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• We formulate the multi-objective off-line job scheduling problem in the cloud.
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a b s t r a c t

Cloud computing is a hybrid model that provides both hardware and software resources through com-
puter networks. Data services (hardware) togetherwith their functionalities (software) are hosted onweb
servers rather than on single computers connected by networks. Through a device (e.g., either a computer
or a smartphone), a browser and an Internet connection, each user accesses a cloud platform and asks
for specific services. For example, a user can ask for executing some applications (jobs) on the machines
(hosts) of a cloud infrastructure. Therefore, it becomes significant to provide optimized job scheduling
approaches suitable to balance the workload distribution among hosts of the platform.

In this paper, a multi-objective mathematical formulation of the job scheduling problem in a homo-
geneous cloud computing platform is proposed in order to optimize the total average waiting time of the
jobs, the average waiting time of the jobs in the longest working schedule (such as the makespan) and
the required number of hosts. The proposed approach is based on an approximate ϵ-constraint method,
tested on a set of instances and compared with the weighted sum (WS) method.

The computational results highlight that our approach outperforms the WS method in terms of a
number of non-dominated solutions.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing is a revolutionary paradigm suitable to change
the way of accessing both hardware and software in order to
produce, price, provide and deliver services and computational
resources to users. Users can run their applications (jobs) without
paying for software licenses, using well equippedmachines (hosts)
and high performance computational resources.

This paper addresses a multi-objective job scheduling problem
in a homogeneous cloud infrastructure considering the minimiza-
tion of the total average waiting time of the jobs, of the total wait-
ing time of the jobs belonging to the longest working schedule
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(makespan) and the number of used hosts. It takes into account an
off-line job scheduling scenario and, therefore, the number of jobs
to run and their resource requirements are known a-priori. The
main contributions are as follows:

• a multi-objective formulation of the off-line job scheduling
problem in a homogeneous cloud computing platform;

• an approximate ϵ-constraint method for solving the problem;
• a detailed experimental analysis for evaluating the quality of

the proposed approach.

With reference to the last contribution, first we implement an
instance generator in order to determine a set of problems con-
sidered during the experimental phase. Then, we implement an
alternative solution approach based on the weighted sum (WS)
method. Finally, we compare the two approaches on the set of gen-
erated instances.
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This paper is organized as follows: Section 2 reviews some
significant literary contributions, Section 3 provides a high level
description of the problem, Section 4 describes themulti-objective
mathematical formulation of the problem. Sections 4.1–4.3 detail
the two solution approaches taken into account, while Section 5
describes the generated scenarios and discusses the computational
results. Finally, Section 6 concludes the work and suggests some
future developments.

2. Related work

This section aims at describing some significant literary con-
tributions with reference to the job scheduling problem. There-
fore, it is organized as follows: firstly, some of the more significant
job scheduling algorithms in computing systems are described;
secondly, several multi-objective job scheduling methods are an-
alyzed and finally, some literary contributions based on the ϵ-
constraint method are summarized.

In the job scheduling problems in computer systems, the num-
ber of machines can be assumed finite and fixed. However, this
assumption does not hold for the number of jobs. The scheduling
problems in computer systems also differ from system to system
(e.g., manufacturing and project planning). For example, the jobs
could be dynamic (i.e., their arrival time is not known a-priori as
well as their characteristics and duration). Moreover, in computer
systems, the aim of these problems is to provide a better resource
utilization satisfying the job requirements. A very popular research
topic is the parallel job scheduling. There are many different ways
for scheduling parallel jobs and threads that make them up [1].
However, only a few mechanisms are used in practice and studied
in detail. Two approaches that have dominated over the last decade
are the Backfilling and the Gang Scheduling. In particular, the Back-
filling, introduced in [2], aims at balancing the resource utilization
and at maintaining a First Come First Served (FCFS) order. It also al-
lows small jobs to move ahead and run on processors that would
otherwise remain idle. However, this is subject to some restrictions
so that the situations in which the FCFS order is completely vio-
lated and some jobs are never run (i.e., starvation phenomenon)
are avoided. In particular, a reservation for some future times is
usually given to jobs that need to wait and its use was included in
several early Batch Schedulers [3].

