, indicating a large amount of demand
was shifted from on-peak to off-peak slots.

Specifically, when (8c) was not applied, by comparing users’
power demand results in Fig. 4, it can be observed that user 1
(wn,e=5.0) would be more willing to participate in the demand
response process, as it reduced larger amounts of demand during
the high price period compared with the other two users. This phe-
nomenon coincides with the physical meaning of w,, declared in
Section 2, i.e., a user with a greater w,, preferred to consume more
I in order to reach a higher satisfaction level and vice versa.

In the case where (8c) was applied, we found that each user
demanded more power than without that constraint in order to
complete the target daily consumption, whereas the extra
demands were increased during lower price slots.

3.2. The comparison of supply and demand

Figs. 5 and 6 show the resulting hourly power generation (sup-
ply) together with users’ hourly aggregated demands compared to
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Fig. 4. Users’ optimal power demands with real-time prices. (a) User 1. (b) User 2.
(c) User 3.

Table 1
User power demand ranges.
User 1 (%) User 2 (%) User 3 (%)
Min demand 70 75 80
Max demand 150 140 120
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Fig. 3. Real-time prices with and without (8c).

the case when there was no demand response scheme applied, i.e.,
supposing hourly generation was chosen at the median between
the minimum aggregated demands of all users (3> nen [,,) and the
maximum generation capacity (g;); while each user demanded
the target power amount regardless of energy cost. Thus, in Figs. 5
and 6, “users’ aggregated demands without DR” were the sum of
each user’s target demands as illustrated in Fig. 4.

Clearly, when no demand response was applied, there existed a
large gap between supply and demand. In the case where the
demand response scheme was applied (without (8c) and with
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Fig. 6. The supply and aggregated demand with (8c).

(8¢)), it efficiently reshaped the generation and users’ demands
including reducing the peak demand and filling the vacancy of val-
ley demands. As shown in Figs. 5 and 6, the gap between supply and
demand was reduced significantly. Moreover, without (8c), the mis-
match cannot be eliminated completely as illustrated in Fig. 5. For
comparison, the generation in Fig. 6 matched well with users’
demands when (8c) was implemented. The numerical of analyses
of the supply-demand mismatch will be discussed in the next part.

3.3. The performance evaluation

We evaluated the performance of three cases (No DR, DR with-
out (8c) and DR with (8c)) from various aspects. The numerical
comparison results are listed in Table 2. The load factor (LF) [33]
is defined as the average to peak load ratio (see (5)), which is
expected to be as large as possible.

From Table 2, it is observed that the peak demand apparently
decreased from 161 kW h (per hour) to 121 kW h (per hour) with
the help of the demand response scheme. As (8c) was not consid-
ered in Case 2, total demand is reduced by 160 kW h (per 24 h)
compared to Case 1 and Case 3, however, Case 3 was able to
achieve the lowest PAR and highest LF, which are advantageous
for the utility company in balancing loads in the power system.

When comparing the generation amount and the total demand,
it is clear that supply and demand were generally matched under
the demand response scheme but that a large gap exists in Case
1, which can be seen in Figs. 5 and 6. Specifically, supply and
demand were matched appropriately in Case 3.

Table 2
Performance evaluation.

In addition, both generation costs and user payments were
much lower in Case 2 and Case 3 than in Case 1. Case 2 reduced
payments more than Case 3; however, this was achieved at the
expense of missing the users’ target demands, meaning that some
daily tasks may not be completed. Lastly, it can be seen that the
generation variance in Case 2 and Case 3 (to meet users’ target
demands, Case 3 resulted in slightly higher variance than Case 2)
was significantly reduced compared with Case 1, which is desirable
for the utility company to maintain the stability of the power grid.

3.4. Scalability

For the three users above, the algorithm took seven iterations to
converge to the SE. To examine the scalability of the algorithm, we
also increased the user number from 20 to 200, wherein w, were
randomly selected between [5.0, 6.0], and users’ target hourly
demands were randomly set from 14 kW h to 56 kW h (i.e., the
min and max target demand of the three example users). Fig. 7
shows the number of iterations needed with increasing user num-
ber, and shows a linear rather than exponential increase in itera-
tions, which is desirable for the proposed algorithm to be
practically implemented in a smart grid application.

To get insight into the effectiveness of the proposed DR algo-
rithm in presence of considerable number of users, we also present
the resulted optimal supply and aggregated demand under the
extreme case of 200 users. As shown in Fig. 8, by deploying the
algorithm, the generation and users’ aggregated demand were
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Fig. 7. The number of iterations toward the increasing user number.
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Fig. 8. The supply and aggregated demand under 200 users.

Cases Peak demand Total demand LF Generation amount (per 24 h) Generation cost ~ Generation Total payments
(kW h) (kW h) (kW h) %) variance (%)
Case 1: No DR 161 2414 0.625 2560 323 1080 76.4
Case 2: DR Without 121 2254 0.775 2314 235 141 49.3
(8c)
Case 3: DR With (8c) 121 2414 0.833 2416 254 175 55.1
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rescheduled and matched generally, resulting in smoothed overall
loads in the system. In specific, the load factor was increased from
0.62 (without DR) to 0.8 (with DR), indicating that the presented
algorithm is able to handle the power management problem
between one utility and multiple users.

4. Conclusion and future work

We have described a Stackelberg game based demand response
model between one utility company and multiple users, aimed at
balancing supply and demand as well as flattening the aggregated
load in the system. The game formulation process is described in
detail together with an analysis of the existence of the Stackelberg
equilibrium. An iterative algorithm between the utility company
and users was proposed to derive the Stackelberg equilibrium,
which provides the optimal power generation and demand for
the utility company and users. The numerical results show that
the proposed method can help flatten aggregated loads in the sys-
tem and significantly reduce the mismatch between supply and
demand. As an extension of the current work, intermittent power
resources (e.g., photovoltaic cells and wind turbines) may be taken
into account, so as to make the existing model accommodate
dynamic ambient changes. Also, as a future study, the proposed
algorithm can be evaluated in a distribution network with nodal
pricing approaches and power flow analyses.
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Appendix A

A.1. Definition of a SES for the leader

Definition 1. In a two-person finite game with player 1 as the
leader (player 2 as the follower), a strategy s; € Sy is called a
Stackelberg equilibrium strategy (SES) for the leader [36], if

max u(s%,S;) = min max u(s,52) = U}
S2€Ry (57) 1( b 2) $1€51 52€Ry(51) 1( b 2) 1

(A1)

where u; is the utility function of player i, S; is the strategy set of
player i. Ry(sq) represents the best response set of player 2 to the
strategy s; € S; of player 1 defined as follows

Ry(s1) ={s) €S, :5, =arg max Uy(S1,52)} (A2)
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The quantity uj in (A.1) is the Stackelberg utility for the leader,
which admits a unique value in the given hierarchical
decision-making game referring to Theorem 3.9 in [36]. Moreover,
the SES s; in (A.1) ensures that the leader does not receive a utility
that is lower than uj, which thus constitutes a secured utility level
for the leader. Accordingly, the Stackelberg equilibrium is defined as
follows

Definition 2. Let sj € S; be an SES for the leader, i.e., player 1.
Then, for any strategy s; € Ry(s7) that is in equilibrium with s;
(satisfying (A.1)) is an optimal strategy for the follower of player 2.
Thus, the pair (sj,s3) is a Stackelberg equilibrium for the two-person
game [36].
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