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Abstract

General preventive maintenance model for input components of a system, which improves the reliability to ‘as good as new,’ was used to

optimize the maintenance cost. The cost function of a maintenance policy was minimized under given availability constraint. An algorithm

for first inspection vector of times was described and used on selected system example. A special ratio-criterion, based on the time dependent

Birnbaum importance factor, was used to generate the ordered sequence of first inspection times. Basic system availability calculations of the

paper were done by using simulation approach with parallel simulation algorithm for availability analysis. These calculations, based on direct

Monte Carlo technique, were applied within the programming tool Matlab. A genetic algorithm optimization technique was used and briefly

described to create the Matlab’s algorithm to solve the problem of finding the best maintenance policy with a given restriction. Adjacent

problem, which we called ‘reliability assurance,’ was also theoretically solved, concerning the increase of the cost when asymptotic

availability value conforms to a given availability constraint.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The evolution of system reliability depends on its

structure as well as on the evolution of the reliability of

its elements. The latter is a function of the element age on a

system’s operating life. Element ageing is strongly affected

by maintenance activities performed on the system.

Preventive maintenance (PM) consists of actions that

improve the condition of system elements before they fail.

PM actions such as the replacement of an element by a new

one, cleaning, adjustment, etc. either return the element to

its initial condition and the element becomes ‘as good as

new’ or reduce the age of the element. In some cases, the

PM activity does not affect the state of the element but

ensures that the element is in operating condition. In this

case the element remains ‘as bad as old.’

Optimizing the policy of preliminary planned PM

actions is the subject of much research activities. In

the past, the economic aspects of preventive and corrective

maintenance have been extensively studied for monitored

components in which failures are immediately detected and

subsequently repaired. Far less attention has been paid to the

economics of systems in which failures are dormant and

detected only by periodic testing or inspections. Such

systems are especially common in industrial safety and

protection systems. For these kind of systems, both the

availability evaluation models and the cost factors assess-

ment differ considerably from those of monitored com-

ponents [1].

This paper develops availability and cost models for

systems with periodically inspected and maintained com-

ponents subjected to some maintenance strategy.

The aim of our research is to optimize, for each

component of a system, the maintenance policy minimizing

the cost function, with respect to the availability constraint

such as AðtÞ $ A0; for all t; 0 , t # TM; and a given mission

time TM:

A genetic algorithm (GA) is used as an optimization

technique. GA is used to solve the above-mentioned
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problem, i.e. to find the best maintenance policy using a

simulation approach to assess the availability of the studied

system. The solution comprises both the availability and the

cost evaluation.

Properties of the applied simulation program were

intensively studied in Ref. [2]. The Matlab program was

also successfully used in Ref. [3] for the reliability and

availability optimization based on design of a Distri-

bution Area System under Maintenance. New improve-

ments of the simulation program focused on enhancing

of computational efficiency were implemented into the

program recently, including, e.g. a parallel computing

algorithm.

A similar optimization problem applied on series–

parallel multi-state system was studied in Ref. [4] taking

into account imperfect component PM actions. This

model uses universal z-transform for reliability calcu-

lations (universal moment generating function)

but the duration of the PM activity is neglected. In

Ref. [4], the optimization procedure is also based on a

heuristic GA. We propose in this paper to study the

example from Ref. [4] and others to prove the efficiency

of our model.

This introduction is followed by seven sections, which

present successively the PM model for general series–

parallel systems, the problem formulation, the availability

calculation based on simulation technique and analytic

solution of the adjacent problem, the cost optimization

technique (GA), the results and illustrative data, the

result comments and a conclusion.

Notations.

WRV worst reliability value

N total number of components

T0 ¼ ðT0ð1Þ;T0ð2Þ;…; T0ðNÞÞ first inspection time vector

Tord
0 ¼ ðT ð1Þ

0 ; T ð2Þ
0 ;…;T ðNÞ

0 Þ ordered first inspection time

vector; T ð1Þ
0 # T ð2Þ

0 # · · · # T ðNÞ
0

TP ¼ ðTPð1Þ;TPð2Þ;…;TPðNÞÞ solution vector of system

component inspection periods

TM mission time

Cðeði; kÞÞ cost of one inspection of ith component in the kth

parallel subsystem

AðtÞ system availability at the time t

A0 availability constraint—lower limit

2. Preventive maintenance model for general

series–parallel systems

2.1. Maintenance model for basic components

In the paper we will assume that the PM actions improve

the reliability of basic component to as good as new. It

means that the component’s age is restored to zero. The

model is demonstrated in Fig. 1, where TF is random time to

failure. Each TF is demarcated by two conversely oriented

arrows, identically with inspection periods TP:

