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The plastid genome represents an attractive target of genetic

engineering in crop plants. Plastid transgenes often give high

expression levels, can be stacked in operons and are largely

excluded from pollen transmission. Recent research has

greatly expanded our toolbox for plastid genome engineering

and many new proof-of-principle applications have highlighted

the enormous potential of the transplastomic technology in

both crop improvement and the development of plants as

bioreactors for the sustainable and cost-effective production of

biopharmaceuticals, enzymes and raw materials for the

chemical industry. This review describes recent technological

advances with plastid transformation in seed plants. It focuses

on novel tools for plastid genome engineering and transgene

expression and summarizes progress with harnessing the

potential of plastid transformation in biotechnology.
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Introduction
Plant cells have three genomes and, in some seed plants,

two of these genomes are transformable: the nuclear

genome and the genome of the plastids (chloroplasts).

The plastid genome of photosynthetically active seed

plants is a small circularly mapping genome of 120–
220 kb, encoding 120–130 genes. It can be engineered

by genetic transformation in a (still relatively small)

number of plant species and this possibility has stirred

enormous interest among plant biotechnologists. There

are considerable attractions associated with placing trans-

genes into the plastid genome rather than the nuclear

genome. First and foremost, the high number of plastids

per cell and the high copy number of the plastid genome

per plastid offer the possibility of expressing foreign

genes to extraordinarily high levels, often one to two

orders of magnitude higher than what is possible by

expression from the nuclear genome [1,2]. Secondly,
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transgene integration into the plastid genome occurs

exclusively by homologous recombination, making plas-

tid genome engineering a highly precise genetic engin-

eering technique for plants (which normally integrate

foreign DNA into their nuclear genomes by non-hom-

ologous recombination). Third, as a prokaryotic system

that is derived from a cyanobacterium acquired by endo-

symbiosis, the plastid genetic system is devoid of gene

silencing and other epigenetic mechanisms that interfere

with stable transgene expression. Fourth, similar to bac-

terial genes, many plastid genes are arranged in operons

offering the possibility to stack transgenes by arranging

them in artificial operons. Finally, plastid transformation

has received significant attention as a superb tool for

transgene containment due to the maternal mode of

plastid inheritance in most angiosperm species, which

drastically reduces transgene transmission through pollen

[3,4].

Since the development of plastid transformation for the

seed plant tobacco (Nicotiana tabacum) more than 20 years

ago (reviewed, e.g. in [5,6]), the community has

assembled a large toolbox for plastid genetic engineering

and also made some progress with developing plastid

transformation protocols for additional species. Unfortu-

nately, plastid transformation is still restricted to a rela-

tively small number of species and not a single

monocotyledonous species (including the cereals repre-

senting the world’s most important staple foods) can be

transformed. Thus, developing protocols for important

crops continues to pose a formidable challenge in plastid

biotechnology and significant strides forward are likely to

require conscientious efforts and long-term investments

in both the academic and the industrial sectors.

Here, I review recent progress in plastid genome engin-

eering in seed plants. I focus on new tools that were

developed in the past few years and likely will enable new

applications of the transplastomic technology. I also

briefly highlight new areas in biotechnology that have

been explored recently using transplastomic approaches

and that show great promise towards a commercial util-

ization of the technology in the foreseeable future.

New tools for generating transplastomic
plants
Over the past 20 years, the basic methodology of plastid

transformation has not changed. Particle gun-mediated

(biolistic) transformation remains the method of choice

and polyethylene glycol (PEG)-mediated protoplast
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transformation is occasionally used as an alternative [6,7�].
As all protoplast-based methods, PEG-mediated plastid

transformation is technically demanding, laborious and

also more time-consuming than biolistics, but has the

advantage that the method is not protected by patents.