In [4], a decentralized dynamic scheduling approach (Commu-
nity Aware Scheduling Algorithm—CASA) is proposed. CASA con-
sists of a two-phase scheduling solution approach and of some
heuristics to achieve optimized performances in the grid/cloud
platform. The authors show that it yields a 30%–61% better av-
erage job slowdown if compared to the centralized scheduling
schemebased on the BestFitmeta-scheduling policy. It also yields a
68%–86% shorter average job waiting time if compared to a decen-
tralized scheduling approach without requiring detailed real-time
processing information from nodes.

In [5], a hierarchical framework and a job scheduling algorithm
(Hierarchical Load Balanced Algorithm—(HLBA)) are proposed with
reference to a grid platform. The system load is used to determine
a balance threshold. The scheduler dynamically adapts the balance
threshold according to the system load changes. The aim of the
proposed scheduling algorithm is to balance the system load and
minimize the makespan of jobs. In [6], the authors analyze and in-
vestigate the effectiveness of rescheduling using cloud resources
in order to increase the job completion reliability. The jobs are
scheduled using grid resources and then, cloud resources are used
only for rescheduling to cope with a delay in job completion. The
computational results demonstrate that the proposed reschedul-
ing guarantees a delay reduction in job completion.

In [7], a credit based scheduling is used to evaluate the entire
group of tasks in the job queue and to find their minimal comple-
tion time. In [8], a mathematical model for distributing workload
among a minimum number of servers is proposed as a set parti-
tioning formulation and two solution approaches are described. In
the former, a set of candidate blocks are generated and then com-
posed together for having schedules through an integer program-
ming problem. Instead, in the latter, the set partitioning problem
is solved by performing a column generation technique. After per-
forming a test phase, the authors conclude that the secondmethod
outperforms the first one.

Moreover, due to the high dynamism of cloud environments
that leads to a time-varying resource utilization, cloud providers
can potentially accommodate secondary jobs with the remaining
resource. In [9], the problem of secondary job scheduling with
deadlines under time-varying resource capacity is taken into con-
sideration. However, the scheduling scheme used on many dis-
tributed memory parallel supercomputers is variable partitioning.
In this context, each job receives a machine partition with its de-
sired number of processors [1]. Such partitions are allocated in an
FCFS manner to incoming jobs.

While the job scheduling problem in distributed computing has
attracted a lot of interest, less attentionhas been given to themulti-
criteria version. In fact, there are a few works to address this spe-
cial issue. In [10], some novel taxonomies of the multi-criteria grid
workflow scheduling problem are proposed, mainly considering
workflow, resource and task model, scheduling criteria and pro-
cess. In [11], a multi-cost scheme of polynomial complexity is pro-
posed in order to perform reservations and select computational
resources to execute tasks. This scheme is also used to determine
the path to route input data. The authors also describe somemulti-
cost algorithmswith the aim of performingmore advance reserva-
tions and finding the starting times for data transmission and tasks’
execution. In [12], a modular broker architecture is proposed and
described. It works with different scheduling strategies in order
to optimally deploy virtual services across multiple clouds. These
scheduling schemes are mainly based on different criteria to be
optimized (either cost or performance optimization). Some user
constraints to be taken into consideration (budget, performance,
instance types, placement, reallocation or load balancing con-
straints) together with certain environmental conditions (static vs.
dynamic conditions, instance prices, instance types, service work-
load, etc.). In [13], a particle swarm optimization based heuris-
tic is designed and proposed in order to schedule applications on
cloud resources, taking into account both computation cost and
data transmission cost.

Nonetheless, one important criticism to be addressed formulti-
objective models mainly concerns the definition of an efficient
solution approach. In the literature, several alternative solution
approaches for multi-objective optimization problems have been
proposed. In particular,

• theweighted global criterion method in which the objectives are
jointly optimized using aweighted function (usually aweighted
exponential sum);

• the weighted sum method in which the objectives are summed
in one function by introducing appropriate weights;

• the lexicographic method in which the objectives are arranged in
order of importance and relevance.

For an exhaustive study about the multi-objective optimization
methods, the reader may refer to [14]. However, an innovative so-
lution approach, the ϵ-constraint method, has recently been in-
troduced in [15]. In [16], a combined procedure of a previously
developed single-objective optimization approach together with
the ϵ-constraintmethod is proposed in order to provide an approx-
imation of the Pareto front inmulti-objective optimization. In [15],
an exact ϵ-constraint method for the bi-objective combinatorial
optimization problems with integer objective values is described.
The authors also show how the Pareto front can be efficiently
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detected by applying this method and propose its application to
the Traveling Salesman Problem with Profits. In [17], some meth-
ods for approximating the Pareto set of multi-objective optimiza-
tion problems are proposed by solving a sequence of constrained
single-objective problems. Moreover, the authors also design an
adaptive scheme to generate appropriate constraints during the
execution. In [18], the authors adopt an ϵ-constraint method to
solve the manufacturing cell formation problem minimizing both
the inter-cellular movements and the workload unbalance. In [19],
themulti-objective congestionmanagement is addressed optimiz-
ing the congestion management cost, the voltage security and the
dynamic security. Then, the authors describe an ϵ-constraint based
solution approach for the problem under examination. The com-
putational results, compared to the one detected by the classical
single- and multi-objective approaches, highlight the efficiency of
the proposed algorithm.