The problem to find the optimal vector TP is closely

connected with another problem, i.e. to find the optimal

first inspection time vector T0: Of course, it makes no

sense to carry out inspections in the beginning of the life

of a system, when both the system and its basic

components are very reliable. Consequently, the prelimi-

nary calculations must be realized to find the optimal T0

for each of basic components. The optimal vector T0 must

be constructed so that it takes into account both cost and

reliability view.

2.2. General series–parallel structure

Optimal PM plan is found for a general series–parallel

structure that is shown in Fig. 2.

2.3. Cost model

Cost of the above-mentioned PM policy of a given

system is simply given by summarizing each of the PM

inspections done on the components that are under

maintenance

CPM ¼
XK
k¼1

XEk

i¼1

Xneði;kÞ

j¼1

Cjðeði; kÞÞ:

neði;kÞ represents the total number of inspections of the ith

component in the kth parallel subsystem in the course of

mission time;

Cjðeði; kÞÞ is the cost of the jth inspection of the ith

component in kth parallel subsystem;

Ek is the number of components in given kth parallel

subsystem;

K is the number of parallel subsystems;

Fig. 1. PM model for periodically tested elements.
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N ¼
PK

k¼1

PEk

i¼1 eði; kÞ is the total number of

components.

In most cases, the cost of inspection of a basic component

is constant in the course of mission time, i.e.

CPMðeði; kÞÞ ¼
Xneði;kÞ

j¼1

Cjðeði; kÞÞ ¼ neði;kÞ £ Cðeði; kÞ;

where Cðeði; kÞÞ is the cost of one inspection of the ith

component in kth parallel subsystem.

neði;kÞ ¼ 1 þ
TMðeði; kÞÞ2 T0ðeði; kÞÞ

TPðeði; kÞÞ

� �

is the integer part of the fraction, and TM; T0; TP are,

respectively, mission time, first inspection time and

inspection period of a given component.

3. Problem formulation

Basic assumptions of this paper are as follows:

1. A system consisting of subsystems connected in series is

considered, Fig. 2. Each subsystem contains different

components connected in parallel. Each component is

characterized by its failure rate function hjðtÞ; and PM

cost of one inspection; Cðeði; kÞÞ is cost of one inspection

of the ith component worked in kth parallel subsystem.

2. Testing actions or inspections are carried out periodically

for jth basic component with the period of TPðjÞ:

Inspections are ideal, which means that the component

is renewed-model as good as new is assumed. The

inspection of the jth component begins at the time T0ðjÞ:

3. The time in which a component is not available due to

PM activity is negligible if compared to the time elapsed

between consecutive activities.

The aim of the research is to optimize, for each

component of a system, the maintenance policy minimizing

the cost function CPM and respecting the availability

constraint AðtÞ $ A0; for all t; 0 , t # TM; and a given

mission time TM: Consequently, we have to find optimal,

cost minimizing vectors TP ¼ ðTPð1Þ; TPð2Þ;…; TPðNÞÞ; and

T0 ¼ ðT0ð1Þ;T0ð2Þ;…; T0ðNÞÞ; under given availability

constraint.

4. Availability calculation based on simulation technique

and analytic solution of the adjacent problem

4.1. Availability calculation based on simulation technique

Basic availability calculations of the paper were done

by using simulation technique. In fact, the technique is

employed when analytical techniques have failed to

provide a satisfactory mathematical model or defy

solution of the problem in closed form or the solution

becomes unwieldy. The principle behind the simulation

technique is relatively simple and easy to apply. However,

the common real time simulation techniques are slow and

take a lot of time to provide accurate results. Never-

theless, this technique is the only practical method of

carrying out reliability studies, particularly when system is

maintained and arbitrary failure and repair distributions

are used or some special repair or maintenance strategy is

prescribed.

