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Abstract

The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor climate and the
overall thermal performance of buildings. In this work, the development of a Building Energy Analysis Model (BEAM) predicting
whole building heat and moisture transfer is presented. The coupled heat and moisture transfer model takes into account most of
the main hygrothermal effects in buildings. The coupled system model is implemented in Matlab, and verified with EnergyPlus.
Furthermore, BEAM is reduced via a physically based model order reduction to a lower order system model (Re-BEAM) to be
easily integrated with a control algorithm. By utilizing Re-BEAM, a Model-Based Predictive Control (MBPC) method is developed
to incorporate critical building information into control algorithms, such that the building energy consumption is minimized while
comfort conditions are maintained. The resulting optimal setpoint schedule can be applied on any HVAC system. Simulation results
of a building structure demonstrate the superiority in terms of energy and peak load reductions compared with traditional constant
control methods and control methods that use a occupants-varying temperature schedule.

Keywords:
Building energy model, energy efficiency, thermal model, hygrothermal model, model-based control

1. Introduction

According to the United Sates Green Building Council [1],
buildings account for 40% of domestic primary energy con-
sumption, 36% of natural gas use, and 72% of U.S. electric-
ity usage. Therefore the energy savings related to buildings are
significant objectives of many research groups, among which,
implementing advanced control strategies in the building con-
trol system is one of the most popular approaches. Two main
research directions are pursued in advanced control of build-
ing energy management of Heating, Ventilation, and Air Con-
ditioning (HVAC) systems: learning-based methods of artificial
intelligence and Model-Based Predictive Control (MBPC).

Learning-based methods include genetic algorithms, fuzzy
techniques, and neural networks [2]. The advantage of these
methods is that they do not need to know detailed physical in-
formation of the system. It is easier to be implemented when
many on-site measurements are available, but the subsequent
optimization process is not easy since it lacks physical insights
and does not deal well with disturbances caused by varying oc-
cupants’ behaviors or physical changes in a building. Also, the
model accuracy depends substantively on the space-resolution
of the on-site measurements. Popularly used smart thermostats
in the current market, for example, Honeywell [3] and Ecobee
[4], are based on simple logic to take control actions at specific
times, and NEST [5] is integrated with machine learning meth-
ods to learn occupants’ schedule patterns. Such approach has
proven to improve a building’s energy efficiency.

MBPC uses a model to predict the future state evolution of
the system and generates a vector of control actions that min-
imize a certain cost function over the prediction horizon (the
prediction time period in the future) in the presence of external
disturbances and constraints. It can be regarded as a type of op-
timal control that is based on a mathematical model with knowl-
edge of the building system. It employs weather and occu-
pancy information to implement optimization in control strate-
gies as a means to minimize the energy consumption, while
ensuring comfort conditions. Compared with conventional con-
trol methods applied to building climate control, MBPC stands
out for its superior performance with lower energy consump-
tion, better transient response, and consistent performance un-
der varying conditions [6]. Shaikh et al. [7] summarized and
categorized 121 works on the state-of-the-art intelligent control
systems for energy and comfort management in smart energy
buildings in terms of building types, different control and opti-
mization methods, and also discussed advantages of the MBPC
method over other conventional control methods. Privara et
al. [8] show that using dynamic modeling in building climate
control can lead to the largest reduction of energy consumption.
Knowing the physical information of a building has many ad-
vantages: more accurate calculations of thermal loads, possibil-
ities to implement control actions on windows and doors, detect
possible structure damages that may undermine the buildings’
energy efficiency, and also allow pre-cooling or pre-heating of
rooms by taking advantage of a building’s thermal capacitance
to reduce energy consumption and peak loads. Much research
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work has been done to show good energy efficiency by using
MBPC. Maasoumy et al. [9] presented a model based hierar-
chical control strategy that balances comfort and energy con-
sumption, and showed that the proposed MBPC saves 67.3%
total airflow compared with the regular controller used in the
building. Aswani et al. [10] combined a mathematical model of
room temperature with statistical methods to compute the heat-
ing loads due to occupants and equipment, and a learning-based
model-predictive control method was used to learn and com-
pensate for the amount of heating due to varying occupancy.
Based on a physical thermal model of the building, Odlewur-
tel et al. [11] developed a stochastic model predictive control
(SMPC) strategy for building climate control that takes into ac-
count the uncertainty due to the use of weather predictions, and
showed that SMPC outperforms current control practices based
on the results of a large-scale simulation of one room. Amini et
al. [12] used a two stage Mixed Integer Linear Programming to
solve the residential energy scheduling optimization problem,
considering the customer preferences and appliances specifica-
tions, and evaluated the effectiveness of the proposed model in
terms of cost savings by considering three appliances and four
pricing schemes. Schmelas et al. [13] presented an adaptive
and predictive computational method based on multiple linear
regressions for control, and demonstrated the practicality in ap-
plication and saving of computational time by implementing
experiments on a two room model. Ascione et al. [14] pro-
posed a simulation-based model predicitve control, which com-
bines EnergyPlus and MATLAB. The goal was to optimize the
hourly temperature setpoint based on weather forecast and oc-
cupancy profiles. Also it used a reliable minimum run period to
overcome the issue of large computational times.

Reliable predictions from an identified energy model of a
building are crucial for the effective performance of MBPC.
Commonly used building energy modeling tools (e.g., Energy-
Plus [15], DOE [16], TRANSYS [17], ESP-r [18]) are designed
primarily for evaluating the energy use of existing buildings, but
not for integrating real-time control algorithms due to the com-
plexity of those tools [19]. Therefore, it is significant to estab-
lish a simple but relatively accurate energy model for a build-
ing so that it provides a satisfactory predicted system dynamics.
Based on substantial work that has been done on building mod-
eling, three approaches are generally used: mathematical mod-
els (“white box”), data driven models (“black box”), and hybrid
models [20, 21]. White box means the physical properties of a
building are known and governing equations are established to
simulate the thermal performance of a building. The lumped
capacitance and Computational Fluid Dynamics (CFD) models
are two examples. Black box means that no information regard-
ing the building is required, and correlations between building
energy consumption and operational data is established by us-
ing statistical information. Hybrid models combine mathemat-
ical and data driven models.

The present work aims at developing a model-based pre-
dictive control for a typical building’s HVAC system. In or-
der to achieve this, a predictive energy model of a residential
building is developed and used to implement an optimized de-
sired schedule of temperature and humidity based on occupancy

schedule and outdoor environmental conditions. Experimental
validations of the developed model and the energy-saving ben-
efit are demonstrated in Part II [22].