Other realistic scenarios concern the electricity market. In [20],
a multi-objective model is proposed taking under control both the
voltage and the dynamic security aspects of the power systems.
The proposedmethod incorporates the lexicographic optimization
with the ϵ-constraint method.

However, a recent contribution has been proposed in [21]. The
authors describe an approximate ϵ-constraint based heuristic to
solve the multi-objective Undirected Capacitated Arc Routing Prob-
lem. The computational results highlight that this method detects
high quality Pareto front approximations. In this paper, this heuris-
tic method has been exploited to solve the multi-objective job
scheduling problem in a homogeneous cloud computing platform.

3. Job scheduling in cloud computing platforms

This section describes the problem introducing assumptions
and notations.

A scheduling problem is usually modeled as either an optimiza-
tion or a decision problem [22]. Usually, the former is harder than
the latter and aims at identifying the best solutions (i.e., the ones
that optimize a specific goal) among a given set of feasible solu-
tions. On the other hand, the decision problem aims at establish-
ing whether a given feasible solution achieves or not its objective
(i.e., yes or no answer). In this paper, the job scheduling problem is
formulated as a decision problem with reference to three specific
objectives.

The job scheduling problem on a cloud computing platform
is usually studied at two different levels: at a user-level and at a
system-level. The user-level aims at managing the services’ provi-
sion among the providers and the customers while the system-
level aims at managing the resources within a data center. In this
last case, the aim is to assign the user jobs to the hosts of the plat-
form considering some specific impacts on the data center.

In this paper, the following notations are used:

• J is the set of n jobs to execute;
• H is the set of m homogeneous hosts of the platform;
• wj is the workload of job j ∈ J in terms of amount of resource

requirements;
• uh is the capacity of the host h ∈ H in terms of amount of avail-

able computational resources. In particular, since the platform
is assumed to be homogeneous, it will be denoted by u for all
hosts;

• tj is the processing time required by the job j ∈ J on each host.

It is worth noting that both the job workload and the host capacity
are expressed in the same unit and a resource (either provided or
required) can be represented by CPU time,memory, storage and/or
network bandwidth. Moreover, by H̄ ⊆ H the set of allocated hosts
in the final solution is denoted and Sh̄ represents a working sched-
ule on the host h̄ ∈ H̄ . Therefore, Sh̄ can be seen as the working
sequence of the jobs of the sub-set Jh̄ assigned to the host h̄.
Moreover, a feasible scheduleSh̄ is defined as follows:

Sh̄ =

j̄ ∈ Jh̄ :


j̄∈Jh̄

wj̄ ≤ u

 . (1)

Among all the working sequences, only the feasible ones will be
considered and they will populate the set Ω formally defined by

Ω = {Sh̄∀h̄ ∈ H̄}. (2)

This problemcan be seen as a special case of the routing application
described in [23,21]. In fact, the hosts of the cloud platform repre-
sent the vehicles while the jobs are the customers. All the feasible
routes are here replaced by all the feasible working schedules.

In a high level multi-objective formulation, the objective
function f (x) is a β-vector (where β denotes the number of
objectives to be optimized) of the following form:

Minimize f (x) = (f1(x), f2(x), . . . , fβ(x)),

where x is the vector of the decision variables.
Each evaluation of the vector f (x) is denoted byφ and the value

of the i-th objective is represented by φi. Therefore, the objective
space is represented as

Φ = {φ = (φ1, φ2, . . . , φβ) : φi = fi(x)
∀x ∈ X, i = 1, 2, . . . , β},

where X is the feasible region of the problem.
Throughout the paper, the following definitions will be consid-

ered.

Definition 1 (Dominance). Let φ,φ′
∈ Φ . Then φ dominates φ′

(i.e., φ ≻ φ′) if and only if φi ≤ φ′

i , ∀i = 1, 2, . . . , β and at least
one of them is a strict inequality.