Availability assessment method applied in the paper is

based on the simulation program firstly used and tested in

Ref. [2]. Many improvements of the program have been

done recently, as e.g. parallel version. The parallel version

of the simulation algorithm brings many improvements of

the basic direct simulation technique, resulting in higher

computational efficiency. Oriented Acyclic Graph, com-

posed from nodes and edges, was used as a system

representation. The parallel simulation technique is based

on construction of a special Course Of Life (COL) sequence

of transformed transition times subjected to a part of

Acyclic Graph. Consequently, the corresponding part of

Acyclic Graph could be effectively evaluated from

reliability point of view. Large variety of maintenance

strategy applied on basic components is allowed using the

algorithm. Flexibility and good computational properties

of the program made us decide to use the program within

the analysis.

4.2. Analytic calculation of availability to solve adjacent

problem

4.2.1. Basic concepts from the reliability theory

Consider structures capable of two states of performance,

either complete success in accomplishing an assigned

function or complete failure to function. Similarly, the

components from which the structures are constructed are

assumed capable of only the same two states of perform-

ance. The performance of the structure is represented by an

indicator w; which is given the value 1 when the system

functions and 0 when the system fails. The performance of

each of the n components in the structure is similarly

represented by an indicator xi; which takes the value 1 if the

ith component is functioning and 0 if ith component is failed

ði ¼ 1; 2;…;NÞ:

It is assumed that the performance of a structure

depends deterministically on the performance of

Fig. 2. General series–parallel structure.
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the components which is characterized by the function w of

x ¼ ðx1; x2;…; xNÞ; wðxÞ is called the structure function of

the structure [5].

For structures in which each component if functioning

contributes to the functioning of the structure, certain

hypotheses appear intuitively acceptable:

(i) wð1Þ ¼ 1; where 1 ¼ ð1; 1;…; 1Þ;

(ii) wð0Þ ¼ 0; where 0 ¼ ð0; 0;…; 0Þ;

(iii) wðxÞ $ wðyÞ whenever xi $ yi; ;i ¼ 1; 2;…;N:

Hypothesis (i) states that if all the components function,

the structure functions. Hypothesis (ii) states that if all the

components fail, the structure fails. Finally, hypothesis (iii)

states that functioning components do not interfere with the

functioning of the structure. Structures satisfying (i), (ii),

and (iii) are called coherent. Sometimes the monotonic

term is also used since such structures are characterized

by a monotonic structure function which is equal to 0 at 0

and 1 at 1.

Assuming a probability distribution for the performance

of the components, we obtain the availability of the ith

component as follows

pi ¼ P½Xi ¼ 1� ¼ E½Xi�;

where Xi is the binary random variable designating the state

of component i (this expression is the reliability with the

same Xi but conditioned to the component has not failed).

The availability (reliability for non-repairable systems)

of the structure is

h ¼ P½wðXÞ ¼ 1� ¼ E½wðXÞ�:

The structure function now becomes a binary random

variable. When components perform independently, we

may write h ¼ hðpÞ; where p ¼ ðp1; p2;…; pNÞ; hðpÞ is

called reliability function of the structure.

4.2.2. Application to the adjacent problem to be solved

Let us suppose the system from Fig. 2, which is no

doubt of coherent structure. The components of the

system have exponentially distributed failures and are

periodically inspected. The inspections of jth component

are carried out periodically at the times given by the

period TPðjÞ: They are ideal, which means that each

inspected component is renewed. Worst case from

reliability point of view is the moment when the

inspection times of all components will meet in one

time point. Let us call the point as a worst point, which

assigns the system a worst reliability value (WRV).

Theorem. Let us assume a coherent system with randomly

generated periods of inspection TPðjÞ: Apparently, the

availability of the system ASðtÞ satisfies the condition:

ASðtÞ $ WRV: Then the minimum value of system avail-

ability min ASðtÞ; converges for time going to infinity, to

a value greater or equal then WRV, which is given as

follows

lim
t!1

min
ð0;tl

ASðtÞ

� �
$ WRV:

WRV ¼ hðAÞ; A ¼ ðA1;A2;…;ANÞ; where

Aj ¼ exp 2
TPðjÞ

MTTFðjÞ

� �

is the availability of the jth component at the end of its

inspection period TPðjÞ; j ¼ 1;…;N:

Proof. For component availabilities AiðtÞ must be valid

AiðtÞ $ Ai for ;i ¼ 1; 2;…;N:

From coherent property (iii) follows that ASðtÞ $ WRV; so

that ASðtÞ $ minð0;tl ASðtÞ $ WRV and theorem is proved

for t !1:

If we assume rational periods TPðjÞ ¼ mj=nj; j ¼ 1;…;N;

where mj; nj are natural, then equality in the theorem is

valid. Generally, we have to prove the following statement

ð;1 . 0Þð’ a [ RÞð;taÞðjmin
ð0;tl

ASðtÞ2 WRV a 1j Þ:

If we find such t0 for which minð0;t0l ASðt0Þ ¼ WRV; then the

statement is valid.