2. Building hygrothermal model

A Building Energy Analysis Model (BEAM) is developed as
a physically based model to simulate dynamics of both temper-
ature and humidity of indoor air in a residential building for
energy management. In general, the building can be viewed as
an assembly of spaces, representing rooms, and surfaces, rep-
resenting walls. Doors and windows are considered as parts of
surfaces, which allow air to transport across the surface when
they are opened. Common heat and moisture transfer mech-
anisms related to a wall are illustrated in Fig. 1. It includes
conduction within a wall, convection at each surface, and irra-
dation. To obtain the results, BEAM requires the inputs from
a building system, such as the geometry information, construc-
tion information, system components, and weather conditions.
Instead of using the IDF file format commonly used in other en-
ergy simulation program such as EnergyPlus, BEAM uses the
gbXML file format that can be exported directly from Autodesk
Revit Architecture [23], which is one of the dominant Build-
ing Information Modeling (BIM) tools commonly used by ar-
chitects. Without necessity of file conversion, the gbXML file
looses less geometry information compared with a converted
IDF file. BEAM is used to estimate hygrothermal interactions
between physically connected spaces and other time-dependent
conditions such as weather conditions (e.g., outdoor tempera-
ture, relative humidity, wind, and solar irradiation). Two types
of solar irradiation, accounting for shading effects, are consid-
ered: direct and diffusive. Details regarding the solar irradia-
tion modeling is given in Appendix A. Apart from architec-
tural structure and weather conditions, BEAM also accounts for
occupancy schedules, internal heat sources (i.e., sensible heat
from occupants and appliances), internal moisture sources (i.e.,
occupants breath and sweat), and state and input constraints as
external inputs. Outputs are the temperatures and relative hu-
midities of spaces and wall surfaces.

To obtain a relatively accurate but not over-complicated
model, BEAM is based on a lumped capacitance 3R2C model
[24–26]. The lumped capacitance 3R2C model is developed as
an analogy to an electrical circuit network as shown in Fig. 1.
Basically, by using lumped capacitance, the indoor air is as-
sumed to be well-mixed and represented by one node. Each
wall’s surface is treated as homogeneous and represented as one
node. Each node has its own thermal and moisture capacitance,
and connects with other nodes through thermal and moisture
resistances. Therefore, each wall would consist of three resis-
tances (3R), one corresponding to conduction and two corre-
sponding to convection, and two capacitances (2C) of the wall’s
surfaces. For a complete building, the electrical analogous cir-
cuit network, simulating a building hygrothermal model, is cre-
ated based on architectural structure information, which indi-
cates the connections among spaces, surfaces, ground and out-
door air.
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Figure 1: Heat and moisture transfer through a wall: (a) physical diagram, and
(b) 3R2C analogy.

In addition to the lumped capacitance assumption, several
additional assumptions are made in BEAM: (1) all opaque sur-
faces are diffuse and gray; (2) long wave radiation exchanges
among interior wall surfaces are negligible; (3) heat and mois-
ture transfers are one dimensional in the spaces and walls; (4)
energy stored in windows is negligible; and (5) the solar radi-
ation transmitted through windows is considered as additional
heat deposited on the floor of the room. With these assump-
tions, governing equations for both heat and moisture transfer
in spaces and walls are given a follows.

2.1. Governing equations for heat and moisture transfer

To account for thermal effects caused by moisture trans-
fer, coupled governing equations of heat and moisture are es-
tablished. In addition to sensible heat generation caused by
both occupants and appliances, BEAM also considers latent
heat generation due to condensation occurring during moisture
transfer. Ventilation and infiltration affects both temperature
and relative humidity in a space as both heat and moisture are
carried with the transmitted air. Estimates of ventilation and in-
filtration rates are given in Appendix B. Note that in this work
the chosen state variable that represents moisture conditions of
both air and walls is the relative humidity, since relative humid-
ity is continuous at a wall-space interface while the humidity
ratio and moisture content are not [27].

2.1.1. Coupled heat and moisture transfer equations in a space
The general governing equation describing the energy stored

in moist air in a room is written as follows [28]:

ρa Va
d
dt

[(cpa + ωacpv)Ta]

=

Nwalls∑
i=1

hiAi(Tw,i − Ta)

+ ṁecpa(Te − Ta) + ṁecpv(ωeTe − ωaTa)

+

Nzones∑
i=1

ṁz,icpa(Tz,i − Ta) +

Nzones∑
i=1

ṁz,icpv(ωz,iTz,i − ωaTa)

− ṁgi f g|Tg +

N∑
i=1

Q̇i,

(1)

where ρ, V , cpv, T , h, A, ω, and Q are density, volume, spe-
cific heat of water vapor, temperature, heat transfer coefficient,
area, mass flow rate, humidity ratio and internal heat source,
respectively. The subscripts a, z, e and w associated with these
quantities refer to the room air, the neighboring zone, external
outside air, and wall’s surface, respectively. The quantity ṁe

represents the mass flow rate of air between the room and out-
side, while ṁz represents the one between the considered room
and the other room. These air flows are due to ventilation and
infiltration. The right hand side of Eq. (1) represents convective
heat transfer between air and interior wall surfaces, convective
energy transfer of air and moisture due to ventilation and in-
filtration between indoor and outdoor as well as air exchange
between zones, latent heat sink due to soft moisture sources,
and internal heat sources, respectively. Notice that during mois-
ture transport between room air and an interior wall surface,
since water cannot remain in the air, condensation/evaporation
occurs on the wall surface and the heat source/sink caused by
the phase change is accounted in the wall surface. The term
ṁgi f g|Tg refers to heat generation caused by the moisture source
in the room, such as airflow from a HVAC system. Internal heat
sources,

∑N
i=1 Q̇i, include occupants and electronic equipment,

and standard values of internal heat sources [29] are utilized.
Since the heat transfer caused by moisture transport in the

wall is far smaller compared to the heat transfer caused by tem-
perature differences, the terms that involve the humidity ratio
are neglected. Equation (1) then simplifies to

ρair Va cpa
dTa

dt

=

Nwalls∑
i=1

hiAi(Twall,i − Ta) + ṁecpa(Te − Ta)

+

Nzones∑
i=1

ṁz,iCpa(Tz,i − Ta) + ṁgi f g|Tg +

N∑
i=1

Q̇i.

(2)

For moisture transport in room air, the transient humidity ra-
tio of room air is balanced by the moisture transport from inter-
nal latent loads K̇g, moisture convection between the room air
and wall surfaces, moisture exchange through airflows between

3
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multi-zones, and moisture transfer due to infiltration/ventilation
with the outside air:

ρa Va cm
dωa

dt

= K̇g +

Nwall∑
i=1

hM,i Ai (Pv,i − Pv,a)

+

Nzones∑
i=1

ṁi(ωz,i − ωa) + ṁe(ωe − ωa),

(3)

where cm is the humidity capacity multiplier [30] (normally tak-
ing the value of 1), K̇g is internal moisture source, which may
include cooking, washing, plants, and people (for people, the
averaged moisture generation is 0.18 kg/h [31]), hM is the mois-
ture convection coefficient, and Pv is the partial vapor pressure,
respectively.

Particularly in air, the relative humidity φa can also be related
to the humidity ratio ωa:

φa = Pv/Ps = ωa/ωs, (4)

where Ps is the saturated vapor pressure, and the saturated hu-
midity ratio, ωs, is a function of temperature [32]:

ωs =
1

Rmρa T
exp

(
23.7093 −

4111
T − 35.45

)
. (5)

Therefore, the term dωa/dt in Eq. (3) can be rewritten in terms
of φa and ωs as:

dωa

dt
= ωs|Ta

∂φa

∂t
+ φa

∂ωs|Ta

∂Ta

∂Ta

∂t
. (6)

Using Eqs. (4) and (6), Eq (3) can be rewritten in terms of φa

and Ta as follows:

ρa Va cm

(
ωs|Ta

dφa

dt
+ φa

dωs

dT
dTa

dt

)
= K̇g +

Nwall∑
i=1

hM,i Ai

(
φw,i Ps|Twall,i − φaPs|Ta

)
+

Nz∑
i=1

ṁi

(
φz,iωs|Tz,i − φaωs|Ta

)
+ ṁe(φeωs|Te − φaωs|Ta ).

