
Advanced Engineering Informatics 28 (2014) 28–36
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i
Freedom through constraints: User-oriented architectural design
1474-0346/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.aei.2013.11.003

⇑ Corresponding author. Tel.: +31 402472388.
E-mail address: B.d.Vries@tue.nl (B. de Vries).
R.A. Niemeijer, B. de Vries ⇑, J. Beetz
Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
a r t i c l e i n f o

Article history:
Received 1 May 2012
Received in revised form 22 July 2013
Accepted 12 November 2013
Available online 5 December 2013

Keywords:
Natural Language Processing
Design constraints
Automated interpretation
a b s t r a c t

In this article we report on validated research for the construction of design constraints by automated
interpretation of natural language input. We show how our approach of dynamic reconfigurations of
parsed syntax trees using a number of production rules is used to formalize and transform natural lan-
guage constructs into computable constraints that are applied to concrete building information models.
The calibration and validation of the proposed algorithms and production rules is based on two test data
sets: The verbatim text of Dutch building code regulations for dormer extensions on existing roofs and
constraints formulated ad hoc by design students based upon a series of example designs. We show
how a prototypical implementation of our approach can be used to interpret 44% of the test data without
human interference and how the remaining sentences can be interpreted with minimal additional effort
or further development.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, customers buying a new house are typically limited
to two options: either an architect’s design is bought without mod-
ifications, or a discrete set of limited design alternatives is offered,
such as two different kitchen types or the optional addition of a
dormer. This customization, however, is very limited, as all design
alternatives offered by the architect have to be completely de-
signed up front. Consequently, customers do not get the exact
house they want. In many cases this means that house owners
immediately start remodelling after the house has been built to
get the house they actually wanted. This is a very inefficient state
of affairs, leading to unnecessary increases in cost and waste. It
would be preferable for buyers to be able to make more extensive
changes to the design of the building in the design phase already,
so that they can get the house they want, eliminating the need
for an additional remodelling step.

In many different industries, the ability to customize a product
has become commonplace, with examples ranging from fast food
to clothing to the car industry. In the building industry, however,
adoption of this practice has lagged behind. At least two reasons
for this lack of customization can be identified: (a) The tradition
of the architect being the sole designer of the product and an
implied artistic autonomy. (b) The large amount of regulations that
apply to buildings. Over time, mass customization and participa-
tory design have been applied to the building and construction
sector [36,35]. In most cases, though, the amount of flexibility is
limited, since the two traditional ways of offering mass customized
housing—entirely customized design or choices from predesigned
alternatives—result in a trade-off between the freedom of choice
among design alternatives and the amount of time required to de-
sign them. When creating a design for a consumer product, many
rules must be obeyed [18] which in the case of buildings stem from
building codes, regulations and design requirements. In this paper,
rules are referred to as constraints [26,38,15] composing a Con-
straint Satisfaction Problem (CSP), that [37] defined as ‘‘a problem
composed of a finite set of variables, each of which is associated
with a finite domain, and a set of constraints that restricts the val-
ues the variables can simultaneously take.’’

In current practice, most of these constraints are checked
manually which results in labor-intensive and error-prone pro-
cesses. Hence, the automation of formulating, processing and
checking of constraints has been of great interest for research-
ers and practitioners from early years of computational support
onwards. Initial contributions by Fenves [13], Fenves and Garret
[14] have sparked a large body of research in this area. These
include the developments of AI-based Expert Systems [34,20]
as well as Knowledge Based Systems based on Frames [11,10]
and Predicate, First Order and Description Logic [33,17]. With
the advent of object-oriented Building Information Models
(BIM) and particularly the Industry Foundation Classes (IFC),
such systems have flourished considerably [19,24,40]. Recently,
the incorporation of methods and tools from the Semantic Web
initiative led to further advancements in this research field
[3,39,32,41]. A concise overview of these developments as well
as commercial implementations in the building industry can be
found in [12].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2013.11.003&domain=pdf
http://dx.doi.org/10.1016/j.aei.2013.11.003
mailto:B.d.Vries@tue.nl
http://dx.doi.org/10.1016/j.aei.2013.11.003
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36 29
Most of these developments, however, are based on complex lo-
gic languages or conventional high-level programming, only allow-
ing users with considerable ICT knowledge to specify, formalize
and encode constraints. Secondly, most requirements engineering
systems demand prior domain knowledge embedded as corpora
in databases. In order to enable ad hoc, per-project formulations
of computable constraints by design and engineering end-users,
alternative methods are required to address these needs. The goal
of this research is to find a method of constraint formulation and
entry that is usable by end-user practitioners such as engineers
and architects and that generates unambiguous computer inter-
pretable constraints. The research builds upon existing Natural
Language Processing (NLP) techniques and provides new techno-
logical insights and contributions in the context of architectural
design constraints.