From given assumptions, it is easy to find t0 and natural

multipliers kj of periods TPðjÞ; to satisfy the equation

k1TPð1Þ ¼ k2TPð2Þ ¼ · · · ¼ kNTPðNÞ ¼ t0:

We have t0 ¼
QN

i¼1 mi and kj ¼ nj

QN
i¼1;i–j mi; j ¼ 1;…;N:

For ;1. 0 we assign a ¼ t0:

Answering the adjacent question, we try to find the optimal

vectors TP ¼ ðTPð1Þ;TPð2Þ;…; TPðNÞÞ; and T0 ¼ ðT0ð1Þ;

T0ð2Þ;…;T0ðNÞÞ; minimizing cost function CPM; and

respecting the availability constraint such as WRV $ A0:

Cost is minimized within given mission time TM:

Analytical Matlab program for computing the WRV value

of any coherent system was completed and successfully

used within the research. Consequently, we are not limited

by the series–parallel structure and analysis can be done as

well as for a general system from practice. A

4.3. Finding the optimal first inspection time vector T0

Naturally, the problem of finding the optimal vector TP is

closely connected with another problem, namely the finding

of vector T0 which represents the beginning of inspections

of each basic component, i.e. the vector of first inspection

times. We will not carry out inspections in the beginning of

the life of a component, when the component is very

reliable. Consequently, the preliminary calculations must be

realized to find the optimal vector T0: The starting point for

the finding of T0 is based on the idea that only such

intervention into the system must be made, i.e. maximally

R. Bris et al. / Reliability Engineering and System Safety 82 (2003) 247–255250



effective from both reliability and cost point of view.

Measure of efficiency is more or less subjective question

and in many situations in practice may be dependent on

concrete reliability data files. For the research we decided to

use the time dependent ratio-criterion of efficiency that is

defined as follows

min{RjðtÞlj ¼ 1;…;N}; RjðtÞ ¼
CðjÞ

IFB
j ðtÞ

;

where

CðjÞ is cost of one inspection of jth component;

IFB
j ðtÞ is Birnbaum’s measure of importance of jth

component at time t (e.g. definition in Ref. [5]).

Actually, the Birnbaum’s importance measure provides

the probability that the system is in a state in which the

functioning of component j is critical to system failure. The

system fails when jth component fails.

For given time point, we obtain number of the

component, inspection of which is optimal, i.e. for which

the ratio-criterion defined above is minimal.

The following procedure determines the vector

T0 ¼ ðT0ð1Þ;T0ð2Þ;…; T0ðNÞÞ:

Step 1

Calculate dependence on availability of given system on

time for mission time TM; supposing no maintenance; i ¼ 1;

T0 ¼ ðþ1;þ1;…;þ1Þ:

Step 2

Obtain the time point ti in which the system availability

value A0 is reached.

Step 3

If ti , TM; then ti is ith component of ordered first

inspection time vector Tord
0 ; T ðiÞ

0 ¼ ti; Tord
0 ¼

ðT ð1Þ
0 ;T ð2Þ

0 ;…;T ðNÞ
0 Þ:

Step 4

Determine component No. of j; using the above-mentioned

ratio-criterion applied in the time ti; 1 # j # N: Then

T0ðjÞ ¼ T ðiÞ
0 ¼ ti:

Step 5

Recalculate dependence on availability of the system on

time under the maintenance actions given by first inspection

times of all relevant components in all time points T ðkÞ
0 ¼ tk;

k ¼ 1;…; i:

Step 6

i ¼ i þ 1; i # N; return to Step 2.

Using the procedure we obtain full vector T0: However,

in some cases there is no necessary to use all components of

the vector. That is just in the case when repeating

inspections of one or more system components brings

more effective way, under the given criterion, to satisfy

given availability constraint A0: Consequently in such cases,

it is necessary to select those elements that will be

maintained. Final decision about system interventions

must be made in good accordance with given cost matrix.

