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a b s t r a c t

The use of Markov Decision Processes for Inspection Maintenance and Rehabilitation of civil engineering

structures relies on the use of several transition matrices related to the stochastic degradation process,

maintenance actions and imperfect inspections. Point estimators for these matrices are usually used and

they are evaluated using statistical inference methods and/or expert evaluation methods. Thus, considerable

epistemic uncertainty often veils the true values of these matrices. Our contribution through this paper is

threefold. First, we present a methodology for incorporating epistemic uncertainties in dynamic programming

algorithms used to solve finite horizon Markov Decision Processes (which may be partially observable).

Second, we propose a methodology based on the use of Dirichlet distributions which answers, in our sense,

much of the controversy found in the literature about estimating Markov transition matrices. Third, we

show how the complexity resulting from the use of Monte-Carlo simulations for the transition matrices

can be greatly overcome in the framework of dynamic programming. The proposed model is applied to

concrete bridge under degradation, in order to provide the optimal strategy for inspection and maintenance.

The influence of epistemic uncertainties on the optimal solution is underlined through sensitivity analysis

regarding the input data.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Most countries worldwide face the problem of ageing civil engi-

eering infrastructures. This is especially the case in the developed

ountries where investment focus is increasingly shifting from ex-

ending the infrastructure to the inspection, maintenance and rehabil-

tation (IM&R) of the existing assets. For example, government statis-

ics in the United States show that the proportion of public non-capital

pending for infrastructure increased from 39 percent in 1960 to 57

ercent in 1994 (CBO, 1999). Although mathematical optimization

nd operational research methods started to be gradually applied for

aintenance optimization since the early 1940s, it is until the last two

ecades that maintenance optimization became a topic of highest pri-

rity for civil engineering infrastructure managers. Several researches

mphasized on the usefulness of the characterization of the uncer-

ainties (pertaining to reliability analysis and to risk-based decision

roblems in engineering) as epistemic or aleatory (Der Kiureghian

Ditlevsen, 2009; Hofer, 1996). The decision process regarding the
∗ Corresponding author. Tel.: +961 3 731450.
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ptimal maintenance policy is often very sensitive to the input sta-

istical parameters (e.g. mean values, standard deviations, Markov

ransition matrices) of the probabilistic models (Avrachenkov, Filar,

Haviv, 2001; Cranahan, 1988). However, these parameters are esti-

ated by classical inference methods where the available data is often

ery limited (DeStefano & Grivas, 1998; Madanat, Mishalani, & Wan

brahim, 1995; Mishalani & Madanat, 2002). This lack of information

eads to second-order uncertainties due to the inevitable difference

etween the observed sample from which inference is made and the

eal population. This second-order statistical uncertainty, shrouding

he real values of the parameters, could be usually quantified by sev-

ral means, such as confidence intervals, Bayesian probability distri-

utions and fuzzy sets (Corotis, 2009). Keeping in mind that exact and

ractable modeling of reality is a far-fetch if not an impossible goal to

chieve, it remains that a desired attribute of a mathematical model is

o be able to use, as best as possible, the available information. In fact, a

athematical optimization model using only a portion of the relevant

nformation will produce biased optimal solutions. Parametric uncer-

ainty is one type of information that is seldom taken into account

y most of the existing models for IM&R optimization. Therefore,

oint estimators for the transition matrices in Markov Decision Pro-

esses (MDP) are simply used instead of exploiting the additional

nformation that can be available. If, for example, a probability
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density function is available for the elements of MDP transition ma-

trices, then the use of the whole information contained in such a

distribution will lead to more realistic life cycle cost estimation and

therefore to better IM&R decisions. It will also be shown that the

expected costs usually increase with full uncertainty consideration.

Hence, neglecting the epistemic uncertainty leads in general to mis-

leading low life cycle costs.

In the next two sections, a literature review on the epistemic un-

certainties in the transition matrices and on the dynamic program-

ming of finite horizon MDPs or POMDPs (Partially Observable Markov

Decision Processes) are presented. Next, we describe the parameters

uncertainties in MDPs. Then, we propose a methodology for incorpo-

rating the epistemic uncertainty in MDPs. The paper ends with the

presentation of a numerical example that considers IM&R optimiza-

tion management of a highway concrete bridge deck.

2. Epistemic uncertainties in the transition matrices

Several studies have been suggested in the literature since the

early 1950s in order to take into account the effect of uncertain-

ties in the transition matrices. Bellman (1961) proposed an “adaptive

control” of Markov chains by recognizing that the problem can be

transformed into an equivalent dynamic programming problem with

a completely known transition law. The state space of the equivalent

problem is the Cartesian product of the original state space by the set

of all probability distributions on the parameter set. This approach

has the advantage of being adaptive but it suffers, as pointed out by

Bellman himself, from the “dimensionality curse”; i.e. the problem

becomes quickly intractable as the state space grows exponentially

with higher dimensions. A customized version of this approach in

the field of IM&R of civil engineering structures was proposed by

Durango and Madanat (2008). One can say that most of the research

tackling the issue of parametric uncertainty in sequential decision

optimization problems focuses on investigating robust optimization

techniques (Givan, Leach, & Dean, 2000; Iyengar, 2005; Nilim & El

Ghaoui, 2005). In the same framework, ambiguity is investigated in

the context of infinite horizon MDP with finite state and action spaces

where it is modeled by constraining the transition probability matrix

to lie in a pre-specified polytope (Bagnell, Ng, & Schneider, 2001; Satia

& Lave, 1973; White & Eldeib, 1994). Such an approach (robust op-

timization) considers the optimization problem as a game between

the decision maker and the nature which is supposed to be malev-

olent. In other terms, the worst case scenario is assumed, leading to

policies which are deemed too conservative by several authors. For

this reason, several studies attempted to avoid this drawback. Kuhn

and Madanat (2006) used the Hurwicz criterion (Revelle, Whitlatch, &

Wright, 1997) which allows the decision maker to set his or her own

’optimism level’, as a number between 0 and 1. This number is used to

balance the decisions by interpolating between the best case and the

worst case scenarios. Delage and Mannor (2009) proposed a chance

constrained MDP with a set of percentile criteria that represent the

trade-off between the optimistic and the pessimistic views. However,

as for the models of Kuhn and Madanat, a so-called risk of the policy

level must be chosen at the discretion of the decision maker. More-

over, these approaches do not use all of available information about

the epistemic uncertainty.