Definition 2 (Pareto Efficiency). Letx ∈ X be a feasible solution of
the problem. It is a Pareto efficiency solution if and only if there is
not a solutionx′

∈ X such that f (x′) ≻ f (x).
Definition 3 (Efficiency Solutions). The set Π = {x ∈ X} is defined
as the set of the Pareto efficiency solutions if and only if eachx is a
Pareto efficiency solution.

Definition 4 (Pareto Front). The Pareto front F is defined by F =

{f (x) :x ∈ Π}.

Since different feasible solutions could match the same point in Φ ,
the Pareto front can be approximated for giving a set of equivalent
solutions to the decision maker. Therefore, the following two
definitions are introduced.

Definition 5 (Ideal Point). The vector φIDEAL
= (φIDEAL

1 , φIDEAL
2 )

such that

φIDEAL
1 = minφ∈Φ

{φ1}, φIDEAL
2 = minφ∈Φ

{φ2}

represents the Ideal point.

Definition 6 (Nadir Point). The vector φNADIR
= (φNADIR

1 , φNADIR
2 )

such that

φNADIR
1 = minφ∈Φ

{φ1 : φ2 = φIDEAL
2 },

φNADIR
2 = minφ∈Φ

{φ2 : φ1 = φIDEAL
1 }

represents the Nadir point.
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4. A multi-objective job scheduling in cloud computing

This section describes the proposedmulti-objectivemathemat-
ical formulation of the job scheduling problem on a homogeneous
cloud platform. With reference to the assumptions and notations
introduced in Section 3, three objectives are optimized: the total
average waiting time of the jobs, themakespan (denoted by δ) and
the number of used hosts. The mathematical model uses the fol-
lowing variables and input data:

• xω, ∀ω ∈ Ω that denotes a binary decision variable equal to 1
is the feasible schedule ω ∈ Ω belongs to the final solution, 0
otherwise;

• A ∈ R|J|×|Ω| that represents a binary matrix whose element ajω
is equal to 1 if the job j is processed in the feasible working
schedule ω, 0 otherwise;

• cω that is the cost of the feasible working schedule ω evaluated
in terms of the total average waiting time of its jobs.

Thus, the three-objective (β = 3) mathematical model is the fol-
lowing.

Minimize
δ (3)
Minimize
ω∈Ω

cωxω (4)

Minimize
ω∈Ω

xω (5)

subject to
ω∈Ω

ajωxω = 1 ∀j ∈ J (6)

δ ≥ cωxω ∀ω ∈ Ω (7)
δ > 0 (8)
xω ∈ [0, 1] ∀ω ∈ Ω. (9)

The objective functions ((3)–(5)), to be minimized, take into ac-
count the makespan, the total average waiting time and the
number of used hosts, respectively. Moreover, the constraint (6)
guarantees that each job j has to be assigned to only one working
schedule ω, the constraint (7) imposes that δ is greater or equal to
the average waiting time of each selected working scheduleω and,
finally, the constraints (8) and (9) are the non-negative and binary
conditions on δ and x-variables, respectively.

However, since it is always possible to detect an upper bound
m > 0 and a lower bound m > 0 on the number of used hosts,
the aforementioned formulation can be transformed into a bi-
objective model (β = 2) that aims at minimizing δ and the total
average waiting time. The number of used hostsm is properly var-
ied in [m,m] where m is determined as follows:

m =



j∈J

wj

u


and m is set equal to |J| (i.e., one host for each job). Thus, the bi-
objective model is obtained removing Eq. (5) from the formulation
(3)–(9) and introducing the following constraint:
ω∈Ω

xω ≤ m (10)

that imposes that the number of used hosts is less than or equal
to m. Varying m in [m,m], several bi-objective formulations are
solved and then an approximation of F can be determined.
4.1. The weighted sum method

The weighted summethod is one of the most popular and sim-
ple methods for solving multi-objective optimization problems.

It belongs to the class of a posteriorimethods inwhich the set of
all the Pareto optimal points is firstly generated. Then, the decision
maker will choose the solution that better meets its requirements.