(7)

In summary, Eqs (2) and (7) provide the coupled relations
between temperature and relative humidity of room air and wall
surfaces in a building.

2.1.2. Coupled heat and moisture transfer equations in a wall
The general one-dimensional heat transfer equation in a com-

posite wall with heat generation can be written as [28]

ρmcpm
∂Tm

∂t
=

∂

∂x

(
λ
∂Tm

∂x

)
+ ġ, (8)

where ρm, cpm and Tm are the density, the specific heat capac-
ity and the temperature of the wall material, respectively, λ is
heat conductivity, and ġ is the heat source. In this case, the

heat source/sink is caused by condensation/evaporation inside
the wall material, which is quantified by accounting for the
difference of the gradient of water vapor flux. Using Fick’s
law [33], the heat generation inside a wall caused by condensa-
tion/evaporation is written as

ġ = i f g
∂

∂x

(
δv
∂Pv

∂x

)
, (9)

where i f g is the latent heat of condensation/evaporation, and δv

is the vapor permeability.
To use the 3R2C model to develop the heat transfer equa-

tion for a wall, Eq. (8) is integrated through half of the wall
volume. For simplicity, several assumptions are made. The
thermal conductivity, λ, and the vapor permeability, δv, are as-
sumed to be constant. Condensation/evaporation are assumed
to occur only on the wall surface, and the amount of conden-
sation/evaporation due to latent heat on the wall boundary is
proportional to the difference between two mass flow rates: the
vapor flux in the wall from one side to the other side due to the
two sides’ vapor pressure difference and the vapor flux due to
the vapor pressure difference between the wall surface and the
air.

Boundary conditions related to heat and moisture transfers
are indicated in Fig. 1a(a). On the interior side of the wall, there
is heat and moisture convection between the indoor air and the
interior wall surface. Within the wall, there is heat and moisture
conduction. On the exterior side of the wall, there is external
heat and moisture convection between the exterior wall surface
and the outdoor air, and also there is solar radiation projected
on the exterior wall surface. With these conditions, the heat
equations of a wall are written as

ρmcpmA L
2

∂Tw,i

∂t
=

Tw,e − Tw,i

Rm

+ i f g|Tw,i A
(
δv
φw,ePs|Tw,e − φw,iPs|Tw,i

L

)
+ ṁw,ii f g|Tw,i + hw,iA(Ta,i − Tw,i),

(10a)

ρmcpmA L
2

∂Tw,e

∂t
=

Tw,i − Tw,e

Rm

+ i f g|Tw,e A
(
δv
φw,iPs|Tw,i − φw,ePs|Tw,e

L

)
+ ṁw,ei f g|Tw,e + hw,eA(Ta,e − Tw,e) + Q̇solar,

(10b)

where Rm and L are the thermal resistant and the thickness of
the wall material. The subscripts i and e refer to the interior and
exterior side of a wall. Noted that for the cases where the wall
is an interior wall, only Eq. (10a) is used for both sides of the
walls. The term Q̇solar accounts for the solar radiation received
by an exterior wall surface or transmitted through a transparent
window. The capability of a window to transmit solar radiation
into the indoor air is characterized by a Solar Heat Gain Co-
efficient (SHGC), which is a function of the incident angle of
the solar direct radiation at a specific time. The amount of solar
radiation transmitted through a window is calculated by multi-
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plying the total solar radiation projected on the window surface
area with SHGC. More details are given by Klems [34].

The quantity ṁw in Eqs. (10a) and (10b) provide the conden-
sation/evaporation rate on a wall surface. This term only exists
when the relative humidity of the wall is unity (saturated). It
is evaluated by considering the moisture transport flow rate be-
tween air and a wall surface. Using Eq. (4) to rewrite Pv in
terms of φ and Ps, it can be computed from the following equa-
tion:

ṁw =

hM A
(
φa Ps|Ta − Ps|Twall

)
if φwall = 1,

0 if φwall < 1,
(11)

where hM is the moisture convection coefficient, which is anal-
ogous to the heat convection coefficient hw. It is used to charac-
terize the moisture transport flow rate between the wall surface
and air. Based on the Chilton-Colburn analogy [35], a relation
between hM and hw is given by

hM = 7.1027 × 10−9h. (12)

As most building materials are porous by nature, moisture
primarily exists in pores and is transported in both liquid and
vapor forms. As a result, it is necessary to also consider mois-
ture content and moisture transport in both liquid and vapor
phases within walls and ground surface.

Many studies [36–39] have been conducted to investigate
the thermodynamics of moisture transport in porous materials.
While in contact with moist air, hygroscopic materials adsorb
water molecules at the inner surfaces of the pore system until
they reach an equilibrium. The main mechanisms of moisture
transport are provided by vapor diffusion and capillary suction.
Vapor diffusion is described by Fick’s law [33] as

Jv = δv
∂Pv

∂x
, (13)

where the driven potential is vapor pressure, Pv. Using Eq. (4),
vapor pressure is expressed in terms of relative humidity and
saturated vapor pressure. Capillary suction occurring in liquid
transport is described by Darcy’s law [40] as

Jl = Dl
∂(∆Plv)
∂x

, (14)

where Dl is the liquid conductivity (i.e., the ratio of permeabil-
ity of material to dynamic viscosity of fluid). The suction pres-
sure, ∆Plv, is the driving potential of capillary suction. By using
the complete Kelvin equation [41], the gradient of suction pres-
sure is expressed in term of the relative humidity as

∆Plv =
ln φ

ρwRv T
, (15)

where ρw is the density of liquid water, and Rv is the specific
gas constant of water vapor.

By accounting for moisture content, vapor diffusion, and cap-
illary suction, the general one-dimensional moisture transfer

equation in a composite wall can be written in terms of tem-
perature and relative humidity [42, 43]:

θ
∂φ

∂t
=

∂

∂x

(
Dφ

∂φ

∂x
+ DT

∂T
∂x

)
, (16)

where

Dφ|(φ,T ) = δvPs +
DlρwRv T

φ
,

DT |(φ,T ) = δvφ
dPs

dT
+ DlρwRv ln φ,

(17)

and θ is the moisture capacity of the wall with units of kg/m3.
Note that Dφ and DT represent the combined liquid and vapor
moisture conductivity/permeability influenced by the gradient
of relative humidity, φ, and temperature, T , respectively. List
of values of the liquid conductivity, Dl, vapor permeability, δv,
and moisture capacity, θ, of common building materials can be
found in [44].

By using boundary conditions of convective moisture trans-
fer and integrating Eq. (16) over each half-volume of the wall,
the moisture governing equations for a lumped wall can be ob-
tained in terms of relative humidity φ and temperature T as

A L θw,i

2
dφw,i

dt
=Dφ|(φw,i,Tw,i)A

φw,e − φw,i

L

+ DT |(φw,i,Tw,i)A
Tw,e − Tw,i

L
+ hM,i A

(
φw,i Ps|Tw,i − φa,i Ps|Ta,i

)
,

(18a)

A L θw,e

2
dφw,e

dt
=Dφ|(φw,e,Tw,e)A

φw,i − φw,e

L

+ DT |(φw,e,Tw,e)A
Tw,i − Tw,e

L
+ hM,e A

(
φw,e Ps|Tw,e − φa,e Ps|Ta,e

)
.