The authors of the present paper believe that for problems which

do not include hard constraints (i.e. constraints which must be met

compulsory otherwise the solution found is deemed not feasible), the

whole information available about the uncertainty can be taken into

account by the optimization model. A particular example of optimiza-

tion problems, where the constraints are soft, is the management

optimization of infrastructure facilities which is subject to limited

budget constraints. In this case, constraining the expected direct cost

that is to be paid by the manager during each time period, to be less

than or equal to the imposed budgets limits is deemed to be sufficient.
n this paper, we present an extension of dynamic programming al-

orithms used to solve finite horizon MDPs or Partially Observable

DPs (POMDPs) in order to take into account second-order epis-

emic uncertainties. The whole information available about the un-

ertainty is taken into account by the optimization model. In addition,

e propose a methodology based on the use of Dirichlet distributions

hich avoid, in our sense, much of the controversy dominating the

iterature about the different methods used to estimate the Markov

ransition matrices (maximum likelihood estimation, regression us-

ng state expectation, regression using state distribution, etc.). We

llustrate the methodology by applying it to a Generalized Partially

bservable Markov Decision Process (GPOMDP) (Faddoul, Raphael, &

hateauneuf, 2009). A literature review on POMDPs and GPOMDPs

s provided in the following section. Although the proposed method-

logy for including epistemic uncertainties in the decision process is

otivated by IM&R optimization, the formulation is quite general and

an be relevant to any MDP.

. Dynamic programming for finite horizon POMDPs

The methodology presented in this paper uses dynamic program-

ing to solve finite horizon MDPs. This technique has been used

xtensively for maintenance optimization (Wang, 2002). However, a

egitimate question arises about the suitability of the Markov property

o describe the state evolution of civil engineering structures. Conflict-

ng arguments are presented in literature concerning this subject. Al-

hough Neves, Frangopol, and Cruz (2006) have criticized the Markov

roperty assumption for civil engineering structures, Orcesi and Cre-

ona (2010) have demonstrated that the homogeneous Markov as-

umption was justified in the case of the French national bridge stock.

hatever the case may be, a technique proposed by Robelin and

adanat (2007) allows the dynamic programming to take into ac-

ount the possible non-Markovian effects of actions and/or deterio-

ation processes.

A dynamic programming model is said to be deterministic if the

pplication of an action or a degradation process at the beginning of

tage n will result in a precisely known state of the system at the

eginning of stage n + 1. On the other hand, in probabilistic dynamic

rogramming, the application of an action or a degradation process

t the beginning of stage n will lead to a probabilistic distribution of

he state of the system at the beginning of the next stage (Pham &

ang, 1996).

In a maintenance model, large uncertainties are associated with

he results of any maintenance action and/or degradation process,

ue to two main factors:

1 imperfectness of maintenance actions;

2 stochastic nature of the degradation process between the ap-

plication time of the maintenance action and the beginning of

the next stage.

Due to the abovementioned uncertainties, probabilistic dynamic

rogramming models were used in the majority of maintenance op-

imization problems.

However, classical probabilistic dynamic programming models in

aintenance assume perfect inspections at the beginning of each

ime period. This type of models suffers from two main drawbacks;

amely:

1 The inspections are assumed to be perfect and this is rarely the

case;

2 The optimization of inspection planning (which is vital because

inspections have usually significant costs) is not possible.

The use and development of POMDPs was essentially driven by

he goal of dealing with the first one of these two shortcomings of

lassical probabilistic MDPs.
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In a POMDP (Eckels, 1968; Monahan, 1982), the state of the sys-

em at the beginning of each time period cannot be fully observed.

hus, the manager of the system must rely on a characterization of a

artially observed state; i.e. a belief state which is usually described

y probabilistic distributions. In a classical POMDP, the “belief state”

f the system at the beginning of stage n is defined by the vector
n = [νn

1 , νn
2 , . . . , νn

k
] where the νn

i
are the probabilities associated

ith the different possible values θn
i

, of the exact state θn of the sys-

em at the beginning of stage n, i.e. νn = [Pr(θn
1 ), Pr(θn

2 ), . . . , Pr(θn
k
)].

The effect of a maintenance action or a degradation process can

e modeled (as in a probabilistic dynamic programming problem)

y the transition matrices Aan and M respectively where the element

ij (i = 1, . . . , k; j = 1, . . . , k) of matrix Aan represents the probability that

he system evolves from the state θn
i

to the state aθn
j

if we implement

he maintenance action a at the beginning of stage n and where the

lement mij (i = 1, . . . , k; j = 1, . . . , k) of matrix M represents the

robability that the system evolves from the state aθn
i

to the state
n+1
j

as a result of the degradation process.

The belief state avn of the system during stage n, after the im-

lementation of a maintenance action, will be equal to the matrix

roduct of the vector vn by the maintenance transition matrix Aan;

.e. avn = vn × Aan. Similarly, the belief state vn+1 of the system at

he beginning of stage n + 1, that is, after the evolution of the sys-

em, due to the Markovian degradation process, will be equal to the

atrix product of the vector avn by the Markovian degradation pro-

ess transition matrix M; i.e. vn+1 = avn × M. Thus, a maintenance

ction and/or a Markovian degradation process (having probabilistic

onsequences on the system degree of degradation) will result in a

robability distribution, i.e. an exactly well defined belief state of the

ystem.