The outline of this paper is as follows. First we will discuss NLP
in requirements engineering, NLP in building constraint entry and
our approach: parsing without a corpus. Following that, we present
our prototype system ‘‘ContraintSoup’’. The system’s algorithms
and components that constitute the prototype are explained in de-
tail. The interface of the prototype is discussed only briefly. We
then report the results of a series of experiments measuring the
ability of automated interpretation of architectural constraints
provided in the form of natural language as the input to the sys-
tem. Finally, conclusions are drawn on the advantages of the pro-
posed method and how the system can be developed further for
improved performance.
2. Constraint and rule formalization

2.1. Natural Language Processing in requirements engineering

Natural Language Programming (NLP) originates from the de-
sire in software development to use natural language instead of
computer scientist specific programming language such as Java
and C#. The advantages are obvious, namely a direct interaction
between the domain expert and the computer that executes the
expresses procedures. Despite the fact that many ‘high level pro-
gramming languages’ have been developed automatic program-
ming is still unresolved. [2] summarized four components of
automatic programming: a means of acquiring a high-level specifi-
cation (requirements), a mechanism for requirements validation, a
means of translating the high-level specification into a low-level
specification, and an automatic compiler for compilation of the
low-level specification. Since then, so-called Very High Level Lan-
guages (VHLL) were developed, such as BIDL [27] that were in fact
pseudo-natural languages with unambiguous syntax and seman-
tics. At that time with the advent of Object Oriented Programming
(OOP), many researchers (e.g. [31]) NLP in requirements engineer-
ing is seen as a part of the OO model generation process. This pro-
cess can be viewed as a sequence of processing steps that starts
from a raw text and proceeds to computer interpretable code.
Berzins et al. [4] provide a model for NLP that recognizes four
steps: (1) tokenization, (2) synthetic parsing, (3) semantic process-
ing, and (4) pragmatics.

The first part of this process is called Part-of-Speech Tagging [5],
and is performed by using a large sample of tagged text, which is
referred to as a corpus [22,6,28,8]. In tagged text, every word has
been assigned its proper part of speech. For every word in the input
text, the algorithm searches the corpus to find the correct part of
speech for that word.

The second step of NLP analyses larger chunks of a sentence
than individual words. The POS information from the previous
level is used but in combination with preceding and succeeding
words. Using the semantic meaning of some of these words,
hierarchical trees are constructed. Parsing methods apply often
statistics and rely upon a corpus of training data (words) that are
labelled with a specific meaning necessary for tree construction.

The third step is semantic processing. In this step ambiguity,
which is common in natural language, is addressed. An example of-
ten used to illustrate this is the following sentence:

‘‘Time flies like an arrow, but fruit flies like a banana.’’

The first occurrence of ‘‘flies’’ is a verb, but in the correct inter-
pretation the second occurrence is a noun. This is an example of a
case where one word has more than one possible part of speech, as
hinted on in the paragraph on corpora. The deterministic approach
stops working here, since the interpretation involving flying fruit
would be grammatically correct, but incorrect from the perspective
of common sense. The common solution for this problem is to use a
statistical approach, where each production rule of the grammar (a
rule that governs how parts of the sentence are combined, e.g. ver-
b + adverb = verb phrase) is also attributed with a relative fre-
quency with which it occurs. These types of grammars are
referred to as Probabilistic Context-Free Grammars (PCFG) or Sto-
chastic Context-Free Grammars (SCFG) [7,8]. Using these frequen-
cies, the parser can check the neighboring words to determine the
likelihood of a given interpretation scenario.

Finally, in the fourth step (pragmatics) is concerned with the
more complex linguistics issues, such as resolving what a pronoun
or noun refers to.

In [4], four challenges for using NLP in requirements engineer-
ing are listed:

(1) Ambiguity of word meaning and scope: words can have mul-
tiple meanings, and phrases and adjectives can refer to mul-
tiple words.

(2) Computational complexity: the possible need to check an
exponential number of parse trees.

(3) Tacit knowledge and anaphora resolutions: the difficulty in
resolving reference words such as ‘they’ when there are mul-
tiple possible targets without knowledge of the properties
and behaviors of those targets.

(4) Non-linguistic context: information about the stakeholder,
time of day, recent events, etc.

When it comes to word meaning, ambiguities can be partially
resolved due to the fact that the system operates in a domain-spe-
cific context. The word column, for instance, could refer to a verti-
cal list of figures in a spread sheet. In the context of building
constraints, however, it is considerably more likely to refer to a pil-
lar. Similarly, the variation in non-linguistic context is limited
since all text processed with the system will be a constraint. The
main contributions of the proposed algorithm lie in points 2 and
3. By using unit information and typical sentence structures of
architectural constraints, it is possible to resolve references and
other gaps in the parse tree without taking exponential time.

2.2. Natural Language Processing for building constraint entry

Currently, the majority of constraints in the building industry
are specified using a natural language, such as Dutch or English.
Examples of these include building codes and functional require-
ments in the client’s brief. The inherent complexity and flexibility
of natural languages, however, makes automated interpretation
exceedingly difficult, as it requires not just an understanding of
grammar, but also knowledge of a domain and a sense of context.
Although NLP has been applied in building and construction in a
large variety of areas, among which information extraction from
documents is the most prominent (see [25] for an overview), only
a limited amount of research has been dedicated to automate the

30 R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36
creation of rules with natural language input. Hjelseth and Nisbet
[22] are working on a methodology to manually tag part-of-speech
components from natural language building regulations to auto-
mate the generation of constraints as an input for code compliancy
checking systems based on IFC models. The approach presented
here, however, aims at a fully unguided process.
Fig. 1. Algorithm steps.