5. Cost optimization technique

The GAs were developed by John Holland in 1967 [6–8]

at the Michigan University. The implementation of the GA

consists to create an initial population with given size

(number of individuals). Then by a selection process similar

to that of the natural selection, which is defined by an

adaptation function, the second step is to select the

individuals who will be crossed. These individuals are

represented by a chromosome in the GA. Then a current

population is created by crossing of the individuals. The

passage from a current population to another is called

generation. For each generation, the algorithm keeps the

individual with the best criterion value. The coding and the

construction of the chromosome, representing the individual

in the population, is the most important step of the

algorithm.

The general structure of the GA according to Davis [6] is

as follows.

Step 1

Initialization of the chromosomes population.

Step 2

Evaluation of each chromosome of the population.

Step 3

Creation of new chromosomes using crossing and mutation

operators.

Step 4

Evaluation of the new chromosomes.

Step 5

Removing of the not selected chromosomes.

The last step is the final stop test (one considers, e.g. the

iteration count or the no improvement of the solution value

on a certain iteration count, etc.). If the test is not verified,

go to Step 3.

5.1. Solution coding

We adopted the direct coding, i.e. the chromosome gives

directly information about the problem solution. Each

chromosome is composed of subchromosomes. The genes

of these chromosomes are the durations between two

maintenance interventions for each component in the

system. It is real number randomly selected in the interval

[LB, UB] according to a uniform distribution (LB is the

lower bound and UB the upper bound).

The initial population, composed of N individuals, is

built using the previous presented algorithm (Section 4.3).

At first, we calculate an inspection time vector T0:
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5.2. Reproduction (selection method)

The reproduction process consists of selecting the

population elements ready to reproduce by evaluating

their force, i.e. the ready ones are the strongest. This

evaluation is based on an adaptation function ðGÞ; which is

the objective function in the case of maximization without

constraint. In the case of problems with constraints, we have

to assure the feasibility of the solution before calculating the

objective function. For the minimization problem,

the adaptation function used is G0; G0 ¼ Cst 2 G; G being

the adaptation function for maximization problem. The

constant Cst, is selected so that the quantity G0 remains

always positive. From a generation to another we sort all the

individuals, in the intermediate generation, and choose the

N best ones.

5.3. The crossing method

The crossing is the genetic operator that allows, starting

from two individuals of a given generation, to create one or

more other individuals of the following generation.

We choose randomly to be crossed, with a probability of

pc $ 0:7 (called crossover probability), N=2 couples of

individuals.

Among the variety of crossover operators, we adopt

those produce from each crossing two children. This

operator is generally called 1X. This crossover operator

consists of generating randomly a point, called crossover

point, and combines the different parts of the parent

chromosomes to construct the children ones.

5.4. The mutation method

The purpose of the mutation is to bring diversity among

genes. The mutation, contrary to the crossing, should

not be too often applied because good genes in the

individuals might be lost. The mutation probability adopted

is Pm # 0:07:

It consists in modifying a part of gene in a random way.

This modification consists in permuting between two genes

chosen randomly for each selected chromosome.

5.5. The population size and the generations number (stop

conditions)

The size of the population was fixed at N ¼ 50: It appears

that, if this size is too low, there will be risk to obtain not

enough varied solutions by the individual crossing. With

regard to the number of generations, we started from the

value of 100. Performing many control tests, we decided

finally to fix the value to 2000. At the end of 2000

consecutive generations, the algorithm stops.

6. Results and illustrative data

Consider a series–parallel system consisting of four

parallel subsystems connected in series, Fig. 2. The system

contains 11 basic components with different reliability and

PM cost data. The reliability of each component is defined

by an exponential distribution with the failure rate l0 ¼ 1=

MTTF presented in Table 1. This table also contains the PM

cost Cðeði; kÞÞ of each component. The basic data are

exponential modification of those Weibull data presented in

Ref. [4].

6.1. Calculations for the mission time TM ¼ 25 years

6.1.1. Availability constraint AðtÞ $ A0; A0 ¼ 0:9

Obtained solution: the component Nos 1, 2, 4, 7, 8, 9, 10

are not maintained (Table 2). The dependence on avail-

ability of time is demonstrated in Fig. 3.