Similarly to a deterministic dynamic programming problem, solv-

ng a finite time horizon POMDP by dynamic programming requires

backward calculation (beginning from the last time period) of the

osts associated with each of the belief states νn of stage n by choosing

he action that minimizes the total cost c(νn) (Bellman, 1961). This

ost is composed of the cost of that action ca(an) and the discounted

ptimal cost α × ∗c(νn+1|a, νn) associated with the forecasted belief

tate of stage n + 1, knowing that we applied the action a and that we

ere in the belief state νn at the beginning of stage n. i.e. the recursive

elation will be:

(νn) = ca(an)+ α × ∗c(νn+1|a, νn) (1)

One can note that Eq. (1) is similar to a deterministic dynamic

rogramming recursive relation but where were replace the state θn

y the belief state νn.

Extensions and generalizations of the POMDPs described above

ere proposed by Corotis, Ellis, and Jiang (2005) and Faddoul et al.

2009) through the development of GPOMDPs. A GPOMDP allows for

asy mathematical modeling of complex sequence of actions to be

ndertaken during each time period of the planning horizon. For ex-

mple, a sequence of actions may consist of two inspection decisions

ollowed by one maintenance decision. This type of modeling is rele-

ant to maintenance problems, as a cheap inspection may be carried

ut first, in order to decide whether a more precise and costly inspec-

ion should be applied before taking the decision relative to the type

f the repair technology.

. Modeling of parameters uncertainties in MDPs

The transition matrices relative to degradation processes, main-

enance actions and inspections, are usually estimated by using one,

r a combination, of the following techniques (DeStefano & Grivas,

998; Kallen, 2007): (i) expert evaluation based on past experience;

ii) expert evaluation based on analytical reasoning, taking into ac-

ount the physical and chemical properties underlying the considered
volution processes; (iii) statistical estimation based on historical ob-

ervation samples of the system itself and/or similar systems; (iv)

stimation based on stochastic mathematical models which might be

tted to available historical data, completed by physical knowledge

o calibrate some of the model parameters.

Whatever the applied estimation methods, uncertainties will usu-

lly veil the exact and true values of the estimated matrices. These

ncertainties can be typically expressed by: (i) fuzzy sets, (ii) mean

alue and variance of the estimated parameters, (iii) confidence inter-

als for a specified significance level, (iv) full probability distributions.

n what follows, we present the probabilistic approaches that may be

sed to describe the epistemic uncertainties to be included in a MDP.

Consider the case of an estimation procedure, of a transition matrix

, based on N observations of the true state of the system at the begin-

ing of stage n + 1, knowing that it was at an exactly defined state θn
i

t the beginning of stage n. Such a situation corresponds to the case

here the inspections used for the estimation of T are assumed to

e performed at regular time intervals equal to the transition period

f the Markov process. Moreover, it is assumed that these inspection

echniques are perfect, i.e. they reveal the true state θ of the struc-

ure. The cases where the inspections used for the estimation of the

ransition matrices are imperfect and/or performed at varying time

ntervals, are treated in Appendices A.1 and A.2.

The rows of T can be considered as the vector parameters of multi-

omial distributions of dimension K (K being the number of states).

.e. the observed states of a sample of size N, that was in state θn
i

at the

eginning of stage n, will be distributed according to the following

ultinomial probability distribution:

(x1, . . . , xK; N, pi1, . . . , piK) = N!

x1! × · · · × xK!
× px1

i1
× · · · × pxK

iK
(2)

here xi is the number of observations where the system state is θn+1
i

t the beginning of stage n + 1, and pij is the element at row i and

olumn j of the transition matrix.

The epistemic uncertainty related to the parameters pij, in a given

ow of the transition matrix, can be conveniently represented by the

irichlet multivariate probability distribution since it is the Bayesian

onjugate prior to the multinomial distribution.

Hence, the epistemic uncertainty related to the parameters pij, in

given row of the transition matrix, can be conveniently represented

y the following Dirichlet multivariate probability distribution:

ir(pi1, . . . , pik−1; α1, . . . , αk)

=
�

(∑k
j=1 αj

)
∏k

j=1 �(αj)

∏k

j=1
p
αj−1

ij
with parameters α1, . . . , αK > 0 (3)

here �(·) is the gamma function. As we have mentioned in Section 3,

he belief state vector νn+1 = [νn+1
1 , νn+1

2 , . . . , νn+1
k

] at the beginning

f stage n + 1 is equal to the matrix product: νn+1 = νn × T , where T

s a transition matrix, it comes:

n+1
i

=
k∑

j=1

νn
j × pji ∀i = 1, . . . , k (4)

n other terms, the belief state vector vn + 1 is a linear combination of

he transition matrix rows which are random vectors having Dirichlet

istributions. Thus, we have translated the epistemic uncertainty that

as shrouding the estimates of the transition matrix elements into a

robability distribution of the belief state νn+1.

Several techniques are available for estimating the parameters

f Dirichlet distributions from sample data (Minka, 2003; Wicker,

uller, Kalathur, & Poch, 2008). However, a simple and natural

echnique arises from the fact that the Dirichlet distribution is a

onjugate prior to the multinomial distribution. If we take a prior

ir(pi1, . . . , pik−1; α1, . . . , αk) and a multinomial sample x1, . . . , xk,

he posterior will be Dir(pi1, . . . , pik−1; α1 + x1, . . . , αk + xk). Hence,
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the parameters of the prior can be thought of as pseudo-counts;

i.e. the probability density function of a Dirichlet distribution returns

the belief that the probabilities of K rival events are pi given that each

event has been observed (αi − 1) times.