Table 1
Word types.

Word type Examples

Element Wall, door, window
Unit Meter, millimeter, degrees
Value 2, 3.5, zinc
Relationship Distance
Comparison More than, equal to
Operator (Add/subtract) Plus, minus
Operator (Multiply/divide) Times, divided by
Operator (Boolean) And, or
3. System prototype: ConstraintSoup

Given the lack of a suitable corpus of constraints, corpora-based
algorithms (e.g. using statistical approaches to determine the most
likely function of a word) are not suitable for this project. There-
fore, an approach based on combining a deterministic grammar
with supervised machine learning was chosen. The supervision
consists of providing the algorithm with a dictionary of word func-
tions and meanings and providing the desired outputs of a training
corpus. This work has been documented in [30]. Inspiration for this
solution was found in the domain of HTML parsing. HTML (Hyper-
Text Markup Language) is the language in which web pages are
written. In theory, parsing an HTML document would be straight-
forward, provided the document was syntactically valid. However,
a very large percentage of web pages found on the internet are not.
Possible reasons include handwritten pages including unclosed
tags, typos and HTML-generating applications that do not correctly
follow the standards. Adopting a strict policy of only accepting syn-
tactically valid pages will therefore mean that many pages cannot
be rendered, which in many cases is not acceptable. Therefore, web
browsers and other tools required to work with HTML as found in
real-world cases have to be lenient, and make assumptions where
the available information is insufficient. The HTML parser TagSoup
[9] treats input as ‘‘tag soup’’, in which redundant, missing or
incorrectly placed tags are expected and dealt with. Similarly, the
algorithm developed in this research treats its input as ‘‘language
soup’’. Provided all the words that are necessary for a correct inter-
pretation occur somewhere in the sentence, the algorithm can deal
with omitted repetitions, superfluous words and accepts different
ways of phrasing constraints, as word order is largely irrelevant.
This makes the algorithm very flexible in regards to its input,
which is essential when dealing with the fluidity of natural lan-
guage. We call this method ‘‘Architectural Language Parsing’’. The
algorithm is an elaboration of the NLP model presented by Berzin
et al. as follows: (1) Tokenization, (2) Synthetic parsing = Word
loop-up + Preprocessing + Tree construction, (3) Semantic process-
ing = Tree sanitization, while (4) Pragmatics is not included. The
processing steps of our algorithm are shown in Fig. 1 and detailed
in the following paragraphs.

3.1. Tokenization

The first step is to convert the input string into useable parts.
This means converting the input to a list of separate chunks re-
ferred to as tokens such as words and numbers by splitting input
strings where spaces and punctuation occur. This is a well-under-
stood and established technique in language processing and is
referred to a tokenization.

3.2. Word lookup

After tokenizing the input, the next step is to assign a meaning
to the individual tokens. To do this, a database is kept that maps
words to their meaning. For example, both the noun ‘‘height’’
and adjective ‘‘high’’ map to the ‘‘height’’ data type property of
an element. In the prototype system we have implemented, the
database was created manually. The word lookup results in one
of three possibilities for every word: (a) the word has an associated
meaning in the database, (b) the word is marked as ignorable or (c)
the word is not found in the database. Examples of ignorable words
include articles, some prepositions, such as ‘‘of’’ in phrases such as
‘‘the height of the house’’, since no preposition is needed to estab-
lish the link between the noun and the adjective, and ‘‘because’’,
since for the purposes of constraint checking reasons are of little
to no value, Depending on whether or not the unknown word is re-
quired for a correct interpretation of the sentence, the user will
have to add the word to the database and specify the meaning.
The meaning of a word mainly consists of the type of the word,
such as ‘‘Element’’ or ‘‘Property’’, with optional additional informa-
tion depending on the type of the word. Values, for instance, also
have an associated unit. The word types implemented in the proto-
type are shown in Table 1.

Comparative adjectives are interpreted as the associated adjec-
tive followed by a comparison. For example, ‘‘higher’’ is replaced
with the property ‘‘height’’ and the comparator ‘‘greater than’’.
Qualitative adjectives are either not sufficiently objective (‘‘big’’,
‘‘expensive’’, etc.) or require element filters, which will be
discussed in later sections. Other word types, such as verbs, are
ignored; words like shall, must and needs to are not needed since
constraints are positive by default. In negations (e.g. must not)
the relevant word is not the verb (must) but the adverb (not).
Contractions (e.g. shall not) must be expanded before this step.

3.3. Pre-processing

After identifying the relevant words, the sentence is trans-
formed by reordering, adding or removing words to cover cases
that are not yet processed correctly by the algorithm. These trans-
formations are specified in a custom Domain-Specific Language
(DSL) that operates on the token level. These expressions are then
converted to proper regular expressions and applied to the sen-
tence. As an example,

R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36 31
� (ni / ni) of

is replaced by

� $1 times

where ni means an integer and $1 is a back-reference, i.e. it is
replaced with the contents of the first matched group in the pat-
tern, indicated by the parentheses). As an example, ‘‘1/3 of the
house’s height’’ is replaced with ‘‘1/3 times the house’s height’’.
This rule is required because humans know that the two values
are to be multiplied together, but this information is not stated
explicitly in the sentence. Inspiration for this DSL was found in reg-
ular expressions, which is a commonly used DSL to search or re-
place text. The syntax is borrowed from regular expressions, with
the following additions:

� ni matches an integer,
� ns matches a literal string, i.e. a piece of text between quotes,
� . matches any token,
� words in the pre-processing rule match Word tokens containing

that string.