In this solution approach, the objective functions to optimize
are expressed as a linear combination introducing the weights
weightj ≥ 0 with j = 1, . . . , β (such as one weight for each fj(x)).
Therefore, the new objective function can be written as follows:

β
j=1

weightjfj(x). (11)

Moreover, the weights are assumed to be normalized such as

β
j=1

weightj = 1. (12)

For each of the possible values of m, this method is applied to the
bi-objective formulation of the job scheduling problem. Therefore,
the objective function is expressed as follows:

weight1δ + weight2

ω∈Ω

cωxω. (13)

Moreover, according to Eq. (12), weight2 can be obtained as
1−weight1 and therefore, the objective function (13) can be trans-
formed into

weight1δ + (1 − weight1)

ω∈Ω

cωxω. (14)

Varying weight1 in the range [0, 1], several no dominated solu-
tions can be determined.

In Algorithm1, the outline of theweighted sumbased algorithm
implemented for solving the multi-objective job scheduling prob-
lem in a cloud computing platform is provided, where Λ is a pa-
rameter set to 0.5.

input : Ω, cω∀ω ∈ Ω, wj∀j ∈ J, u, Λ

output: The Pareto front F

weight1 = 0;
Set the iteration counter ic = 1;
Set F := ∅;
while weight1 ≤ 1 do

Solve the single-objective model (14),(6)-(9), (10) and
let xic be the optimal solution;
Set F := F


{xic};

Set weight1 = weight1 + Λ;
Set ic = ic + 1;

end
Remove dominated solutions from F ;
Algorithm 1: The weighted sum based algorithm.

4.2. Approximate ϵ-constraint approach

This section describes the ϵ-constraint method applied to the
job scheduling problem in a homogeneous cloud platform. It solves
a set of ϵ-constraint problems Pj(ϵ), one for each objective function
fj, for j = 1, 2, . . . , β . Each of these sub-problems optimizes only
one objective and imposes upper bounds on the remaining ones.
In the bi-objective case, the ranges for ϵ1 and ϵ2 are [ϵ1, ϵ1] and
[ϵ2, ϵ2], respectively, where ϵ1 = φIDEAL

1 , ϵ1 = φNADIR
1 , ϵ2 = φIDEAL

2
and ϵ2 = φNADIR

2 .
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Then, for each value of ϵ2, the following mathematical model is
solved:
P1(ϵ2)
Minimize
f1(x) (15)
subject to
x ∈ X (16)
f2(x) ≤ ϵ2. (17)
While for each ϵ1, the following mathematical model is solved:
P2(ϵ1)
Minimize
f2(x) (18)
subject to
x ∈ X (19)
f1(x) ≤ ϵ1. (20)
Therefore, the methodology introduces as many ϵ values as the
number of objectives to be optimized. Moreover, it is worth not-
ing that the efficient solutions can always be found by solving ϵ-
constraint problems as long as either the ϵ2 values make P1(ϵ2)
feasible or the ϵ1 values make P2(ϵ1) feasible. On the other hand,
for each efficient solution x, an ϵj can be detected such that x solves
P1(ϵ2) or P2(ϵ1). Generally speaking, solving as many ϵ-constraint
problems as the values of ϵj aims at generating at least one solu-
tion for each point belonging to F and therefore, it could gener-
ate the exact Pareto front. The method defines a finite sequence of
ϵ-constraint problems through a progressive reduction of the val-
ues of the critical parameters ϵj. With reference to the bi-objective
job scheduling formulation, two sub-problems can be formulated
applying the ϵ-constraint methodology introducing ϵ1 as the up-
per bound for the total average waiting time and ϵ2 as the upper
bound for δ. The first formulation (Scheduling1(ϵ2)) minimizes (4),
subjected to the constraints (6), (7)–(9), (10) and
δ ≤ ϵ2. (21)

The second formulation (Scheduling2(ϵ1)) minimizes (3), sub-
jected to the constraints (6), (7)–(9), (10) and
ω∈Ω

cωxω ≤ ϵ1. (22)

The solution approach can be summarized as outlined in Algo-
rithm 2.

input : Ω, cω∀ω ∈ Ω, wj∀j ∈ J, u, ϵ1, ϵ2, ∆

output: The Pareto front F

a = 1 and b = 2 or a = 2 and b = 1;
Set F := ∅;
Compute Nadir and Ideal points:Φ IDEAL, ΦNADIR;
Set F := F


{(φIDEAL

a , φNADIR
b )};

Set ϵb := φNADIR
b − ∆;

while ϵb ≥ φIDEAL
b do

Solve Schedulinga(ϵb);
Set F := F


{(φ∗

a , φ
∗

b )};
Set ϵb = ϵb − ∆;

end
Remove dominated solutions from F ;

Algorithm 2: ϵ-constraint algorithm.