The development of a tissue culture-independent pro-

tocol for plastid transformation (similar to vacuum infil-

tration or floral dipping for Agrobacterium-mediated

nuclear transformation of Arabidopsis) would make the

transplastomic technology accessible to a much wider

range of users. Recently, there has been some progress

with performing manipulations of the tobacco plastid

genome in greenhouse-grown plants, especially the

post-transformation removal of marker genes by site-

specific recombination using phage-derived recombi-

nases targeted to plastids [8]. The recombinase was

delivered by Agrobacterium tumefaciens injection into axil-

lary buds of soil-grown tobacco plants. Following decapi-

tation, lateral shoot formation from the injected axillary

meristem frequently resulted in the appearance of cell

lines with marker-free plastid genomes and, in 7% of the

cases, led to transmission of the marker-free genome to

the seed progeny. Although this result demonstrates that

at least some secondary manipulations of the plastid DNA

are possible in planta through nuclear expression of plas-

tid-targeted enzymes for genome engineering, a truly

tissue culture-independent method for primary manip-

ulation of the plastid genome remains a distant goal that

will be difficult to achieve.

Similar to the DNA delivery process, the selection pro-

cedures for obtaining transplastomic plants have not

changed much over the past two decades. The spectino-

mycin resistance gene aadA encoding an aminoglycoside

300-adenylyl transferase [9] remains the most commonly

used selectable marker gene for chloroplast transform-

ation. Although in recent years, several alternative anti-

biotic resistance markers have been developed [10–12],

they appear to be less efficient than the aadA, presumably

because they require higher expression levels to confer

phenotypic resistance. Nonetheless, they may provide

attractive alternatives when intellectual property con-

siderations come into play, and they also represent valu-

able tools for supertransformation (i.e. the transformation

of an already transplastomic plant line with additional

transgenes).

Unfortunately, plastid transformation technology is still

limited to relatively few species [6,7�]. Developing a

protocol for a new species often requires significant efforts

to optimize tissue culture, regeneration and selection

procedures [13–15]. Workable plastid transformation pro-

tocols for important model plants (including Arabidopsis
thaliana) and agriculturally important staple crops (in-

cluding all cereals) are still lacking and sometimes even

switching to a closely related species or a different cultivar

of a species amenable to plastid transformation can be
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challenging [16]. An alternative to establishing a trans-

formation protocol is to transfer transgenic plastids from

an easy-to-transform species to a recalcitrant related

species or cultivar. This can be done by employing cell

biological manipulations, such as protoplast fusion and

generation of cybrids. Cybrids (or cytoplasmic hybrids)

are produced by elimination of the nuclear genome of one

of the fusion partners in a protoplast fusion experiment

(e.g. by g-ray or X-ray irradiation). To combine transgenic

chloroplasts with a new nucleus, the nuclear genome of

the transplastomic protoplasts needs to be eliminated

and, following protoplast fusion, selection and plant

regeneration in the presence of the antibiotic that the

transplastomic chloroplasts are resistant to will result in

replacement of the resident population of (wild-type)

plastids with the transgenic plastids from the alien species

or cultivar. This method has been demonstrated to work

[17–19], but due to the demanding procedures involved

in protoplast fusion and plant regeneration from proto-

plasts, it is laborious, time-consuming and applicable only

to a limited number of plant species.

Recently, a simpler method of transferring transgenic

plastids between species has been developed. It is based

on the surprising discovery that plastid DNA (and pre-

sumably entire plastids) can migrate between cells in

grafted plants [20]. As even sexually incompatible species

can be grafted, this method allows the transfer of trans-

genic plastid genomes between species by excising the

graft site (after establishment of the graft junction) and

selecting for transfer of the transgenic plastid into cells of

the recalcitrant species [21��,22��]. This method is likely

to become useful in expanding the species range of the

transplastomic technology, but its applicability will be

restricted to closely related species. The combination of a

nuclear genome with a new plastid genotype can result in

so-called plastome-genome incompatibilities (PGI)

which, with increasing phylogenetic distance, become

more likely and can result in severe mutant phenotypes

[23].