In order to facilitate these changes, these DSL rules are pro-
cessed using regular expressions to produce proper regular expres-
sions, which are applied to the string containing the tokens.

3.4. Tree construction

After identifying the relevant words, the list of words is con-
verted to a tree by splitting the sentence based on priority. This
works as follows: First, find the token in the sentence with the low-
est priority (the table below shows the priorities of a few different
operations, with 0 being the highest priority). The priorities of to-
kens are the same as in mathematics and many programming lan-
guages, which based on observation of examples also appear to
apply to natural language parsing. Properties (function application)
and elements (variables) have the highest priority, followed by
arithmetical operators, comparisons and Boolean operators.
5
 Boolean operator (e.g. and, or)

4
 Comparison (e.g. more than)

3
 Addition and subtraction

2
 Multiplication and division

1
 Relationship between two elements (e.g. distance)

0
 Properties (e.g. height), Elements (e.g. wall), etc.
If multiple tokens have the same priority, the first one is chosen,
based on the observation that natural language sentence typically
use a left-to-right order. A tree node is created with the word in
question as a value and a left and right branch with the words be-
fore and after the word, respectively. Then this algorithm is applied
recursively to both branches. The algorithm stops when all the
words in a branch have priority 0. The tree construction algorithm
in pseudocode:

function makeTree(words):
ps = words sorted by ascending priority

if all words in ps have priority 0: return

Leaf(words)

h = first element of ps

l = words to the left of h

r = words to the right of h

return Node(makeTree(l), h, makeTree(r))
Fig. 2 shows an example of these steps for the sentence ‘‘The width
of the window must be more than 2 times the height of the
window’’.

3.5. Tree sanitizing

Since the tree created in the previous step is based directly on
the user’s input, it will likely need to be sanitized before it can
be used by the system. The wide range of possible grammatical
constructs means that words are likely to be in an undesirable po-
sition. The sentence ‘‘the height of the door must be more than that
of the window and less than that of the wall’’, for instance, is tok-
enized as: Height, Door, >, Window, And, <, Wall. Converting these
tokens to a tree using production rules described in Section 3.4 re-
sults in the tree shown in Fig. 3.

Although correct in structure, there are two problems: leaves D
and F lack the Height property (which is needed to compare their
heights) and the leaf E is missing entirely. In order to fix this, the
tree must be modified, in a process that in this paper is referred
to as sanitizing. For sanitizing the tree, a top-down recursive search
strategy [1] is used. The algorithm starts at the top of the tree look-
ing for a constraint. The And node results in a constraint (since it is
a combination of two constraints), so the algorithm moves onto the
branches. And itself requires two constraints (i.e. two statements
that evaluate to true or false), so the algorithm is recursively ap-
plied to the two branches. Now branch B is passed as a source
for missing tokens to the checking of branch A and vice versa, since
based on observations it is common that a required token can only
be found in the other branch. Going to the branch A, a comparison
is found, which is one type of constraint. A comparison requires
two values. Branch D is added to the list of branches that are
sources for missing tokens, so that when checking the branch C
both (Window) and (<Wall) can be used. To see whether (Height,
Door) can produce a value, a list of production rules [23] is checked.
These production rules, which state the manner in which tokens
can be combined to form new tokens, are also used to determine
the result type and required branch types in the first two steps.
To illustrate this concept, three examples of productions rules
are provided here:

� Propertyðwhich produces a valueÞ þ Element ¼ Value
� example: height + door = height of door
� Relationship ðwhich produces a booleanÞ þ Element þ Element ¼

Constraint
� example: above + roof + floor = roof must be above floor
� Operator ðwith precedence of add=subtractÞþ Valueþ Valueðof

the same type as the first valueÞ ¼ Value
� example: plus + 1000 mm + 2000 mm = 3000 mm

Note that in the second example the order of the words is
important, as reversing the positions of roof and floor would pro-
duce the opposite outcome. While the algorithm is largely insensi-
tive to local word order, the overall order of the branches still has
to be correct. Based on observations this is rarely a problem in
practice though, as constraints are typically grammatically and
logically correct.

In the case of the current leaf (Height, door), searching the pro-
duction rules reveals one that says ‘‘Property + Element = Value’’.
All the required tokens are now present, so we can continue. For
the branch D, a value is needed as well, but the only token available
is an element. There is no production rule that allows a Value to be
created from nothing but an Element, so additional tokens are
needed. All production rules that produce the correct type and
for which at least one of the required input tokens is available
are considered. In this case, only the ‘‘Property + Element’’ rule

Fig. 4. Final syntax tree.

Fig. 2. Tree construction example.

Fig. 3. Example syntax tree.

32 R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36
used earlier satisfies those two conditions, so a property token is
needed.