If, for example, we are given a sample of evolving structures which

has resulted in a matrix S, where an element sij represents the number

of structures which were in state θn
i

and evolved to state θn+1
j

, the

Dirichlet parameters for each row of the transition matrix will simply

be represented by a row of a matrix αi1, . . . , αik where an element

αij = sij + 1.

Even if an element sij of the sample matrix is equal to zero, the

corresponding element pij of the estimated transition matrix may be,

due to the statistical uncertainty, different from zero even though

it will be usually relatively small. Hence, special attention needs to

be paid for transition matrices where there is an impossibility that

the structure evolves from some specified states to other specified

states, as for example for the deterioration matrix which is usually

an upper triangular matrix due to the fact that usually the perfor-

mance of the structure cannot improve on its own without any main-

tenance action. For such matrices, the Dirichlet parameter vectors

must only include the elements αij for which a transition is possible,

and thus, they may have a lower dimension than the state space of

the structure.

Even though, the Dirichlet distribution is typically chosen as the

probability distribution for the rows of the transition matrices, one

can choose any other multivariate distribution that might seem suit-

able for particular problems. When the available estimation data is

given either in the form of estimates of the mean Ẽ(pij) and the vari-

ance Ṽar(pij), or in the form of an estimated mean value Ẽ(pij) and

a confidence interval I, a technique for the reparametrization of a

Dirichlet distribution is presented in Droesbeke, Fine, and Saporta

(2002, chap. 14).

Since the belief state vector vn+1 is equal to the matrix product

vn × T , where T is a random transition matrix, then vn+1 will also be a

random vector having a probability distribution.

5. Incorporating epistemic uncertainty in MDPs

A classical POMDP behaves like a classical deterministic MDP but

over the belief states instead of the exact states. In such a model, the

results of actions, degradations or inspections allow the probabilistic

outcomes in the original state space to have exact outcomes in the

belief state space (i.e. space of probability distributions). This is be-

cause the outcomes are belief states which are exactly defined and

expressed by probability vectors. If we extend the classical POMDP

model to the case of a probabilistic POMDP, i.e. making the POMDP

behave like a probabilistic MDP but over the belief states rather than

the exact states, then any result of action, degradation or inspection

will be a probabilistic distribution of the belief states. It is in this sec-

ond order probabilistic distribution that the epistemic uncertainty

will be integrated.

In order to calculate the optimal expected cost ∗c(vn) associated

with the belief state vn, the dynamic programming recursive pro-

cedure will call, at the beginning of stage n, for the minimum ex-

pected costs ∗c(vn+1|vn) calculated with the updated belief states at

the beginning of stage n + 1. To take into account the uncertainties

in estimating the matrices of actions, degradations and inspections, a

probabilistic POMDP must evaluate the expected value E[∗c(νn+1|νn)]
(rather than ∗c(vn+1|νn) which evaluates the optimal expected cost

of exactly updated belief states), knowing that the vector vn+1 has a

probability distribution over the belief state space at the beginning of

stage n + 1.

In our approach, the belief state vector vn+1|νn is considered as a

random vector. It is a function of the transition matrix rows which are
andom vectors having a known distribution (e.g. Dirichlet distribu-

ion). Consequently, the expected cost associated with the probability

istribution of νn+1|νn will be:

[∗c(νn+1|νn)] =
∫

statespace

∗c(νn+1|νn)× f (νn+1|νn) (5)

here f (·) is the probability distribution of the belief state νn+1|νn

esulting from epistemic uncertainties, and E[� ] is the mathematical

xpectation operator.

The minimum expected cost ∗c(vn+1|νn) in Eq. (5) is calculated

ecursively using a dynamic programming algorithm. As it can be

een from Eq. (5), the uncertainties in the transition matrices are

ccounted for by taking the expectation of the minimum expected

osts ∗c(νn+1|νn) over the probability density function f (νn+1|νn) of

he belief state νn+1|νn.

By using Eq. (5), we are applying the principle of separating the

pistemic and the aleatory uncertainties (Hofer, 1996) related to the

tate of the system during any of the future periods where the epis-

emic and the aleatory uncertainties are represented respectively by

(·)and (νn+1|νn). It should be emphasized here that once the system

as reached the time period n all the uncertainties related to the state

f the system are epistemic uncertainties since the system has one

xact true state which is unknown to the manager (Hofer, 1996).

A convenient approach which could be used for computing

q. (5) is the Monte Carlo simulation technique. A crucial concern

o deal with is the issue of additional computational complexity that

onte Carlo simulations would bring to the problem. Notice however

hat the dynamic programming framework alleviates drastically this

ifficulty as follows:

If we assume that the deterioration transition matrices Mj are

articular occurrences of a random variable M, and if one samples the

ransition matrix SNmax times for each stage, then the total number

f sampled states in stage i will be equal to SNmax power i ((SNmax)i).

f for example one samples the transition matrices for each stage

hree times, then the number of states sampled at the 20th stage

ill be 320.

We present in Fig. 1 the proposed algorithm for the case where

he deterioration transition matrix is uncertain (the cases where

he action and/or inspection matrices are uncertain are straightfor-

ard). The gray elements of the flowchart correspond to the added

onte Carlo simulations to the basic dynamic programming algo-

ithm. In the upper part of the flowchart of Fig. 1, we have four

ested loops:

(i) In the outer loop, the stage index i is decremented form the

end of the planning horizon (i = N) to time period (i = 1).

(ii) The second nested loop considers all the K possible belief states

ν i
k

of the ith stage.

(iii) The third nested loop considers all the amax alternative actions.