(18b)

2.2. State-space system of BEAM
The coupled heat and moisture transfer equations are com-

bined into a state-space system of equations, so that they can be
used for optimal control. The general form of the state-space
system of BEAM is written as:

Ẋ(t) = A(t) X(t) + B(t) U(t),
Y(t) = C X(t),

(19)

where X(t) is a state-variable (temperature and relative humid-
ity of indoor air and walls); A(t), B(t) and C are the coefficient
matrices; Y(t) is an output (temperature and relative humidity
of indoor air), and U(t) is an input, which includes both uncon-
trollable input U0(t), such as outdoor weather conditions, and
controllable input ∆U(t), such as power of the HVAC system.
Note that the dimension of the controllable input ∆U usually
does not match the dimension of U. Therefore, a transforma-
tion matrix CU is introduced such that U = U0 + CU ∆U.

The critical variables related to outdoor weather conditions
in the buildings’ thermal performance are outdoor temperature,
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relative humidity, solar radiation, wind speed, and wind direc-
tion. The climate parameters can come from three sources. The
first one is from the weather database Typical Meteorological
Year 3 (TMY3) [45], which is a collection of hourly typical
climate data at a location, including all the important climate
elements (i.e., temperature, relative humidity, solar radiation,
and wind speed). The TMY3 is based on the hourly collected
weather data during 1976-2005 for locations in the USA, and
ones during 1991-2005 for other locations. This is used as input
to BEAM for future prediction in this work. The second source
is a local weather forecast, which usually only reports temper-
ature, relative humidity, and wind speed for 5 future days. If
available, this data serves as more accurate predictions of fu-
ture climate variables replacing these parameters provided in
the TMY3 database. The third source is any available real-time
data from physical sensors, which override the parameters from
the other sources.

Generally weather forecast data and weather database TMY3
are provided in the form of tables. To easily use weather data
for control, the state-space system of BEAM is discretized by
using the backward Euler scheme. The state-space system of
BEAM in discrete form is rewritten as

Xk+1 = Ak Xk + Bk
(
U0,k + CU ∆Uk

)
,

Yk = C Xk.
(20)

Note that Ak and Bk are time-varying coefficient matrices due
to the external disturbance inputs. In practical control, these
two coefficients may not be updated every time step since the
weather data usually varies slowly. To decrease the compu-
tational time and improve the control efficiency, BEAM is pro-
gramed such that Ak and Bk are updated only when weather data
changes significantly more than some default tolerance values.

2.3. Verification of BEAM

To ensure the correctness of the implementation, a numerical
solution of BEAM has been successfully compared with an an-
alytical solution by using the Method of Manufactured Solution
(MMS) [46]. In addition, BEAM has also been compared with
EnergyPlus [15], which is commonly used for building energy
simulations. Temperature, moisture, and monthly thermal en-
ergy consumptions are compared. Figure 2 shows the indoor
air temperature and relative humidity comparisons computed
from BEAM and EnergyPlus. The one room model, Model 1
shown in Fig. 3, is used, and the simulation location is Hous-
ton during August 1-8. As can be seen from Fig. 2, the re-
sults are in excellent agreement. The mean absolute difference
for the indoor air temperature and relative humidity are 0.69◦C
and 1.28%, respectively. The difference in temperature may be
due to the different heat transfer model used for walls. While
BEAM is based on the 3R2C lumped capacitance model, En-
ergyPlus uses a comprehensive layer-by-layer conduction cal-
culation. The difference in relative humidity may be due to the
fact that EnergyPlus uses moisture property curves which vary
with relative humidity, while BEAM uses constant properties,
considering that moisture property curves are usually not easy
to be obtained for most construction materials.
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Figure 2: Indoor air temperature and relative humidity comparisons between
BEAM and EnergyPlus in Houston during August 1-8.

For monthly thermal energy consumption, the three different
geometric models at three different locations (Washington, DC,
Emmonak, AK, and Houston, TX) are used for comparisons
between BEAM and EnergyPlus. Figure 3 shows the three ge-
ometric models: one with a single room (Model 1), one with
two rooms on one floor (Model 2), and one with four rooms on
two floors (Model 3). Table 1 gives a detailed description of
the thermal resistance, U, and the apparent thermal capacitance
per unit area of each model, C′′a =

∑N
i=1

(
ρm,icpm,iAi

)
/
∑N

i=1 Ai,
for the buildings’ materials. The Mean Relative Differences
(MRD) of the predicted monthly thermal energy consump-
tion over a year (using the weather data base TMY3) between
BEAM and EnergyPlus, defined as

MRD =
1
12

12∑
imonth

∣∣∣∣∣∣EBEAM,imonth − MEP,imonth

MEP,imonth

∣∣∣∣∣∣, (21)

are shown in Table 2, where the monthly thermal energy is
defined as the thermal energy used to maintain a specified in-
door temperature setpoint in each geometric model for a whole
month. The differences are also mainly due to the fact that
BEAM uses the 3R2C lumped capacitance model while Ener-
gyPlus uses a comprehensive layer-by-layer conduction calcu-
lation. As the 3R2C lump capacitance model simplifies calcu-
lations of walls, it is suitable for buildings with larger thermal
capacitance which can better stabilize the heat transfer. There-
fore, the MRDs of geometric Model 3, with a relatively com-
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Table 1: Properties of the three tested geometric models.

Type of surface
Model 1 Model 2 Model 3

U(W/m2K) C′′a (J/m2K) U(W/m2K) C′′a (J/m2K) U(W/m2K) C′′a (J/m2K)
Exterior wall 16.7 8670 0.41 2.86 × 105 0.39 2.86 × 105

Ground floor 5.15 6.09 × 105 0.59 9.09 × 105 5.15 5.74 × 105

Roof 0.08 0.37 × 105 1.64 5.18 × 105 0.08 3.69 × 105

Door 3.70 0.25 × 105 3.70 0.25 × 105 2.70 0.25 × 105

Window 6.71 N/A 6.71 N/A 6.71 N/A
Interior wall 0.39 2.86 × 105 0.41 2.86 × 105 1.28 0.30 × 105

Interior floor N/A N/A N/A N/A 0.17 6.09 × 105

(a) Model 1 (b) Model 2

(c) Model 3

Figure 3: Three geometric models used for BEAM and EnergyPlus analysis.

plex building structure and a larger thermal capacitance, are
significantly less than other two simpler structures, while for
a simpler model, such as Models 1 and 2, the 3R2C simplifi-
cation is amplified and thus results in an increased difference.
Since the MRDs of the monthly thermal energy consumptions
for all three models at the three locations are below 6.5%, we
conclude that BEAM gives reasonably reliable results using a
much simpler method.

Validation of BEAM is accomplished by comparing the re-
sults from the verified model with experiments. This is dis-
cussed in Part II. [22].

2.4. Reduced order BEAM (Re-BEAM)
An important requirement of a dynamic model to be used for

real-time control is simplicity. In general, the state-space sys-
tem of BEAM consists of a pair of coupled heat and moisture
transfer equations (Eqs. (2) and (3)) for each space, and cou-
pled heat and moisture transfer equations (Eqs. (10a), (10b),

Table 2: Mean Relative Differences of the monthly thermal energy between
BEAM and EnergyPlus.