Whenever a token is needed, the other branches are searched
for a token of the corresponding type. When multiple options are
available, priority is given to tokens that are in a branch on the
same side as the current one. Based on observations, word omis-
sions in repeated structures usually retain the structure of the ori-
ginal; e.g. in the sentence ‘‘The dog chases the cat and chases the
mouse’’, the dog is the one chasing the mouse rather than the
cat, since they both appear on the left. If no tokens on the same
side can be found or multiple exist, the closest one (measuring
the distance using the tree rather than the word order) is chosen,
since it has a higher chance of referring to the correct scope.

Continuing with the example, Height is the only available Prop-
erty node that can be combined with Window in branch D to pro-
duce a value, so it is added to the Window leaf. This branch is now
completed, so the algorithm continues with the branch B. Here
again a comparison is found, which is correct as in the left branch,
so the algorithm can move onto the branches. For the missing
branch E the aim is to find a completed leaf that can produce the
appropriate type. Both branch C and D are suitable, but C is pre-
ferred since, like the missing branch, it is on the left. Finally, the
branch F again requires a Property token. Now there is a choice
of three Height properties, which all produce the same result. The
final tree is shown in Fig. 4.
4. Interface

The algorithm described in the previous section has been imple-
mented in a prototype. The interface, shown in Fig. 5, consists of a
text box (A) to type the constraint into, followed by a list of results.
The first part of the result is the list of recognized words (B) which
is the result of the tokenization, word lookup and pre-processing
steps. Clicking on one of these words allows the user to ascribe a
meaning to it by choosing from the available token types, which
is used to enter new words into the system (see Table 1). Below
that is the initial tree that results from the tree construction step
(C), followed by the end result after sanitizing the tree (D). In order
to make the end result more easily readable, the tree is also dis-
played as an English sentence (E). For illustration purposes, a floor
plan is presented at the right hand side (F) in which the walls in
conflict with the constraint entered by the user are colored in red.
5. Evaluation

In order to get a representative sample of constraint input, a
user test was conducted with architecture students. Each student
was shown a random selection of five out of a total of ten scenarios
that each depicted an undesirable building design. Fig. 6A–D shows
four of the scenarios presented.

Fig. 6. (A) A door that cannot be opened. (B) Misaligned walls. (C) A house that is too high. (D) A window that is too small.

Fig. 5. Prototype interface.

R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36 33
The students were asked to formulate one or more constraints
for an automated constraints checking system to prevent these
problems. No details of the system were provided and no limits
were placed on the way the input should be formulated, save for
the fact that the constraints were requested to be objectively
decidable, as this is a prerequisite for any constraint checking sys-
tem. 47 students participated in the test, yielding a total of 292
constraints. Of these 292, 89 were rejected for being insufficiently

Table 3
Valid constraint categories.

Valid constraint category Amount Percentage (%)

Correctly interpreted 53 41
Minor change required 23 18
Refers to neighboring houses 17 13
More grammatical constructs required 14 11
No desired encoding yet 14 11
Not yet handled correctly 7 6

Table 2
Constraint categories.

Constraint category Amount Percentage (%)

Viable 128 44
Not objective 89 31
Difficult/ambiguous 65 22
No constraint needed 10 3

34 R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36
objective. Examples include ‘‘window at eye level for better view’’
(the eye level varies from person to person) and ‘‘place higher
fence’’, which fails to specify how much higher. An additional 65
were rejected for being either difficult to verify in current genera-
tion BIMs such as IFC or Revit (e.g. non-trivial spatial relationships)
or due to ambiguous language, such as ‘‘it should be possible to
open a door at least 90 degrees’’ and ‘‘the window should be as
large as the least wide wall in the room’’ (which does not specify
whether this applies to just the width or the entire surface area
of the wall). In 10 cases, the participant did not consider the design
to be problematic. This leaves 128 constraints out of the original
292, or 43.8%, that are can be interpreted by the system, meaning
that even with no training or explanation of the system whatso-
ever, almost half of the constraints are suitable for the proposed
constraint checking system. This indicates that, perhaps with a
short training, architects should have little difficulty in formulating
proper constraints. Table 2 shows the distribution of the different
categories of constraints mentioned above.

The next step was to specify the desired syntax tree for the eli-
gible constraints. This was done for 83 of the 128 constraints. The
other 45 constraint fall in three categories: 14 require grammatical
constructs that have not yet been implemented. Another 17 refer
to the neighboring houses, for which a satisfactory encoding has
yet to be found. The remaining 14 also lack a desired resulting tree,
since in these cases the wording used was more metaphorical or
context-sensitive. One example of this is the constraint ‘‘At least
6000 lux must enter the living room’’, in which no mention is made
of the window through which this should occur. Of the 83 con-
straints, 53 were interpreted correctly, meaning they can be used
for checking building designs. This was tested by evaluating the
constraints on a simple building model. 23 more could be handled
correctly with a minor change in wording, mostly because the
algorithm in its current state has some trouble with constraints
specifying equalities rather than inequalities. For example, ‘‘The
walls of the dormer must be opaque’’ needs to be changed to
‘‘The walls of the dormer must be equal to opaque’’. This could
be remedied by assuming equality by default unless otherwise
specified. The remaining 7 constraints were not yet handled cor-
rectly, largely due to the occurrence of complicated spatial rela-
tionships, such as ‘‘at least 1 m of the roof should remain free’’.
This means that of the constraints for which a desired parse tree
was formed, 91.6% could be correctly interpreted with little or no
changes. Table 3 shows this breakdown of the viable constraints.
This means that of the 282 constraints formulated by the students
(292 minus the 10 cases where no problem was found), 27% can al-
ready be automatically verified even with this early prototype.
6. Conclusions and discussion