In this loop, we minimize the cost cs(vi
k

× Aa)+ ca(a)+ ∗cf

where ∗cf is the average optimal future cost; ca(a) is the cost

of the maintenance action a and cs(vi
k

× Aa) is the immediate

users cost due to the application of action a.

(iv) The inner loop corresponds to the sampling of the uncer-

tain transition matrix, the prescribed sampling number being

SNmax. At the end of this loop, we calculate the average of the

obtained optimal future costs ∗c(vi
k

× Aa × M).

Since there is only one belief state in the first stage, a specific

ampling loop is performed for that initial belief state in the lower

art of the algorithm.

As for the updating of the epistemic uncertainties, we adopt

he open-loop feedback control approach in the sense, that after

ach stage, in the case of the use of Dirichlet matrices, the pseudo-

ounts of these matrices are updated according to the results of the
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Fig. 1. Dynamic programming algorithm for uncertain deterioration matrix.
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pplied inspections to our structure and others of the same type

s well.

As for the sampling of the transition matrices, we believe that two

ases are relevant:

(i) A stationary uncertainty model: In this modeling the same set of

sampled matrices is used for every stage and state.

ii) A time varying uncertainty model: In such a modeling, a new set of

sampled matrices is used for each stage.

The first procedure corresponds to the case where there is only one

rue but unknown transition matrix for all the periods. The second

rocedure corresponds to the case where the epistemic uncertainty

manates from the influence of an unknown variable which affects

he evolution process and which is subject to variation with time; i.e.

here is a single known probability distribution from which a different

ransition matrix is true for each period. The methodology proposed

n this paper can be used for both cases.

As mentioned above, the underlying principle of the algorithm

escribed in this paragraph is also valid for the transition matrices

f the actions and the uncertainties matrices of the inspections in

GPOMDP framework. It should be emphasized here that a proba-

ilistic MDP solved by dynamic programming can be considered as

special GPOMDP for which the results of the actions are uncertain

ut for which we assume a single perfect inspection to be applied

or free at the beginning of all time periods. Therefore, the approach

or including epistemic uncertainty presented in this section can be

asily extended to probabilistic MDPs.
. Numerical application

Consider a highway concrete bridge whose deck is made of a single

oncrete slab; the herein data are for illustrative purposes only. We

uppose that the performance of the concrete deck is described using

ve states as may be shown from Table 1. In this table, the costs

s(aθi
n) are generally the sum of the costs incurred by the user of the

ridge due to malfunctioning of the deck along with the risk of failure

hich is expressed in monetary units and calculated as the product

f the failure probability of the deck by the costs generated by such a

ailure.

The stochastic deterioration of the deck is modeled by a Markov

hain with state space � = {θ1, θ2, θ3, θ4, θ5} having the following

ransition matrix:

=

θn+1
1 θn+1

2 θn+1
3 θn+1

4 θn+1
5

aθn
1 0.571 0.285 0.144 0 0

aθn
2 0 0.571 0.285 0.144 0

aθn
3 0 0 0.571 0.285 0.144

aθn
4 0 0 0 0.714 0.286

aθn
5 0 0 0 0 1

or this structure, four imperfect inspection techniques (i0, i1, i2, i3)

re available, where i0 means that no inspection is performed (i.e. we

ntirely rely on the prediction of the degradation model) and its cost

s nil. The cost of inspection technique i is 20 units and the cost of
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Table 1

Costs due to deck condition.

Condition of the deck Costs incurred during each stage due to the deck

condition, cs(aθi
n)

θ1 Very good condition 200 units

θ2 Good condition 600 units

θ3 Fairly good condition 1250 units

θ4 Poor condition 2000 units

θ5 Very poor condition 3500 units

Table 2

Conditional probability distribution of inspections results.

P(rk|θk
n
) Inspection technique r1 r2 r3 r4 r5

θn
1 i1 0.444 0.333 0.111 0.112 0.

i2 0.888 0.112 0. 0. 0.

i3 0.555 0.223 0.111 0.111 0.

θn
2 i1 0.222 0.444 0.222 0.112 0.

i2 0.1 0.8 0.1 0. 0.

i3 0.223 0.555 0.111 0.111 0.

θn
3 i1 0.1 0.2 0.4 0.2 0.1

i2 0. 0.111 0.777 0.112 0.

i3 0. 0.112 0.777 0.111 0.

θn
4 i1 0. 0.112 0.222 0.444 0.222

i2 0. 0.111 0.111 0.555 0.223

i3 0. 0. 0.1 0.8 0.1

θn
5 i1 0. 0.112 0.111 0.333 0.444

i2 0. 0.111 0.111 0.223 0.555

i3 0. 0. 0. 0.112 0.888
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inspection techniques i2 and i3 is 40 units each. For each inspection

technique we assume that there are k possible results rk (k = 1, . . . ,

5). The uncertainties associated with the results of the inspection

techniques i1, i2 and i3 are expressed by the probability distributions

shown in Table 2.