Location
Geometric model

Model 1 Model 2 Model 3
Washington, DC 6.30% 4.69% 2.59%
Emmonak, AK 5.00% 2.12% 0.96%
Houston, TX 3.28% 0.08% 1.02%

(18a) and (18b)) for each wall. For example, Model 3 shown in
Fig. (3c) has 4 spaces and 28 surfaces. The complete dynamic
model of this geometry by using BEAM consists of 64 coupled
equations, and they are required to be solved simultaneously
every time step. This can lead to inefficient real-time control
when applying BEAM to a multi-zone building.

Many model order reduction methods have been applied to
building energy modeling. One of the most commonly used is
principle component analysis (PCA) or proper orthogonal de-
composition (POD) methods, such as the modal analysis [47–
49] and balance truncation methods [50]. Based on the demon-
stration by Kim and Braun [51], by applying the balance trun-
cation method to a building energy model, the results obtained
from the reduced model, consisting of 10 states, matched well
with ones obtained from the 297-node full-order model of a sin-
gle zone space. Another common approach to obtain a lower
order model is to apply a data driven model (“black box”) on
simulated results from a full-order model. For example, Bualan
et al. [52] used a parameter identification method to identify and
optimize 5 parameters used in the proposed simplified thermal
model, and proposed its integration with a model-based pre-
dicted control algorithm. Georgescu and Mezi [53] used the
Koopman operator to create a lower order model from simu-
lated results from EnergyPlus. Kim et al. [54] aggregated a
linearized time-invariant (LTI) building envelope model with a
LTI reduced-order indoor CFD model, obtained by performing
system identification on response data generated by a commer-
cial CFD software.

In distinction to the above methods, in this research a physi-
cally based model order reduction method, i.e., the aggregation
method [55], is selected to construct the reduced order model of
BEAM (Re-BEAM). The main idea of this method is to group
variables that share a similar dynamic response into a single
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variable. The accuracy of the reduced model depends on how
the aggregated parameters and variables represent the more de-
tailed model. Therefore, it is important to understand the phys-
ical correlations among parameters to construct an accurate re-
duced model. The reduced model, with the grouped parame-
ters and variables, should be structured similar to the full-order
model, but having less complexity. In other words, the interac-
tion among individual parameters and variables are physically
simplified and represented by the interaction among grouped
parameters and variables. This method is directly suitable for
use on detailed building model information file formats, such
as gbXML, without the necessity of performing system iden-
tification on other model results. We note that an alternative
popularly used method, the modal analysis method [47–49], is
not applicable in this situation. The modal analysis method is
usually effective for most large-scale systems. However, by the
nature of this method, the fast modes in the system are usu-
ally neglected, which may eliminate crucial variables (e.g., in-
door air temperature) from the energy model. Our model order
reduction method gives us the flexibility to select the desired
variables. The other benefit of a physically based model order
reduction is that it has composability, which can be extended to
be applied to a general building structure. As a result, while in-
dividual Re-BEAM models can be constructed independently,
the Re-BEAM model of the connected structures can also be
easily combined.

This research focuses on the systematic approach for aggre-
gation of structure components to form a lower order model.
To ensure accuracy of indoor climate control, variables related
to a room’s air are not aggregated. Re-BEAM is developed
by aggregating all of the parameters into one for each individ-
ual room space, one for a lumped interior surface associated
with each room, one for a lumped exterior surface, and one
for a lumped ground surface. With n the number of rooms in
the considered building, the order of Re-BEAM after imple-
menting aggregation is 2n + 2: n + 2 for lumped surfaces and
n for room’s air. Similar to an electrical circuit, the thermal
and moisture capacitances of the lumped surface are evaluated
as summed values of the components. Note that although the
ground floor in each room is part of the interior surface of that
room, it is not aggregated. Instead, the lumped ground surface
is separated from the lumped interior surface since the physi-
cal time response of the ground surface is generally longer than
the rest of the interior surfaces due to its relatively larger ther-
mal capacitance. To illustrate the model order reduction, Fig. 4
shows a full-order model (BEAM) of the basic 2-room geome-
try, represented in Fig. (4a), and the reduced 2n+2 order model
(Re-BEAM), represented in Fig. (4b), where each continuous
block represents an aggregated surface. The electrical circuit
analogy, representing the full-order model and the aggregation
method of the 2-room model, are shown in Fig. 5.

Simulations are performed to verify the accuracy of the Re-
BEAM compared with the detailed BEAM. The three geomet-
ric models, used for the BEAM-EnergyPlus comparisons in the
previous section (Models 1, 2, and 3, shown in Fig. 3), are used
for comparisons. The simulations are performed for Houston,
TX, and during the period of August 1-3, where outdoor tem-

perature ranges between 22◦C and 40◦C, without any active
temperature or humidity control. The mean absolute differences
of room temperature during the three days simulation between
Re-BEAM and BEAM for models 1, 2 and 3 are 0.08◦C, 0.13◦C
and 0.23◦C, respectively. As expected, the differences increase
as the complexity of geometry increases. As the mean absolute
differences of all the three models over the three days period
are less than 0.25◦C, we conclude that Re-BEAM is relatively
reliable for control purposes.

It is important to note the limitation of the physical aggre-
gation method. Although this method is a systematic model
order reduction and is applicable to general building model in-
formation file formats, such as gbXML, it omits some detail
information about the connection among rooms when aggre-
gating interior walls. This lack information may be critical for
cases where there are large variations among rooms’ tempera-
tures in a building such as an industrial building with a freezer
room. To elaborate on this issue, consider a 3-room building.
Let room B connect with room A and C, but let room A not
connect with room C. In this case, the heat and moisture trans-
ferring between interior walls of room A and those of room C
require the transfer through the interior walls and air of room B.
With the proposed physical aggregation method, the aggregated
interior wall of room A and that of room C are separated only
by the aggregated interior wall of room B. As a result, heat and
moisture are easier to transfer between room A and C than the
real situation. This problem is minimal in common residential
and commercial buildings whose range of temperature variation
among rooms are usually small.

3. Optimal control algorithm in building energy manage-
ment

The goal of implementing an energy model in a building cli-
mate control is to minimize the building’s energy consumption
while maintaining indoor thermal comfort for occupants. A
common and effective method is to vary the desired indoor cli-
mate schedule based on the occupants’ activities. The benefit of
this method is that it can be applied to any setpoint-schedulable
HVAC system with little or no physical modification to the sys-
tem since the modification of the desired climate schedule is
usually software based. By using Re-BEAM as the predic-
tive model, and considering the occupants schedules and out-
door environmental conditions, Model Based Predictive Con-
trol (MBPC) is developed to enable optimal control strategies.
In general, MBPC is performed by formulating and solving a

Room 1 Room 2

(a)

Room 1 Room 2

(b)

Figure 4: Schematic of basic n=2 rooms geometry components based on (a) the
full-order model (BEAM), (b) the reduced 2n + 2=6 order model (Re-BEAM).
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Room 1 Room 2

Ground

Lumped ground surface

Lumped interior
surface 1

Lumped interior
surface 2

Lumped exterior surface

(a)

Outdoor

Room 1 Room 2

Ground

Lumped
interior

surface 1

Lumped
interior

surface 2

Lumped exterior surface

Lumped ground surface

(b)

Figure 5: Electrical circuit analogy of a basic 2-room geometry based on (a) the
full-order model (BEAM), and (b) the reduced 2n+2 order model (Re-BEAM).

finite horizon optimal control problem at each sampling time
interval based on the physical model. The result is a future op-
timal trajectory of inputs and state variables based on a cost
function that satisfy both model dynamics and constraints. In
this work, Re-BEAM is applied in MBPC, while the constraints
on a building with given structural details are the maximum
power of the HVAC system and the maximum rate of the hu-
midifier/dehumidifier.