Comparisons:

† If we continue development, the first inspection time

vector without GA optimization we obtain T0 ¼

ð22; 22; 18; 24:5; 14; 9:5;1; 20; 24:5; 20; 12Þ; the cost of

which is CPM ¼ 91:6:

If we use the structural importance of jth

component [5], in place of Birnbaum’s measure of

importance at time t; trying to find the optimal first

inspection time vector T0; we obtain T0 ¼

ð9:5; 11; 11; 11; 21; 16; 11; 11; 11; 11:5; 14:5Þ; the cost

of which is CPM ¼ 98:1: This policy satisfies

the constraint AðtÞ $ 0:9 during given mission time,

without GA optimization.

Table 1

Parameters of system components

No. of component Probability distribution MTTF ¼ 1=l0

(years)

Cðeði; kÞÞ

1 Exp 12.059 4.1

2 Exp 12.059 4.1

3 Exp 12.2062 4.1

4 Exp 2.014 5.5

5 Exp 66.6667 14.2

6 Exp 191.5197 19.0

7 Exp 63.5146 6.5

8 Exp 438.5965 6.2

9 Exp 176.0426 5.4

10 Exp 13.9802 14

11 Exp 167.484 14

Table 2

The best cost CPM obtained with the first inspection times and system

component inspection periods ðAðtÞ $ A0; A0 ¼ 0:9; TM ¼ 25 years

No. of component 3 5 6 11

TP 8.79 12.64 10.83 10.82

T0 18 14 9.5 12

CPM 84.3
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6.1.2. Availability constraint WRV $ A0; A0 ¼ 0:9

Obtained solution: the basic component Nos. 1, 2, 4, 7, 9,

10 are not maintained (Table 3).

6.2. Calculations for the long-term mission time

TM ¼ 50 years

6.2.1. Availability constraint AðtÞ $ A0; A0 ¼ 0:9

Obtained solution: the basic component Nos. 1, 2, 4, 7, 9,

10 are not maintained (Table 4). The dependence on

availability of time is demonstrated in Fig. 4.

Comparisons:

† If we continue determination the future replacement

times with the same principle as the first renewals, we

obtain the result: CPM ¼ 252:9 for the mission time TM ¼

40 years; which results from the obtained time points

t ¼ ð9:5; 12; 14; 18; 20; 22; 26; 30; 33:5; 37Þ: The follow-

ing components must be maintained within the time

points: (6, 11, 5, 3, 8 þ 11, 6 þ 11, 3 þ 6 þ 11,

3 þ 6 þ 11, 3 þ 6 þ 11, 3 þ 6 þ 11).

We see that the ratio-criterion of efficiency is only of

limited use. It is of advantage to use just on local level.

6.2.2. Availability constraint WRV $ A0; A0 ¼ 0:9

Obtained solution: the basic component Nos 1, 2, 4, 7, 9,

10 are not maintained (Table 5).

6.2.3. Average availability

Fig. 5 demonstrates the average availability, when the

mission time of 50 years is partitioned into four evenly long

intervals per 12.5 years.

6.2.4. Availability constraint AðtÞ $ A0; A0 ¼ 0:8

Obtained solution: the basic component Nos 4, 7, 9, 10

are not maintained (Table 6). The dependence on avail-

ability of time is demonstrated in Fig. 6.

Table 3

The best cost CPM obtained with the first inspection times and system

component inspection periods (WRV $ A0; A0 ¼ 0:9; TM ¼ 25 years)

No. of component 3 5 6 8 11

TP 2.40 5.96 9.34 2.81 4.94

T0 18 14 9.5 20 12

CPM 133.1

Fig. 3. Dependence on availability of time under availability constraint AðtÞ $ 0:9:

Table 4

The best cost CPM obtained with the first inspection times and system

component inspection periods ðAðtÞ $ A0; A0 ¼ 0:9; TM ¼ 50 years)

No. of component 3 5 6 8 11

TP 9.466 8.554 10.301 12.767 10.573

T0 18 14 9.5 20 12

CPM 238.0

Fig. 4. Dependence on availability of time under availability constraint AðtÞ . 0:9:
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6.2.5. Availability constraint WRV $ A0; A0 ¼ 0:8

Obtained solution: the basic component Nos 4, 7, 9, 10

are not maintained (Table 7).