We assume that only four imperfect maintenance actions (a0, a1,

a2, a3) can be employed, where a0 means that no maintenance is

performed and its cost is nil. The cost of action a1 (preventive main-

tenance action) is 800 units, the cost of action a2 (corrective mainte-

nance action) is 800 and the cost of action a3 (replacement of the deck)

is 3000 units. The probabilities associated with the consequences of

the maintenance actions are expressed by the following matrices:

A0 =

aθn
1

aθn
2

aθn
3

aθn
4

aθn
5

θn
1 1 0 0 0 0

θn
2 0 1 0 0 0

θn
3 0 0 1 0 0

θn
4 0 0 0 1 0

θn
5 0 0 0 0 1

Transition matrix for action a0

A1 =

aθn
1

aθn
2

aθn
3

aθn
4

aθn
5

θn
1 1 0 0 0 0

θn
2 0.666 0.334 0 0 0

θn
3 0.4 0.4 0.2 0 0

θn
4 0 0.167 0.333 0.333 0.167

θn
5 0 0 0.285 0.285 0.43

Transition matrix for action a1
 I
2 =

aθn
1

aθn
2

aθn
3

aθn
4

aθn
5

θn
1 0.9 0.1 0 0 0

θn
2 0.142 0.716 0.142 0 0

θn
3 0.1 0.3 0.5 0.1 0

θn
4 0.4 0.3 0.2 0.1 0

θn
5 0.2 0.4 0.2 0.1 0.1

Transition matrix for action a2

3 =

aθn
1

aθn
2

aθn
3

aθn
4

aθn
5

θn
1 1 0 0 0 0

θn
2 1 0 0 0 0

θn
3 1 0 0 0 0

θn
4 1 0 0 0 0

θn
5 1 0 0 0 0

Transition matrix for action a3

he element aij in each of these matrices corresponds to the prob-

bility that the deck, which is initially in the state θn
i

(before the

aintenance action), will be after the application of the maintenance

ction in the state aθn
j

(the superscript “a” means that the state into

onsideration occurs immediately after the maintenance action be-

ore any degradation can take place).

We suppose that the initial belief state of the deck is v =
0.2 0.2 0.3 0.2 0.1

]
. The planning horizon is set to 14 years. The

ength of each time period is taken to be 2 years long and the dis-

ount rate is: α = 0.049.

We should mention that in this example we adopted a discretiza-

ion step of 1/15 in the [0, 1] interval of the probability space de-

cribing the belief states. Thus, since the original state space has five

ossible outcomes, the total number of belief states in each stage is

50,630. For each belief state and for each uncertain transition matrix,

onte Carlo sampling was done by randomly generating transition

atrices using Dirichlet distributions.

The results were computed using specialized GUI software for

POMDP that we have developed. It can be noted (see Figs. 2

nd 3) that the added complexity (that arises from considering the

pistemic uncertainty) to the original dynamic programming algo-

ithm is modest owing to the fast convergence of the solution when

ne increases the sampling size. For a sampling number greater than

0 the coefficient of variation of the estimated minimum expected

ost is smaller than 0.0006 with a quasi-constant value of this cost

8024 units).

The time required for a sampling number equal to 20 (for which

he COV was equal to 0.0006) was about 3 minutes on a core 2 duo

ntel computer, when considering the uncertainty of the deterioration

ransition matrix.

.1. Validation of the proposed methodology using a simulation analysis

Firstly, a simulation analysis is conducted in order to validate the

xpected costs calculated by our methodology against those obtained

y simulation under the assumption that the transition matrices are

ncertain. In a second stage, the simulated costs resulting from the

se of the IM&R strategies prescribed by our model (i.e. by consider-

ng the epistemic uncertainties) and the ones resulting from the IM&R

trategies prescribed by the classical POMDPs (i.e. without consider-

ng the epistemic uncertainties) are presented and discussed. The aim

s to show the great interest of considering the epistemic uncertain-

ies in the analysis. For this purpose, two sets of 100 simulations each

reducing thus the standard deviation by 1/
√

100 ) were executed:

n the first set, the IM&R strategy that is prescribed by the epistemic
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Fig. 2. Decrease of the coefficient of variation as the Monte Carlo sampling increases.

Fig. 3. Convergence of the solution as the Monte Carlo sampling increases.
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ncertainty approach presented in this paper was applied; while,

n the second set, the IM&R strategy that is prescribed by classical

OMDP calculations (i.e. without epistemic uncertainty) was applied.

n inspection-action scheme where the degradation process is sub-

ect to epistemic uncertainty (with an available sample size n = 49)

as considered in the analysis. At the beginning of each time period,

n adjusted degradation transition matrix was randomly generated

rom the Dirichlet matrix. Then, using the generated matrix, we ran-

omly generate the evolution of the state of the deck by sampling

he multinomial distributions which are the rows of the generated

atrix. Using Bayes equation, the results of the inspections were also

andomly generated based on the belief state of the deck and the

ncertainty characterization of the inspection techniques (Table 2).

Although such a simulation is adequate for evaluating specified

M&R strategies, it is not feasible to use it in searching for opti-
al strategies. This is due to the daunting computational complexity

hich may arise from such a brute force searching algorithm.

.1.1. Validation in terms of the computed costs

By applying the IM&R strategy obtained using the approach pre-

ented in this paper (which takes into account the epistemic uncer-

ainties), the simulation analysis has led to an average simulated cost

f 6560 units and a standard deviation of 700 units. This cost is to be

ompared to the calculated expected cost (6380) which was obtained

sing the methodology presented in this paper. The little discrepancy

etween the two costs is clearly due to the statistical uncertainty re-

ated to the limited sample size. A perfect matching would require

heoretically an infinite sample size. These findings confirm the accu-

acy of the results obtained by applying the proposed methodology.
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Table 3

Number of structures in each state at two consecutive inspections.

Sample size θn+1
1 θn+1

2 θn+1
3 θn+1

4 θn+1
5

aθn
1 49 5 3 2 1 1

151 17 9 5 1 1

1375 161 81 41 1 1

aθn
2 49 0 5 3 2 1

151 0 17 9 5 1

1375 0 161 81 41 1

aθn
3 49 0 0 5 3 2

151 0 0 17 9 5

1375 0 0 161 81 41

aθn
4 49 0 0 0 6 3

151 0 0 0 21 9

1375 0 0 0 201 81

aθn
5 49 0 0 0 0 7

151 0 0 0 0 25

1375 0 0 0 0 241
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6.1.2. Efficiency of the IM&R strategies prescribed by the proposed

methodology

The IM&R strategy prescribed by standard POMDPs (i.e. obtained

without considering epistemic uncertainties) has led to an average

simulated cost of 7340 units (the calculated expected cost using stan-

dard POMDP is 5410) and a standard deviation of 1100 units. The

significant discrepancy between the simulated cost and the POMDP

cost will be explained later in this section.