New tools for plastid transgene expression
A main reason for the excitement about chloroplast trans-

formation among biotechnologists lies in the extraordi-

narily high foreign protein accumulation levels attainable

by expressing transgenes from the plastid genome, which

in extreme cases reached more than 50% of the total

soluble protein in leaves [24,25,2]. However, it is import-

ant to realize that, despite many cases where spectacular

expression rates could be obtained [26,27], there is also a

significant list of proteins whose expression in plastid was

problematic in that expression levels were poor or unde-

tectably low. Although the molecular causes of unsuc-

cessful transgene expression are only rarely investigated

systematically, the picture emerging from the cases ana-

lysed in some detail suggests that protein stability is

often the key factor limiting foreign protein accumulation
www.sciencedirect.com
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[28–30]. Unfortunately, while the regulation of transcrip-

tion and RNA stability in plastids is reasonably well

studied, very little is known about the rules governing

protein stability. Recent transplastomic studies have

uncovered an important role of the N-terminus in deter-

mining the stability of chloroplast proteins [31,29,30].

Consequently, manipulating the N-terminus of unstable

recombinant proteins or fusing them to the N-terminus of

a stable protein can help to alleviate problems with

protein stability in transplastomic plants [29,30]. How-

ever, it appears unlikely that all cases of low foreign

protein accumulation can be explained by an instabil-

ity-conferring N-terminus. Internal sequence motifs or

improper protein folding may also trigger rapid protein

degradation. Unfortunately, next to nothing is known

about internal determinants of protein (in)stability and

also the rules that govern the foldability of proteins

expressed in the plastid remain largely elusive. Thus,

making the stability of recombinantly expressed proteins

in plastids more predictable and providing guidelines for

how to stabilize inherently unstable proteins represent

major challenges for future research.

Another attraction of the transplastomic technology

relates to the prokaryotic nature of the plastid gene

expression machinery. It offers the possibility to stack

multiple transgenes in operons and co-express them from

a single promoter as a polycistronic mRNA. This is especi-

ally useful for the engineering of metabolic pathways

(which often requires concerted expression of several

enzymes). Although operon expression has been successful

in some cases [32,33��], there are also several examples of

poor expression of at least some of the transgenes in an

operon construct transformed into the plastid genome

(reviewed in [34]). Although in bacteria, polycistronic

mRNAs made from operons directly enter translation,

many polycistronic transcripts in plastids must undergo

post-transcriptional cleavage into monocistronic units to

facilitate translation especially of the downstream cistrons

in the operon [35,34]. To ensure translatability of all

cistrons of a transgenic operon in plastids, a small sequence

element can be included that mediates intercistronic pro-

cessing into stable monocistronic mRNAs [36,37��]. This

element, derived from a processing site in the plastid psbB
operon and dubbed IEE (intercistronic expression

element), provides a valuable tool for synthetic operon

design in that it greatly increases the chances of successful

operon expression in transgenic chloroplasts [37��,34].

A serious limitation in plastid biotechnology has been the

low expression levels of plastid genes in non-green tis-

sues, such as fruits, tubers and seeds. Genome-wide

analyses of transcription and translation in tomato fruits

and potato tubers revealed that nearly all plastid genes are

strongly down-regulated at both the transcriptional and

translational levels in these non-green storage organs

[38,39]. Interestingly, while a few exceptional genes
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maintained relatively high mRNA levels but were poorly

translated (e.g. the psbA gene in tomato encoding the D1

protein of photosystem II), another small group of excep-

tional genes had low transcript levels but the mRNAs

displayed strong ribosome association suggestive of active

translation (e.g. the accD gene in tomato encoding a

subunit of the acetyl-CoA carboxylase; Figure 1). This

observation raised the possibility of combining a promoter

from a gene showing high mRNA accumulation in fruits

or tubers with the 50 untranslated region (50 UTR; con-

taining the cis-elements for the regulation of translation

initiation) from an mRNA showing strong polysome

association. Indeed, the construction of such hybrid

expression elements (Figure 1) led to significant improve-

ments in the transgene expression levels attainable in

roots, tubers and fruits [40�,41�,42��] and thus opens up

new opportunities for metabolic engineering and recom-

binant protein production in plastids of non-leafy tissues.