7. Result comments

We computed the results for two levels of reliability

constraint, i.e. 0.9 and 0.8, and two levels of mission time,

25 and 50 years. Parallel to the calculations, we solved the

adjacent problem respecting the availability constraint

WRV $ A0; which in fact answers the following question:

which policy is necessary to apply to prevent that

the availability constraint will never be overstepped even

if the worst case from reliability point of view has

happened?

The policy means something like ‘reliability assurance,’

i.e. if we do not care for instantaneous availability AðtÞ and

even if the first inspection time vector T0 is not respected,

the policy assures that the given constraint A0 will never be

reached. Of course, the solution is in all cases the most

expensive way to keep to the constraint, but in case of long-

term working systems and in situations when the vector T0

does not play critical role to reliability, the solution would

be comparable with the one obtained under the constraint

AðtÞ $ A0:

Fig. 5 represents the average availability for the mission

time TM ¼ 50 years: In many technical applications we

might be interested in average availability within chosen

time intervals, i.e. when the instantaneous availability AðtÞ

is averaged within the intervals under obtained optimal

policy. In the demonstrative example the mission time is

partitioned into the evenly long intervals per 12.5 years. We

can see that the average availability is highly above

Fig. 5. Average availability for TM ¼ 50 years (partitioned per 12.5 years intervals).

Table 5

The best cost CPM obtained with the first inspection times and system

component inspection periods (WRV $ A0; A0 ¼ 0:9; TM ¼ 50 years)

No. of component 3 5 6 8 11

TP 2.67 7.35 8.62 4.33 4.75

T0 18 14 9.5 20 12

CPM 370.6

Table 6

The best cost CPM obtained with the first inspection times and system component inspection periods ðAðtÞ $ A0; A0 ¼ 0:8; TM ¼ 50 years)

No. of component 1 2 3 5 6 8 11

TP 24.344 16.507 23.136 19.773 20.504 22.107 20.508

T0 26.5 26.5 21 32.5 15 32.5 18

CPM 106.9

Fig. 6. Dependence on availability of time under availability constraint AðtÞ . 0:8:
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the availability constraint of A0 ¼ 0:9; particularly in the

beginning phase of the mission time. In Fig. 5, we can see

that even if our GA program found the four periods TPð3Þ;

TPð5Þ; TPð6Þ and TPð11Þ; in fact only the last two will be

realized. First two periods are so long that in its first

application exceed behind the required mission time 25

years.

Highly reliable calculations, with the constraint A0 ¼

0:9; are characterized by big sensitivity of the obtained

minimal cost results CPM to small changes of the constraint

value A0: For example, if we change the value from 0.9 to

0.87, considering 50 years calculations, we obtain new

solution of the vector TP with cost value CPM ¼ 203:4

(compare with previously computed value 238), and for

A0 ¼ 0:85 we obtain CPM ¼ 185:3:

All availability calculations are computed with the

relative error of 5%, by the confidence level of 90%. The

use of the newly developed GA program required the need

of an automatic termination of the simulation program.

Finishing on accuracy is, to our opinion, efficient way to

terminate the program. Consequently, the possibility of

‘finishing on accuracy’ was built into the simulation

program. In fact, that means that simulations are terminated

just in the case, when a minimal number of successful trials

is reached in the time point of worst availability value

(worst during the mission time). The minimal number

depends of course on given accuracy and can be obtained

according to the method in Ref. [2].

8. Conclusions

This paper shows the efficiency of an optimization method

to minimize the PM cost of series–parallel systems based on

the time dependent Birnbaum importance factor and using

Monte Carlo simulation and GAs. A theoretical approach

based on the asymptotic availability value is also proposed.

Starting from the results obtained for series–parallel

systems, this approach can be extended to more complex

systems, viz. no exponential failure rates, complex structures

different than series–parallel ones, etc. according to the

ability of the chosen methods (GA, simulation approach).

Another extension seems possible: the improvement of the

importance factor (other interesting importance factor should

be studied), the study of other constraints than a minimal

availability (minimal distance to the average availability),

additional safety constraints, or more realist characteristics

of the maintenance (imperfect maintenance, logistic delays).

Also, other optimization methods would be developed and

compared (simulated annealing for example) to the GA

(present work or modified improved forms).
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