∆ is a positive constant for reducing ϵb at each iteration and
thus spanning the solution space. Usually, ∆ = 1, since the dif-
ference between two integer objective values is at least equal to
1. This parameter setting ensures that a sequence of ϵ-constraint
problems generates one feasible solution for each point of F (The-
orem 3 in [15]).
4.3. Generating the Ω set

One relevant issue concerns the generation of feasible working
schedules (i.e.,Ω set). It plays a key role in the approach and repre-
sents the input of Algorithm2. Aheuristic procedure is usually used
for generating Ω . The heuristic procedure implemented in this
work is summarized in Algorithm 3. An optimal working schedule
satisfies Eq. (1) and minimizes the average waiting time of its jobs.

A heuristic for detecting a feasible working schedules is to sort
its jobs by increasing processing times. For example, in the case of
6 jobs (|J| = 6), host capacity u = 8 time unit (TU), job work-
loads w1 = 5 TU; w2 = 3 TU; w3 = 3 TU; w4 = 2 TU; w5 = 2
TU and w6 = 5 TU and processing times (expressed in time slots
(TS)) t1 = 3; t2 = 10; t3 = 4; t4 = 5; t5 = 7 and t6 = 8;
all the feasible working schedules (according to (1)) are:{1}; {2};
{3}; {4}; {5}; {6}; {1, 2}; {1, 3}; {1, 4}; {1, 5}; {2, 3}; {2, 4}; {2, 5};
{2, 6}; {3, 4}; {3, 5}; {3, 6}; {4, 5}; {4, 6}; {5, 6}; {2, 3, 4}; {2, 3, 5};
{2, 4, 5}; {3, 4, 5}. For example, the notation {2, 3, 4} denotes a
feasible schedule because, according to w2 = 3 TU, w3 = 3 TU
and w4 = 2 TU, and to u = 8 TU, the jobs 2, 3 and 4 can be pro-
cessed on the same host: w2 + w3 + w4 = 3 + 3 + 2 = 8. On
the other hand, according to the relative workloads and to u = 8
TU, the schedule {1, 2, 3, 4, 5, 6} cannot be considered as feasible:
w1 +w2 +w3 +w4 +w5 +w6 = 5+3+3+2+2+5 = 20 > 8.
This numerical example shows how both u and the job workloads
affect the feasibility of a schedule.

Focusing attention on the feasible working schedule {2, 3, 4}
and sorting its jobs according to increasing processing times, the
best way to handle them is {3, 4, 2} with an average waiting time
equal to (0+4+9)/3 = 4.33TS. Therefore, this sequence is added
to Ω .

It is worth noting that the cardinality of Ω affects the solution
quality. In fact, if many feasible working schedules are generated,
the procedure selects solutions that bettermeet the criteria; on the
other hand, a high cardinality of Ω determines more complex for-
mulations (Scheduling1(ϵ2), Scheduling2(ϵ1)) that usually require
long computational times. Therefore, in this paper, all the feasible
working schedules generated by the heuristic are taken into con-
sideration only in small and medium scale scenarios; on the con-
trary, in large scale scenarios, its cardinality is limited by a control
parameter ξ , properly set by the user.

input : J,H, wj∀j ∈ J, u
output: The set Ω

Set Ω := ∅;
S := set containing all the possible working schedules to
handle the jobs in the set J;
S̄ ⊆ S set containing only the feasible working schedules;
for s̄ ∈ S̄ dos := optimal working schedule for handling the jobs

belonging to s̄;
Set Ω := Ω


{s};

end
Algorithm 3: Generating Ω .

5. Experimental phase

This section aims at analyzing the proposed ϵ-constraint ap-
proach comparing it with the WS method. Since in the literature
testing instances do not exist for this specific problem, the first
criticism to address concerns the generation of consistent and re-
alistic scenarios (Section 5.1). The second criticism concerns prop-
erly finding the bounds on the total average waiting time and the
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Table 1
Ideal and Nadir points.