As the aim of optimization in a building climate control is to
minimize energy consumption while maintaining thermal com-
fort, a quadratic formulation of the cost function is used:

J =

N∑
k=1

[
(Yk − rk)T Wr,k (Yk − rk)

]
+

N−1∑
k=1

[
(∆Uk)T W∆U,k (∆Uk)

]
.

(22)

The first term of the cost function represents the cost due to the
deviation of the indoor temperature and relative humidity (Yk)
from the reference setpoints (rk). The second term represents
the cost due to the power supplied by HVAC system and hu-
midifier/dehumidifier (∆Uk). The quantities Wr,k and W∆U,k are
the weighting coefficient matrices. These weighting coefficient
matrices may require to be tuned when performing MBPC so
that the output reference variations are within the specified tol-
erance limits of comfort conditions.

The optimization algorithm is obtained by modifying the fi-
nite horizontal Linear Quadratic Tracking (LQT) [56] to ac-
count for predefined uncontrollable inputs U0, which in this
case includes the weather information. The optimal control-
lable input ∆Uk−1 at time step k − 1 is expressed as:

∆Uk−1 = KX
k−1 Xk−1 + KU0

k−1 U0,k−1 + KV
k−1 Vk, (23)

where KX
k−1, KU0

k−1, and KV
k−1 are the gains, which for a previous

state-variable, Xk−1, a previous time step uncontrollable input,
U0,k−1, and a current time step reference-setpoint-related vari-
able Vk, respectively. These gains are expressed as functions
of the coefficient matrices Ak, Bk and C at current time step in
Eq. (20), and a predicted-output-related variable S k. Noted that
the variables Vk and S k are introduced here to indirectly include
the reference setpoint rk and the predicted output Yk, respec-
tively, in the calculation for the optimal controllable input ∆Uk.
The gains (KX

k−1, KU0
k−1, and KV

k−1) are calculated backward in
time starting from the last expected time step, N, from

KV
k−1 =

(
CT

U BT
k S k Bk CU + W∆U,k−1

)−1
CT

U BT
k ,

KX
k−1 = − KV

k S k Ak,

KU0
k−1 = − KV

k S k Bk,

S k−1 =AT
k S k

(
Ak − Bk CU KX

k−1

)
+ CT Wr,k−1 C,

Vk−1 = (Ak + Bk CU S k−1)T Vk + CT Wr,k−1 rk−1

− AT
k S k Bk

(
I + CU KU0,k−1

)
U0,k−1,

(24)

with initial conditions at time step N of

S N = CT Wr,N C, VN = CT Wr,N rN . (25)
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Note that as the gains are calculated backward in time, the gains
KV

N−1, KX
N−1, and KU0

N−1 of time step N − 1 are required to be cal-
culated first. However, the time-varying coefficient matrices AN

and BN of either BEAM or Re-BEAM at the last expected time
step cannot be easily obtained since they are also a function of
the actual state variables, which have not been calculated yet.
To obtained the exact values of the gains, iterations are required.

For simplicity, both time-varying coefficient matrices Ak and
Bk in Eq. (24) are simplified by using the current time step coef-
ficient matrices A1 and B1 for all time steps. In other words, the
time-varying coefficient matrices Ak and Bk are treated as time-
invariant coefficient matrices during MBPC calculation for the
optimal controllable inputs. This is a reasonable estimation
since both Ak and Bk of BEAM and Re-BEAM are usually in-
sensitive during the period used in the MBPC for building cli-
mate control due to the large responsive timescale of the build-
ing envelope. Subsequently, the coefficient matrices Ak and Bk

are only updated at the beginning of each MBPC calculation.

4. Sample results

To show the effectiveness of the proposed optimal control
algorithm, the MBPC method is compared with two other com-
mon building climate control methods. The first method is a
traditional constant temperature setpoint control, which is set
as constant 25◦C. The other control method uses a time-varying
temperature setpoint schedule based on the occupants activities
without applying an optimal algorithm. Typically, when oc-
cupants are sleeping the room temperature is set to be slightly
lower than that when occupants are active. It should be noted
that although it is unnecessary to control the room temperature
when there is no occupancy, the room temperature should still
be within upper and lower limits for the sake of indoor equip-
ment conditions. In this demonstration, the room temperature
setpoints during sleep, active, and away times are 25◦C, 26◦C
and 35◦C, respectively. Also, the occupancy schedule was as-
sumed as sleeping time from 10:00 pm to 6:00 am, active time
from 6:00 am to 7:00 am and 8:00 pm to 11:00 pm, and away
time from 7:00 am to 8:00 pm. The MBPC method also uses the
same schedule as the occupants-activities-based setpoint sched-
ule, and then applies the optimization algorithm to obtain the
optimized room temperature setpoint. The relative humidity
setpoint for all three control methods is maintained constant at
40%.

The Re-BEAM simulations are performed based on a two-
story residential building model located in Houston, TX dur-
ing August 1-2, where the outdoor temperature ranges between
22◦C and 40◦C. Variation of outside weather during the two-
day simulation period is obtained by interpolating the hourly
weather database TMY3 using a cubic spline to obtain weather
information every minute. Figure 6 shows the building model
from outside and the floor plans of both stories. This building
model was generated using Autodesk Revit Architecture. The
dimension of the building is 8.89 m (29 ft 2 in) in length, 7.11
m (23 ft 4 in) in width, and 3.08 m (10 ft) in height for each
of the two floors. The construction materials for floors, ceil-
ings, interior, and exterior walls are 10-inch wood and 14-inch

(a)

UP

Room

1

Room

2

Room

3

1 m

(b)

Room

4

Room

5

1 m

(c)

Figure 6: Geometric drawing of the sample two-story residential building
showing: (a) 3-D outside view of the building, (b) the first floor plan, and (c)
the second floor plan.

concrete, compound ceiling 2×4 ACT system (T-Bar Ceiling),
3 1/8-inch partition and brick. Note that these construction ma-
terials and their properties are available in the default built-in
library of materials provided by Autodesk Revit Architecture.

By using the HVAC system with variable control as actua-
tor, the thermal energy consumptions during the two-day period
resulting from three different control methods are summarized
in Table 3. For the HVAC system with variable control, the
power supply is assumed to be able to be varied smoothly from
zero to the maximum. Note that the energy consumption pre-
sented in this research is thermal energy, which is not the same
as electrical energy. The proportion between those energy de-
pends on efficiency of each HVAC system, which is not rele-
vant in the present research. Based on the results, the MBPC
method outperforms the other two methods by consuming only
57.3% of that of constant temperature setpoint control method,
which consumes most energy. This demonstrates that the en-
ergy consumption of indoor climate control can be significantly
improved by appropriately adjusting the temperature setpoint

10
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schedule even without involving any hardware modification.
The differences among energy consumption results can be

explained by observing the variations of rooms’ temperatures
and variable thermal powers provided by the HVAC system for
the three different control methods. Only information of room
1 is presented in Fig. 7 and discussed as the other rooms also
show similar trends. Note that the room temperature in Fig. 7(a)
is not visible in the graph since it overlaps with the setpoint line.
Comparing constant and varying temperature setpoint methods,
Fig. 7(b) and 7(c) show that the indoor temperature during the
vacancy time, i.e., when the setpoint is at 35◦C, naturally rises
for most of that time. On the other hand, the temperature shown
in Fig. 7(a) is always maintained at 25◦C during that period,
which results in a large amount of unnecessary energy waste
compared with the other methods, as noted in Table 3.