Referring to the four components of automatic programming: (1)
a means of acquiring a high-level specification (requirements), (2) a
mechanism for requirements validation, (3) a means of translating
the high-level specification into a low-level specification, and (4)
an automatic compiler for compilation of the low-level specification,
the following conclusion can be drawn. The presented architectural
language parsing algorithm addresses component (1) and (3). Vali-
dation of the architectural requirements is devoted to application
programs that can check whether the stated requirements are met,
such as cost calculation and climate calculation. Compilation of the
generated code by our algorithm is straightforward and can be han-
dled by many existing programming language compilers.

The success rate of our algorithm is significantly lower than
other NLP algorithms [8,33] which can be explained by the absence
of a database with corpora. In the architectural design process elic-
itation of requirements by the client is regarded a crucial part of
the whole building process. A fully automated process of require-
ments specification through text ignores the importance of face-
to-face communication between the client and the architect. It is
unlikely that all knowledge that is exchanged in a conversation
can be captured by written constraints. However, a substantial part
of these constraints can be captured without additional effort or
knowledge, which narrows down the unwanted design solutions
considerably.

The presented algorithm provides the following technological
contributions to the field of NLP in requirements engineering:

� No full language grammar required

Unlike most NLP algorithms, ours’ ignores word order, which
means that no full grammar for the language being modelled needs
to be developed. Therefore the algorithm can be easily imple-
mented in a given application and language.

� Robustness

Aside from not being very sensitive to the precise word order,
the algorithm is also able to work around some other potential
problems, such as omitted repetitions and superfluous words. Most
existing NLP approaches cannot handle such problems that occur
often in natural language.

� No corpora needed

Whereas most NLP algorithms need a domain specific corpora
to operate, ours’ works without. In many application domains, like
design constraints where corpora do not exist, the proposed algo-
rithm can be applied.

The presented algorithm advances the field of architectural de-
sign constraints processing through the following results:

� Proof under realistic conditions

The experiments presented in this paper prove that NLP is a
applicable method for real-time processing of typed natural lan-
guage design constraints and converting these into a computer
interpretable format.

� NLP interface embedded in a design system

The presented prototype system used in the experiments,
shows how NLP can be embedded in architectural design systems.
The interface allows for constraints specification and evaluation
during the design process in a natural manner.

R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36 35
In addition, although no research has yet been performed to
confirm these, the following strengths of the algorithm have been
identified:

� Applicable to multiple industries

Since no domain-specific information is used, the algorithm can
be used in any industry where it is useful to specify constraints
using natural language, whether for the purposes of mass custom-
ization or as a support tool for a professional designer.

� Little training required

Because constraints are entered in natural language there is lit-
tle to no required training on the part of the users. This represents
a large improvement over current common practice, where con-
straints are often specified in a programming language or DSL.

This algorithm was developed based on the sentence structure
of the Dutch language. It is expected that the algorithm will also
work for English, since the internal representation of sentences is
in English. As both are West Germanic languages, they possess a
similar grammar. The main difference is the word order in subor-
dinate clauses—Dutch uses subject-object-verb and English uses
subject-verb-object. Compare for instance ‘‘When Bob ate the
apple. . .’’ with ‘‘Toen Bob de appel at. . .’’ The impact of this, how-
ever, is limited since subordinate clauses are not very common in
constraints. In a different test that used unmodified constraints
take from the building codes for dormers in the municipality of
Rotterdam, only two of the 31 constraints contained a subordinate
clause. Aside from that, the algorithm is flexible in regards to the
word order, which further reduces the problem. Although this
has not been tested, it is likely that the algorithm will also work
for other Western European languages, due to the insensitivity to
the specific word order. Languages with a significantly different
structure (such as right-to-left and top-down languages) will in
all likelihood require changes to the algorithm, particularly to the
order in which neighboring branches are traversed in search of
missing tokens. While no tests have been conducted to determine
how the algorithm scales with larger input, the importance of this
is expected to be limited. The constraints used to test the system
can be considered representative of those that will be used in prac-
tice, both in terms of content and in length.