Problem ϵ2 ϵ2 ϵ1 ϵ1

1 0.38 1.40 0.38 2.02
2 0.38 1.00 0.96 1.49
3 0.00 2.31 0.00 2.31
4 0.37 0.76 1.88 3.10
5 0.37 0.56 1.96 3.59
6 0.00 1.40 0.00 2.02
7 0.00 1.23 0.00 2.28
8 0.00 0.82 0.00 2.12
9 0.15 0.82 0.15 2.35

10 1.55 5.23 1.80 15.68
11 0.21 0.75 0.72 2.77
12 2.14 7.51 7.17 27.71
13 0.37 0.56 1.96 3.59
14 0.37 0.56 1.96 3.60
15 3.66 5.60 19.65 35.89
16 0.37 0.80 1.96 4.96
17 0.96 11.66 0.96 11.66
18 0.62 0.84 4.28 7.31
19 0.00 0.01 0.06 0.09
20 0.00 0.08 0.00 1.20

makespan in order to run the proposed approach (Section 5.2). Fi-
nally, in order to evaluate the quality of our approach, some nu-
merical results are presented. This last part of the work aims also
to compare the proposed approach with the WS method in terms
of quality of the Pareto fronts (Section 5.3).

In particular, the numerical results are analyzed with reference
to δ, the total average waiting time and the number of the used
hosts.

The two solution approaches have been implemented in Java, in
Eclipse environment. Moreover, Cplex (release 9.0, [24]) has been
used as an optimizer.

5.1. Generating consistent scenarios

This section aims at generating a set of consistent and realistic
scenarios in order to conduct experiments and to do comparisons.
To this purpose, an instance generator has been implemented in
Java, in Eclipse environment.

The workloads are assumed to be distributed according to ei-
ther a normal probability function (wj ∼ N(µ, σ ),∀j ∈ J) or a
continuous uniform distribution (wj ∼ U(r, r), ∀j ∈ J). The job
processing times are instead assumed to be distributed according
to either a Poisson probability function (tj ∼ P(λ), ∀j ∈ J) or an
Table 3
Numerical comparisons II.

Problem Σ
epsilon
spread ΣWS

spread Σ
epsilon
spacing ΣWS

spacing

1 0.51 0.56 0.07 0.11
2 0.65 0.63 0.13 0.15
3 0.51 0.74 0.09 0.12
4 0.9 0.8 0.02 0.03
5 1.16 0.86 0.02 0.03
6 0.47 0.5 0.08 0.09
7 0.54 0.52 0.04 0.03
8 0.55 0.48 0.03 0.03
9 0.93 0.66 0 0.01

10 0.6 0.57 0.16 0.19
11 0.96 0.55 0 0.01
12 1.11 0.6 0.01 0.09
13 1.11 0.87 0.02 0.03
14 1.17 0.86 0.01 0.03
15 1.33 0.93 0.08 0.21
16 0.97 0.77 0.02 0.02
17 0.67 – 0.96 –
18 0.62 0.4 0.04 0.19
19 0.36 0.67 0 0.02
20 0.29 – 0.01 –

exponential distribution (tj ∼ E(λ), ∀j ∈ J). These are the proba-
bility distribution functions traditionally used in the literature for
representing the workloads and the processing times.

The host capacity is assumed to be fixed at most to 100 while
ξ varies from 1000 up to 10000, |H| is set equal to {5, 10, 15, 20,
40, 50} and |J| varies from 5 up to 100.

5.2. Lower and upper bounds

In order to carry out experiments, significant and consistent
lower and upper bounds have been found on both the total average
waiting time and the makespan (as reported in Table 1).

5.3. Computational results

In this section, numerical comparisons are presented between
the proposed approach and the WS method. Table 2 highlights
the extreme points of the Pareto fronts and the number of non-
dominated solutions for each solution approach and problem test.
In particular, E1 and E2 are the extreme points of the Pareto fronts
found by our approach whileWS1 andWS2 are the extreme points
of the Pareto fronts obtained by theWSmethod. Moreover, ηE and
Table 2
Numerical comparisons I.

Problem E1 E2 WS1 WS2 ηE ηWS

1 2 1.21 2.02 5 0.38 0.38 2 1.21 2.02 5 0.38 0.38 8 6
2 4 0.53 1.49 5 0.52 0.96 4 0.53 1.49 5 0.52 0.96 4 4
3 2 0.80 1.57 5 0.00 0.00 1 2.31 2.31 5 0.00 0.00 7 7
4 8 0.65 3.10 10 0.55 1.88 8 0.65 3.10 10 0.55 1.88 9 8
5 7 0.55 3.59 10 0.44 1.96 7 0.55 3.59 10 0.44 1.96 11 9
6 2 1.21 2.02 6 0.00 0.00 2 1.21 2.02 6 0.00 0.00 8 7
7 3 0.87 2.18 8 0.00 0.00 3 0.80 2.28 8 0.00 0.00 12 12
8 3 0.80 2.04 9 0.00 0.00 3 0.76 2.12 9 0.00 0.00 12 11
9 3 0.82 2.35 10 0.15 0.15 3 0.82 2.35 10 0.15 0.15 30 19