To explain why the MBPC method performs better than the
other methods in terms of energy savings, it is necessary to
closely observe Fig. 7(c). It shows that the indoor temperature
changes smoothly for most of time, except during the vacant
periods, and the deviation from the setpoint in other periods is
less than 1◦C. Compared with the result from the occupants-
activities-based setpoint control method shown in Fig. 7(b), the
indoor temperature resulting from the MBPC method is slightly
higher. As a result, the time-average indoor temperature of the
MBPC is also slightly higher, which implies lower energy con-
sumption. It should be noted that in this demonstration the in-
crease in indoor temperature from the setpoint when the room
is occupied is less than 1◦C: this means that the occupants’ ther-
mal comfort is still preserved.

The major drawback of using a varying temperature setpoint
schedule is that it requires a higher peak power of the HVAC
system. As seen form Fig. 7(a), the required peak power of the
constant setpoint case is 880 W, which is significantly less than
the other two cases. To be precise, the peak power of the MBPC
case is 1990 W, while that of the occupant-activities-based set-
point case is off the graph (10300 W). This is because it re-
quires more power to change the indoor climate condition than
just maintaining it, especially when there is a sudden change in
the setpoint schedule as shown in Fig. 7(b). It can be clearly
seen that the peak always occurs at a transition of setpoint. By
optimizing the energy consumption using the MBPC, not only
there is significant improvement in energy savings, but also the

Table 3: Thermal energy provided by a variable control HVAC system utilized
for the sample two-story residential building located in Houston, TX during
August 1-2 based on three different control methods.

Control method
Required thermal
energy [kW · h]

Energy-saving
compared with

base case
Constant temperature

setpoint control
(base case)

166.29 -

Occupant-activities-based
setpoint control 101.43 39.0%

MBPC 95.38 42.6%

method smooths the climate setpoint transition, which results
in a lower peak power requirement, but still higher than that of
the constant temperature setpoint case. Based on this, the max-
imum ∆U may require to be accounted in the cost function in
future development of the optimization algorithm if the size of
the HVAC system is a major concern.

It should be noted that the optimal controllable input ∆Uk

obtained from Eq. (23), which is the variable input, can theoret-
ically be applied directly to a HVAC system with variable con-
trol, such as an inverter compressor HVAC, without necessity
of physical modification. This can be achievable by controlling
air flow through a Fan Coil Unit (FCU) and power of the in-
verter compressor, such that the supplied cooling/heating power
matches the specified optimal controllable input ∆Uk. However,
practically this cannot be easily applied. In general, the pre-
dictive optimal states obtained from the model Re-BEAM and
optimal controllable input ∆Uk is used as the optimal desired
setpoint schedules of temperature and humidity for the HVAC
system. As a result, this approach is applicable to any HVAC
system, both variable control and on/off configurations, if its
control system allows input of a setpoint schedule.

To show the versatility of our approach, simulations were
also performed for a traditional on/off control HVAC system
with a cooling capacity of 1000 W for rooms 1, 2, and 3, and
2000 W for rooms 4 and 5 to ensure that the benefit of the
MBPC also applies for a general on/off control HVAC system.
The cooling capacity of HVAC systems in rooms 4 and 5 are
larger than ones in rooms 1, 2 and 3 because the rooms on the
second floor (rooms 4 and 5) received more heat load from the
solar radiation as their ceilings are connected to the roof. As
it is operated in an on/off manner, the room temperature can-
not follow the temperature schedule as well as a variable con-
trol HVAC system. The allowable temperature band of ±1◦C
around the temperature setpoint was assumed for on/off con-
trol, which is the same default range of many commercial ther-
mostats, e.g., Honeywell [3]. This is introduced as a means of
preventing frequent chattering and also prolonging the operat-
ing life of a HVAC system. For simplicity, the power provided
by the HVAC system is assumed to be either zero or the maxi-
mum (1000 W for the rooms on the first floor and 2000 W for
the rooms on the second floor).

Table 4 summarizes the overall thermal energy consumptions
of the 1000 W on/off control HVAC system that controls the
climate in the two-stories residential building model in Hous-
ton, TX, during August 1-2 based on the three different control
methods. Variations of room 1’s temperature and HVAC sys-
tem on/off status are shown in Fig. 8. Similar to the results
from the variable control HVAC system, the MBPC performs
the best among the three observed methods. Therefore, it is
concluded that the MBPC for thermal control is appropriate for
HVAC systems with both variable and on/off control configura-
tions. Further demonstrations of the practical application of the
MBPC are experimentally investigated in the Part II [22].

Although it is not a primary aim of this research, it is inter-
esting to note that the overall energy consumption of the on/off

control HVAC system is smaller than that of the variable con-
trol. However, one cannot generally conclude that a variable
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(a) Constant temperature setpoint control method.
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(b) Occupant-activities-based setpoint control method.
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(c) MBPC method.
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Figure 7: Simulation results of the two-story residential building model during August 1-2 in Houston, TX, showing variations of room 1’s temperature and its
required variable thermal power using (a) the constant temperature setpoint control method; (b) the occupant-activities-based setpoint control method (note that the
off-scale two power peaks reach values of 7585 W and 10300 W.); and (c) the MBPC method.
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Table 4: Thermal energy provided by 1000 W on/off control HVAC system
utilized for the two-story residential building model located in Houston, TX,
during August 1-2 based on three different control methods.

Control method
Required thermal
energy [kW · h]

Energy-saving
compared with

base case
Constant temperature

setpoint control
(base case)

146.48 -

Occupant-activities-based
setpoint control 96.67 34.1%

MBPC 91.75 37.4%

control HVAC system is less efficient than a traditional on/off

control. This is because this study does not account for electri-
cal energy loss during the startup process of the on/off control
HVAC system. Also, the frequent on/off can damage the equip-
ment longevity in long terms. Further investigation is required
on this issue.

5. Conclusions

This work focuses on the development of an accurate and
reliable building hygrothermal model based on a physical ap-
proach and Model-Based Predictive Control (MBPC) method
to perform optimal control in building energy management.
The developed BEAM was verified with an analytical solution,
and compared with simulation results from EnergyPlus. To
be computationally-efficient and easily integrated with a con-
trol algorithm, Re-BEAM was developed with good accuracy
by reducing the order of BEAM. The MBPC was developed
by applying a finite horizon Linear Quadratic Tracking (LQT)
method to the model to obtain an optimized temperature set-
point schedule based on occupants’ activities.

Demonstrations of applying the MBPC were performed on a
residential building model by using Re-BEAM to perform the
simulations. Results show that the MBPC saves thermal en-
ergy consumption up to nearly 43% compared with a traditional
constant temperature setpoint control method. Further analysis
shows that energy is primarily saved by varying the temper-
ature setpoint with the occupants activities; for example, the
indoor climate is maintained in comfort zone only when there
is occupancy. In addition, further energy saving is obtained by
smoothing temperature setpoints transitions resulting from the
optimization process.