Although the algorithm for interpreting natural language con-
straints developed in this research project has proven to be a
promising start, there is still a considerable amount of work to
be done before a constraint-based mass customization system
can be effectively deployed, both in terms of the system itself as
well as the building industry as a whole. The main limitation of
the prototype that was developed as a proof of concept in the con-
text of this research is the fact that the parser grammar has not yet
been fully developed. There are two main omissions. The first is
that several common grammatical structures, such as conditionals
(e.g. ‘‘if the angle of the roof is more than 30�, no dormer is al-
lowed’’) and existential constraints (e.g. ‘‘walls must contain at
least one window’’) are not yet implemented. Adding these should
be straight-forward. Secondly, the algorithm must become proba-
bilistic in order to be able to resolve ambiguities. One way of doing
this would be add a corpus to the algorithm, such as the corpus
formed by the constraints that were used to test the performance
of the algorithm (though a corpus used in practice will need to
be many times larger). These constraints, which are annotated
with the desired resulting syntax tree, can be used to determine
the most likely interpretation of new constraints. Finally, although
not essential, it would be beneficial to automatically derive word
associations from existing taxonomies, ontologies or dictionaries
such as the IFD library [16], though this will only help with build-
ing industry-specific terminology and not with general-purpose
words.

References

[1] A. Aho, J. Ullman, The theory of parsing, translation, and compiling, Prentice-
Hall, Inc. (1972).

[2] R. Balzer, A 15 year perspective on automatic programming, IEEE Transactions
on Software Engineering, SE-11(11) (1985) 1257–1268.

[3] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: a case of transforming EXPRESS
schemas into ontologies, AIEDAM 23 (2009) 89–101.

[4] V. Berzins, C. Martell, Luqi, P. Adams, Innovations in natural language
document processing for requirements engineering, in: B. Paech, V. Martell
(Eds.), Innovations for Requirement Analysis. From Stakeholders’ Needs to
Formal Designs, Lecture Notes in Computer Science, Springer, Berlin
Heidelberg, 2008, pp. 125–146.

[5] E. Brill, A simple rule-based part of speech tagger, in: ANLC ‘92 Proceedings of
the Third Conference on Applied Natural Language Processing, 1992.

[6] P. Brown, J. Cocke, S. Pietra, V. Pietra, F. Jelinek, J. Lafferty, R. Mercer, P. Roossin,
A statistical approach to machine translation, Comput. Linguist. 16 (2) (1990)
79–85.

[7] E. Charniak, Statistical techniques for natural language parsing, AI Mag. 18
(1997) 33–43.

[8] M. Collins, Head-driven statistical models for natural language parsing,
Comput. Linguist. 29 (4) (2003) 589–637.

[9] Cowan, TagSoup home page, 2011. <http://ccil.org/~cowan/XML/tagsoup/>.
[10] C.L. Dym, R.P. Henchey, E.A. Delis, S. Gonick, A knowledge-based system for

automated architectural code checking, Comput.-Aided Des. 20 (1988) 137–
145.

[11] J.H. Garrett, S.J. Fenves, A knowledge-based standards processor for structural
component design, Eng. Comput. 2 (1987) 219–238.

[12] C. Eastman, J. Lee, Y. Jeong, J. Lee, Automatic rule-based checking of building
designs, Automat. Constr. 18 (2009) 1011–1033.

[13] Steven J. Fenves, Recent developments in the methodology for the formulation
and organization of design specifications, Eng. Struct. 1 (5) (1979) 223–229,
http://dx.doi.org/10.1016/0141-0296(79)90002-6.

[14] S.J. Fenves, J.H. Garrett Jr., Knowledge based standards processing, Artif. Intell.
Eng. 1 (1) (1986) 3–14, http://dx.doi.org/10.1016/0954-1810(86)90029-4.

[15] E. Gelle, B. Faltings, Solving mixed and conditional constraint satisfaction
problems, Constraints 8 (2) (2003) 107–141.

[16] R. Grant, IFD Library White Paper, Technical Report, CSI and IFD Library Group,
2008.

[17] M.M. Hakim, J.H. Garrett, A description logic approach for representing
engineering design standards, Eng. Comput. 9 (1993) 108–124.

[18] J. Halman, J. Voordijk, I. Reymen, Modular approaches in Dutch house building:
an exploratory survey, Housing Stud. 23 (5) (2008) 781–799.

[19] Han, J. Kunz, Law, Client/server framework for on-line building code checking,
J. Comput. Civ. Eng. 12 (1998) 181–194.

[20] Eric J. Heikkila, Edwin J. Blewett, Using expert systems to check compliance
with municipal building codes, J. Am. Plann. Assoc. 58 (1) (1992) 72–80, http://
dx.doi.org/10.1080/01944369208975536.

[21] E. Hjelseth, N. Nisbet, Capturing normative constraints by use of the semantic
mark-up RASE methodology. In: Proceedings of the 28th International
Conference of CIB W78, Sophia Antipolis, France, 26-28 October, 2011.

[22] M. King, Parsing Natural Language, Academic Press Inc. Ltd., London, 1983.
[23] D. Knuth, Semantics of context-free languages, Theory of Computing Systems 2

(1968) 127–145.
[24] T. Liebich, J. Wix, J. Forester, Z. Qi, Speeding-up the building plan approval –

the Singapore e-plan checking project offers automatic plan checking based on
IFC, in: E-Work and E-Business in Architecture, Engineering and Construction,
Proc. of 4th European Conference on Product and Process Modelling, Portoroz,
Balkema, Rotterdam, 2002, pp. 467–471.

[25] K.Y. Lin, S.H. Hsieh, H.P. Tserng, K.W. Chou, H.T. Lin, C.P. Huang, K.F. Tzeng,
Enabling the creation of domain-specific reference collections to support text-
based information retrieval experiments in the architecture, engineering and
construction industries, Adv. Eng. Inform. 22 (2008) 350–361.