These results show that while algorithmic calculation of classical

POMDPs gives costs that are lower than those given by our approach

(5410 vs 6380), the application of IM&R strategies that were obtained

using classical POMDP results in actual costs that are much higher

than those incurred by applying the results prescribed by our ap-

proach (7340 vs 6560). Hence, one can conclude that ignoring epis-

temic uncertainty in the present case will result in a 11.89 percent

increase in the actual IM&R costs.

It should be remembered here the fact that both simulations (us-

ing IM&R strategies obtained respectively by classical POMDPS and

our approach) were conducted under the assumption that the true

deterioration matrix is not known precisely (i.e. there is epistemic
Table 4

Expected costs as a function of sample size used to estimate the deterioration model.

Scheme Small sample size (49) M

Time period 1 expected direct cost Action alone 0 8

Inspection-action 564 5

Time period 2 expected direct cost Action alone 799 2

Inspection-action 503 4

Time period 3 expected direct cost Action alone 507 5

Inspection-action 517 4

Time period 4 expected direct cost Action alone 574 4

Inspection-action 520 4

Time period 5 expected direct cost Action alone 567 4

Inspection-action 521 4

Time period 6 expected direct cost Action alone 668 6

Inspection-action 513 4

Time period 7 expected direct cost Action alone 307

Inspection-action 304 1

Total expected cost Action alone 7996 74

Inspection-action 6380 56

Optimal action during the first stage Action alone a1 a3

Inspection-action i4 i3
ncertainty). This explains the significant bias between the simulated

ost and the POMDP calculated cost for the strategy prescribed by the

OMDP. The high cost resulting from applying the IM&R strategy pre-

cribed by classical POMDPs is due to the discrepancy between the

ssumptions with the simulated reality since dynamic programming

n classical POMDP assumes a precisely known deterioration matrix.

otice also that the standard deviation obtained by using the pro-

osed approach is significantly smaller than that obtained by using

OMDPs without considering epistemic uncertainties (700 vs 1100).

.2. Sensitivity analysis

Calculations were made in this section in the cases where the

irichlet distributions for the deterioration transition matrix were

enerated from a small size sample, medium size sample, and large

ize sample (Table 3). Optimal strategies and minimum total expected

osts for action-alone scheme and inspection-action scheme (Table 4)

re computed for these different sample sizes. Since we are presuming

hat the epistemic uncertainties emanates from the limited available

ample size, we assume in this example the stationary uncertainty

odel. We are thus assuming that there is one true transition matrix,

hich we do not know exactly.

It can be noted (see Table 4) that the more the epistemic uncer-

ainty is large (smaller sample size) the higher the minimum ex-

ected costs will be. Obviously, not considering epistemic uncer-

ainty is equivalent to assuming an infinite sample size. Note that

he costs (7300 units for the action alone scheme and 5410 units for

he inspection-action scheme) for that case are the smallest ones.

oreover, the optimal maintenance actions and prescribed inspec-

ion techniques, for a given initial belief state, are different for each

ample size.

Similar calculations are performed for the cases where the ma-

rices related to the maintenance actions and inspection techniques

ere estimated from samples of varying size for the case of an action-

nspection scheme (Fig. 4). From this figure, it can be seen that the

dditional expected cost (due to the joint consideration of epistemic

ncertainty for maintenance actions, inspections and degradation)

ith respect to the case where the epistemic uncertainties are not

resent (i.e. the case of an infinite sample size) is lower than the sum

f additional expected costs due to each of these epistemic uncertain-

ies considered separately. For example, for the case of a sample of
edium sample size (151) Large sample size (1375) Non epistemic uncertainty

00 800 800

00 547 564

18 469 419

40 474 493

56 441 588

14 464 464

47 564 545

16 407 425

23 332 324

16 390 380

03 676 666

10 379 365

49 4 3

74 125 100

40 7309 7300

57 5498 5410

a3 a3

i4 i4
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Fig. 4. Effect of sample size on the minimum expected cost.

Fig. 5. Effect of sample size for degradation on the minimum expected cost.
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nit size (n = 49 i.e. 1 on the log2 scale), the additional expected cost

ue to the joint consideration of epistemic uncertainty for mainte-

ance actions, inspections and degradation is equal to (8024 − 5410 =
614 units). This cost is lower than the sum of additional expected

osts due to each of these epistemic uncertainties considered sep-

rately, i.e. (7448 − 5410) + (6055 − 5410) + (6013 − 5410) =
286 units.

In Fig. 5, the results corresponding to the probabilistic epistemic

ncertainty are presented for the cases where the degradation transi-

ion matrices are generated with and without taking into account the

hysical impossibility to have non-zero elements below the diagonal

cf. Section 4). As one would expect, using an adjusted deterioration

ransition matrix results in a higher total expected cost. Hence, the
robability distributions resulting from Dirichlet matrices (pseudo-

ounts) can and must be modified when additional information rela-

ive to the evolution process is available.

The preceding results (Table 4, Figs. 4 and 5) show the large influ-

nce of the epistemic uncertainties on the minimum expected total

ost. This fact underlines the importance of considering such kind of

nformation in the optimization process. Special care should therefore

e given to identify the epistemic uncertainty model.