Simulation results of using MBPC on a complex building
structure look promising in improving a building energy effi-
ciency. Note that the performance of using MBPC should de-
pend on the situation of a particular building system, such as the
building materials and heating/cooling system size. In future
works, the use of sensors in the building system will provide
real-time measured data input to the model, where a machine-
learning algorithm can be integrated with the MBPC algorithm
to learn the occupants schedules and further optimize the tem-
perature schedule. The use of Re-BEAM with other available

predictive control methods should be comprehensively investi-
gated. Experimental validations demonstrating the reliability of
Re-BEAM and energy-saving benefits of applying the MBPC
method are demonstrated in Part II [22].
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Appendix A. Solar irradiation and shading effects

For an exterior wall surface, the total received radiation
Q̇S olar (also named as the global horizontal radiation) includes
direct normal radiation Idir,n, diffuse horizontal radiation Idi f ,h,
and ground-reflected radiation. However, because ground re-
flected radiation is usually insignificant compared to direct and
diffuse, for all practical purposes global radiation is given by
the sum of direct Idir,n and diffuse radiation Idi f ,h only:

Itotal = Idir,n + Idi f ,h. (A.1)

The direct solar radiation represents the portion of solar en-
ergy that is transmitted directly through the atmosphere. Its di-
rection remains basically unchanged from the time it was emit-
ted from the sun to the time it strikes the building surface. Di-
rect radiation can be expressed as:

Idir,n = Idir cos θ, (A.2)

where the normal direct solar radiation Idir can be taken directly
from the weather file TMY3 and θ is the solar incidence angle,
which can be calculated through the following equation:

cos θ = sinψs cos φw + cos(ψs − ψw) cosψs sin φw, (A.3)

where ψs is the solar azimuth angle, φw is the wall surface’s
tilted angle, and ψw is surface azimuth angle.

Diffuse radiation is the portion of solar energy that has col-
lided with one or more particles in the atmosphere and has been
re-emitted in some new direction and can be expressed as

Idi f ,h = Idi f
1 + cos φw

2
, (A.4)

where the diffuse horizontal radiation Idi f is taken directly from
the TMY3 weather file.

Shading diminishes the effectiveness of irradiation. To ac-
count for this effect, the model predicts the location of a shadow
cast from other surfaces onto the receiving surface, then sub-
stracts the shadow area from the total surface area resulting in
the net effective irradiated area.

The process of evaluating the shading area of the considered
surface is modified from that in EnergyPlus Engineering Man-
ual [32]. In general, it can be done by evaluating the shadow
casting by casting surfaces on the receiving surface. To avoid
unnecessary calculation, the first step is to identify the poten-
tial shadow casting surfaces, whose part of them are above and
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(a) Constant temperature setpoint control method.
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(b) Occupant-activities-based setpoint control method.
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(c) MBPC method.
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Figure 8: Simulation results of the two-story residential building model during August 1-2 in Houston, TX, showing variations of room 1’s temperature and on/off

status of 1000 W HVAC system using (a) the constant temperature setpoint control method; (b) the occupant-activities-based setpoint control method; and (c) the
MBPC method.
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in front of the receiving surface. Straightforwardly, the surface
that is entirely below the receiving surface is screened out by
comparing its vertical global coordinates, z, with those of the
receiving surface. To identify the surface behind the target sur-
face, it is required to introduce the relative coordinate system,
whose origin is on the receiving surface and the z-axis is the
normal direction of the receiving surface. Noted that based on
this, the vertical relative coordinate, z′, of the flat receiving sur-
face is always zero. The surface, whose all z′ components of its
relative coordinate are negative, is entirely behind the receiv-
ing surface. Thereby, it can also be screen out, leaving only
potential casting surfaces for further calculation.

After the potential casting surfaces are identified, the loca-
tion of the shadow on the considered surface is determined by
projecting the casting surface onto the receiving surface. Global
coordinate (x, y, z) of the clipped casting surface is projected to
relative coordinate (x′, y′, z′) referenced to the receiving surface
as [32]:

x′ =x −
z · a
cos θ

,

y′ =y −
z · b
cos θ

,

z′ =0,

(A.5)

where

a = sinψw sinψs sin φs − cosψw cosψs sin φs,

b = − cosψw cos φw sinψs sin φs−

sinψw cos φw cosψs sin φs+

sin φw cos φs.

(A.6)

Note that before evaluating the shading location, part of the
potential casting surface that is behind the receiving surface,
identified by the relative coordinate with negative z′ value, is
required to be clipped to avoid a pseudo-shadow.

The last step of evaluating the shading area is to calculate
the overlap area of the shadow and the receiving surface. This
step is done by intersecting the receiving surface with the over-
all shadow region, which is given by the union of all shadow
regions cast from other surfaces. The shading area on the con-
sidered surface is then evaluated from the coordinates of the
resulting overlap area.

Appendix B. Ventilation and infiltration

The air mass flow rate ṁe in the temperature and moisture
governing equations of room air is the sum of infiltration rate
ṁi and ventilation rate ṁv. Any outdoor air that enters by way of
infiltration and ventilation is assumed to be immediately mixed
with the zone air. The major difference between infiltration
and ventilation is that infiltration is the air exchange through
the building envelopes’ leakage, while ventilation is the air ex-
change through the opening area. For infiltration, an effective
leakage area model is employed based on Sherman and Grim-
srud [57]. The infiltration rate is given by

ṁi = 10 Ac

√
cs |Ta − Te| + cw (Vwind)2, (B.1)

where Ac (m2) is the effective air leakage area (taken as 2%
of the total surface area of a wall) of each exterior surface; Ta

and Te are the room air temperature and outside temperature; cs

and cw are the stack and wind coefficients, respectively, which
depend on the structure’s geometry. More details regarding cs

and cw are found in Sherman and Grimsrud [57].
Ventilation usually occurs when a door or a window is open.

In this work, only ventilation between indoor air and outdoor
air is considered. According to ASHRAE [31], the ventilation
rate combines both wind-driven and stack-driven effects:

ṁv =

√
ṁ2

s + ṁ2
w, (B.2)

where ṁs is the stack-driven ventilation, and ṁw is the wind-
driven ventilation.

The air mass flow rate that is stack-driven is governed by the
temperature difference:

ṁs = cD Aopening Fschedule
√

2 g ∆HNPL (|Ta − To| /Ta), (B.3)

where Aopening is the surface area of the opening (i.e., window
or door); cD is the discharge coefficient:

cD = 0.40 + 0.0045 |Ta − To|, (B.4)

∆HNPL is the height from the midpoint of the lower opening
to the neutral pressure level. Available data of ∆HNPL in var-
ious kinds of buildings is limited. The value of ∆HNPL in tall
buildings varies from 0.3 to 0.7 of total building height [58].
For houses, especially houses with chimneys, ∆HNPL is usually
above the middle height of the building. Also note that for air
ventilation between multi-zones, there is no wind-driven effect
but only a stack-driven effect.

Wind-driven ventilation is primarily dependent on the wind
speed:

ṁw = cvAoVwind, (B.5)

where cv is 0.5 to 0.6 for perpendicular winds and 0.25 to 0.35
for diagonal winds; Ao is the opening area; Vwind is the local
wind speed.
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