10 5 4.89 15.59 10 1.80 1.80 5 3.83 15.68 10 1.80 1.80 13 11
11 4 0.71 2.77 10 0.37 0.72 4 0.71 2.77 10 0.37 0.72 42 18
12 4 7.23 27.66 10 3.60 7.20 4 7.08 27.71 10 3.68 7.17 70 20
13 7 0.55 3.59 10 0.44 1.96 7 0.55 3.59 10 0.44 1.96 11 9
14 7 0.55 3.60 10 0.44 1.96 7 0.55 3.60 10 0.44 1.96 13 9
15 7 5.58 35.59 10 4.21 19.75 7 5.55 35.89 10 4.39 19.65 16 10
16 11 0.65 4.36 15 0.44 1.99 10 0.71 4.96 15 0.45 1.96 13 15
17 14 0.96 11.66 15 0.94 10.70 14 0.96 11.66 14 0.96 11.66 2 1
18 10 0.84 7.31 20 0.64 1.50 10 0.84 7.31 14 0.62 4.28 15 5
19 25 0.01 0.09 40 0.00 0.01 25 0.01 0.09 28 0.01 0.06 9 2
20 35 0.08 1.20 41 0.06 0.75 35 0.08 1.20 35 0.08 1.20 7 1
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Table 4
Nomenclature.

Symbol Meaning

n Number of jobs to be executed
J Set of jobs
m Number of available homogeneous hosts
H Set of available homogeneous hosts
wj Workload of j ∈ J
uh Capacity of h ∈ H
tj Processing time required by j ∈ J
Ω Set of feasible working schedules
xω Binary decision variable
δ Makespan
A Binary matrix
cω Cost of ω ∈ Ω

ξ Parameter that controls the cardinality of Ω

ηWS denote the number of no dominated solutions detected by our
approach and the WS method, respectively.

From Table 2, it is evident that our approach outperforms the
WS method in terms of number of no dominated solutions. In fact,
over all the problem tests, the average number of no dominated
solutions detected by our solution approach is equal to 16 while
the WS method reaches an average number equal to 9.

However, in order to assert about the quality of our approach,
two significant metrics are also introduced and used: Spacing
Metric (Σspacing) (see [25]) and Spread Metric (Σspread) (see [26]).

In particular, Σspacing relies on the evaluation of the Euclidean
distance di between consecutive efficient solutions and the average
of distance d̄:

Σspacing =

η−1
i=1

|di − d̄|
η − 1

(23)

where η represents the number of no dominated solutions. Be-
cause it does not take into account the spread, Σspread is also con-
sidered:

Σspread =

df + dl +
η−1
i=1

|di − d̄|

df + dl + (η − 1)d̄
, (24)

where df and dl are the Euclidean distances between the extreme
solutions and the boundary solutions of the efficient set; d̄ repre-
sents the average of all distances di, i ∈ [1, η − 1]. The smaller the
value of Σspread, the better the diversity of the efficient set.

Table 3 clearly highlights that both the two approaches detect
well uniformly distributed solutions with an averageΣspacing equal
to 0.1 ≪ 1. However, the WS method finds sets of no dominated
solutions that are slightly more diversified than the ϵ-constraint
approach (i.e., ΣWS

spread = 0.7 < Σ
epsilon
spread = 0.8).

6. Conclusions and future work

This paper addresses a multi-objective off-line job scheduling
problem on a homogeneous cloud computing platform. For that,
an approximate ϵ-constraint method is designed, implemented
and evaluated. Moreover, the numerical results are compared
with the WSmethod traditionally used for solving multi-objective
optimization problems. The solution qualities are estimated in
terms of the number of no dominated solutions, their distribution
and diversification introducing two metrics: Σspacing and Σspread.

Further developments will be carried out on the implementa-
tion of alternative heuristic approaches used to populate Ω in or-
der to detect more diverse sets of solutions. Moreover, an on-line
job scheduling version of the problem will be examined and stud-
ied and also heterogeneous cloud platforms will be taken into con-
sideration. In particular, a redefinition of the mathematical model
will be necessary in order to explicitly include the costs for data
transfer.
Appendix

See Table 4.
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