[26] C. Lottaz, R. Stalker, I. Smith, Constraint solving and preference activation for
interactive design, AI EDAM 12 (1) (2000) 13–27.

[27] R. Lu, Z. Jin, R. Wan, Requirement specification in pseudo-natural language in
promis. In: Proceedings of the Nineteenth Annual InternationalComputer
Software and Applications Conference, COMPSAC 1995, 1995, 96–101.

[28] C. Manning, H. Schütze, Foundations of Statistical Natural Language
Processing, The MIT Press, Cambridge, MA, 1999.

[29] D. McClosky, E. Charniak, M. Johnson, Effective self-training for parsing, In:
HLT-NAACL 06 Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of
Computational Linguistics, 2006.

[30] R.A. Niemeijer, Constraint Specification in Architecture: A User-Oriented
Approach for Mass Customization, PhD Thesis, Eindhoven University of
Technology, 2011.

[31] S. Nanduri, S. Rugaber, Requirements validation via automated natural
language parsing. In: Proceedings of the Twenty-Eighth Hawaii International
Conference on System Sciences, 3, 1995, 362–368.

http://refhub.elsevier.com/S1474-0346(13)00095-5/h3000
http://refhub.elsevier.com/S1474-0346(13)00095-5/h3000
http://refhub.elsevier.com/S1474-0346(13)00095-5/h3005
http://refhub.elsevier.com/S1474-0346(13)00095-5/h3005
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0010
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0010
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0200
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0030
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0030
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0030
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0035
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0035
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0040
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0040
http://ccil.org/~cowan/XML/tagsoup/
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0050
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0050
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0050
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0055
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0055
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0060
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0060
http://dx.doi.org/10.1016/0141-0296(79)90002-6
http://dx.doi.org/10.1016/0954-1810(86)90029-4
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0075
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0075
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0085
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0085
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0090
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0090
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0095
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0095
http://dx.doi.org/10.1080/01944369208975536
http://dx.doi.org/10.1080/01944369208975536
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0105
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0105
http://refhub.elsevier.com/S1474-0346(13)00095-5/h2095
http://refhub.elsevier.com/S1474-0346(13)00095-5/h2095
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0120
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0120
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0120
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0120
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0125
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0125
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0130
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0130
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0130

36 R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36
[32] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de
Walle, J. Van Campenhout, A semantic rule checking environment for building
performance checking, Automat. Constr. 20 (2011) 506–518.

[33] W. Rasdorf, S. Lakmazaheri, Logic-based approach for modeling organization
of design standards, J. Comput. Civ. Eng. 4 (1990) 102–123.

[30] Michael A. Rosenman, John S. Gero, Design codes as expert systems, Comput.-
Aided Des. 17 (9) (1985) 399–409, http://dx.doi.org/10.1016/0010-
4485(85)90287-8.

[35] H. Ridder, R. Vrijhoef, The ‘‘living building’’ concept: dynamic control of whole
life value and costs of built services, in: Proceedings QUT Research Week,
2005, pp. 109–115.

[36] C. van den Thillart, Customised industrialisation in the residential sector: mass
customisation modelling as a tool for benchmarking, variation and selection,
Sun, Amsterdam, 2004.
[37] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.
[38] B. de Vries, A. Jessurun, R. Kelleners, Using 3D geometric constraints in

architectural design support systems, in: WSCG 2000 Conference, Bory,
Czech Republic ‘Proceedings of the 8-th International Conference in Central
Europa on Computer Graphics, Visualization and Interactive Digital Media’,
2000.

[39] A. Yurchyshyna, A. Zarli, An ontology-based approach for formalisation and
semantic organisation of conformance requirements in construction, Automat.
Constr. 18 (2009) 1084–1098.

[40] Q.Z. Yang, X. Xu, Design knowledge modeling and software implementation for
building code compliance checking, Build. Environ. 39 (2004) 689–698.

[41] B.T. Zhong, L.Y. Ding, H.B. Luo, Y. Zhou, Y.Z. Hu, H.M. Hu, Ontology-based
semantic modeling of regulation constraint for automated construction
quality compliance checking, Automat. Constr. 28 (2012) 58–70.

http://refhub.elsevier.com/S1474-0346(13)00095-5/h0140
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0140
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0140
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0145
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0145
http://dx.doi.org/10.1016/0010-4485(85)90287-8
http://dx.doi.org/10.1016/0010-4485(85)90287-8
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0165
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0165
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0165
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0165
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0170
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0170
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0180
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0180
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0180
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0185
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0185
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0190
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0190
http://refhub.elsevier.com/S1474-0346(13)00095-5/h0190

	Freedom through constraints: User-oriented architectural design
	1 Introduction
	2 Constraint and rule formalization
	2.1 Natural Language Processing in requirements engineering
	2.2 Natural Language Processing for building constraint entry

	3 System prototype: ConstraintSoup
	3.1 Tokenization
	3.2 Word lookup
	3.3 Pre-processing
	3.4 Tree construction
	3.5 Tree sanitizing

	4 Interface
	5 Evaluation
	6 Conclusions and discussion
	References