. Conclusion

The use of Markov Decision Processes requires the estimation of

ransition matrices to describe the stochastic deterioration process,
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the imperfect maintenance actions and the imperfect inspection tech-

niques. Such estimations are affected by high level of uncertainties,

due to the lack of data and to uncertain and fuzzy expert judgments.

We proposed in this paper a methodology for including all available

information related to the epistemic uncertainty shrouding the true

values of the transition matrices in the decision process of a finite

horizon MDP. The use of Dirichlet distributions to model the uncer-

tainty of the estimated transition matrices was shown to be a nat-

ural choice which answers much of the drawbacks exhibited by the

point estimation procedures found in the literature. We showed how

the dynamic programming framework reduces drastically the added

computational complexity that Monte Carlo simulations would bring

to the problem. A simulation analysis was conducted in order to vali-

date the expected costs calculated by our methodology against those

obtained by simulation under the assumption that the transition ma-

trices are uncertain. The simulated costs resulting from the use of

the IM&R strategies prescribed by our model and the ones result-

ing from the IM&R strategies prescribed by the classical POMDPs (i.e.

without considering the epistemic uncertainties) were presented and

discussed. In Appendices A.1 and A.2, we treated the problems of data

gathering using: (i) imperfect inspections; (ii) inspections at unequal

time intervals. A numerical application is presented to highlight the

impact of including epistemic uncertainties in POMDPs on the esti-

mated expected costs, and naturally on the optimal strategies. It is

shown that the use of all the information available to the manager

(from historical data for example) will lead to more realistic expected

life cycle costs, and will lead consequently to more appropriate de-

cisions concerning the maintenance and/or the inspection of then

asset.

Appendix A

The estimation of the transition matrices used by a POMDP for

IM&R optimization of civil engineering structures usually relies on

historical data gathered by the managers of these structures during

periodic inspections or non-periodic inspections, such as those pre-

scribed by a GPOMDP. Hence, these inspections are performed at time

intervals having lengths which might differ from that of a single time

period of the POMDP (as assumed in Section 4), and are in general

imperfect, in the sense that given the true state of the structure, their

results are characterized by probability distributions. In the following

two subsections, these concerns are addressed.

A.1. Inspections at different time intervals

As stated in Section 4 , if data is available on the true state of

several structures at the beginning of two consecutive time periods,

then this data is readily used as pseudo-counts which form the ele-

ments of the Dirichlet matrices (matrices having the parameters of

Dirichlet distributions as rows). In Section 5 , we stated that, in order

to compute the expected value of ∗c(vn+1), Monte Carlo sampling is

convenient. In other terms, the Dirichlet matrices are first used to

generate several transition matrices. Then, these transition matrices

are used to compute several updated belief states vn+1 in order to

evaluate the mean value of the associated cost. If the data is available

on the true state of several structures at the beginning of two non-

consecutive time periods which are p time periods apart; then, this

data can be used to determine a Dirichlet matrix which can be used to

generate several transition matrices for use in Monte Carlo sampling.

However, these matrices describe the evolution of the system during

a time length of p periods, and thus, cannot be used directly in our

model. A direct consequence of Chapman–Kolmogorov equations is

that the transition matrix of a Markov process for a time length of p

periods is simply the matrix product of p transition matrices for one

time period. Hence, after being generated from the Dirichlet matrix,
he pth roots of each matrix are calculated in order to use them in our

odel.

In practice, the available data originates from inspections per-

ormed at varying time interval. In such case, the matrices intended

o be used for Monte-Carlo sampling have to be generated from a

ixture of Dirichlet matrices. The weight assigned to each of these

irichlet matrices in such a mixture can be chosen to be propor-

ional to the relative size of the collection of the associated inspection

esults.

.2. Imperfect inspections

The data used by the manager of a civil engineering structure, usu-

lly originates from imperfect inspection techniques. The uncertainty

ertaining to the results of these inspections are usually character-

zed by conditional probability distributions. Using Bayes equation,

e can derive the conditional probability distribution Pr[θn
k
|r, i] of

he state of the structure given the inspection technique i and the re-

ult r. Hence, if we ignore completely the state of the structure at the

ime of the first inspection, getting a result p from an inspection tech-

ique i1 will allow us to calculate an exactly defined belief state
p
i1
ν .

s for the belief state vector of the structure at the next inspection,

wo cases must be considered:

1 A prior model of the degradation process is available to the

manager (this model can either take the form of a transition

matrix or be a continuous time deterioration model which can

be translated into a transition matrix (Mishalani & Madanat,

2002). In this case, the belief state
q
i2
ν of the structure after

the second inspection i2 will be a Bayesian update of the belief

state vector
(

p
i1
ν × M

)
based on the result q of the inspection

i2, where M is the deterioration transition matrix.

2 Non prior model of degradation is available and the manager

is building his first Dirichlet matrix, or he is simply adding

pseudo-counts to an already existing Dirichlet matrix; i.e. he

is updating his belief about the probability distributions of the

multinomial parameters present in the transition matrix in a

Bayesian fashion since the rows of the Dirichlet matrix are

the natural conjugates of the multinomial distributions in the

transition matrix. In this case,
q
i2
ν will be calculated as

p
i1
ν; i.e.

calculated solely based on the result q of the inspection i2.

Consequently, the probability that a certain structure has evolved

rom a true state θh to a true state θl between two consecutive inspec-

ions i1 and i2 which yielded the results p and q respectively, will be

= p
i1
ν[h] × q

i2
ν[l].

Therefore, if the numbers of structures oij (inspected by inspection

1, then by inspection i2 at a later stage), which were observed in state

i and evolved to the observed state rj, are organized in a square matrix

, the matrix S of Section 4 can be estimated using the following

elation for each of its elements:

hl =
∑

p

∑
q

opq × p
i1
ν[h] × q

i2
ν[l].
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