Sometimes the expression of transgenes in plastids causes

severe mutant phenotypes that result in retarded growth

or, in extreme cases, prevent autotrophic growth

altogether. This can have different reasons, including

enzymatic activities of the recombinantly expressed

protein that interfere with metabolic processes in the

plastid [43], harmful interactions of the foreign protein

with chloroplast membranes [44] or simply the high

metabolic burden imposed by extreme accumulation

levels of the recombinant protein [2,45]. The problem

of transplastomic plants developing drastic phenotypes

can be dealt with in two possible ways. An immediate

solution is to grow the plants (or cell cultures derived

thereof) heterotrophically or mixotrophically in bio-

reactors. Recently, a temporary immersion bioreactor has

been developed that facilitates biomass production from

transplastomic plants that display severe mutant pheno-

types and, therefore, are difficult to grow in soil [46�].
Cultivation in bioreactors requires aseptic conditions and

synthetic media, which makes biomass production signifi-

cantly more expensive compared to plant production under

autotrophic conditions in the field or in greenhouses.

However, bioreactors represent a viable option for high-

value products (e.g. expensive biopharmaceuticals), where

the additional costs of biomass production are negligible.

Moreover, bioreactors provide fully contained conditions,

which may be desirable for certain products and also may

simplify deregulation of transgenic plants.

An alternative strategy to deal with deleterious effects of

recombinant protein production in plastids is to make

transgene expression inducible. This can be readily

achieved by employing nuclear transgenes, such as an

ethanol-inducible T7 RNA polymerase gene whose

protein product is targeted to plastids and transcribes

plastid transgenes that are tethered to the T7 promoter

[47]. As the use of nuclear transgenes abrogates the

containment advantage of the transplastomic technology,
Current Opinion in Biotechnology 2014, 26:7–13
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Workflow for optimizing plastid transgene expression in non-green tissues using tomato fruits as an example. Expression of the plastid genome is

strongly down-regulated in all non-green tissues. Comparative transcript profiling (transcriptomics) and comparative polysome profiling (translatomics)

of leaves, immature green fruits and mature red fruits identify the patterns of organ-specific (leaves vs. fruits) and developmental (green chloroplast-

containing fruits vs. red chromoplast-containing fruits) regulation of plastid genes at the transcriptional and translational levels [38]. From these

datasets, information about promoters and translation signals active in chromoplasts can be extracted. Combination of a promoter from a gene that is

actively transcribed in chromoplasts with translation signals from an mRNA that is strongly translated in chromoplasts produces hybrid expression

signals suitable to drive efficient plastid transgene expression in ripe red tomato fruits [42��].
the development of a plastid-only system for inducible

transgene expression was highly desirable. The design of

an efficient system that offers both tight control and high

induction rates proved to be challenging. So far, two

options have become available: (i) a system based on

the bacterial lac repressor and lac operator, in which

transgene expression is induced transcriptionally by
Current Opinion in Biotechnology 2014, 26:7–13 
spraying or leaf infiltration with the chemical inducer

IPTG [48], and (ii) a synthetic riboswitch that induces

translation in response to application of the natural com-

pound theophylline [49].

Last but not least, efficient and cost-effective strategies

for the purification of recombinant proteins from
www.sciencedirect.com
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transplastomic plants are important components of the

toolbox for chloroplast biotechnology. Recent progress in

this area includes the evaluation of a number of purifi-

cation tags [50] and the successful targeting of foreign

proteins to plastoglobules, which facilitates the simple

enrichment of the recombinant protein by flotation

centrifugation [51].

New applications of plastid transformation in
biotechnology
The transplastomic technology has been extensively used

to insert resistance genes into the plastid genome (making

plants tolerant to herbicides or resistant to insect pests),

express recombinant proteins for molecular farming (e.g.

vaccines) and engineer metabolic pathways. Much of this

work has been comprehensively covered by a number of

recent review articles [52–54,27,7�] and, therefore, will

not be discussed in detail here. Recent new applications

in these areas include the development of a plastid

resistance gene against D-amino acids that potentially

could be used as herbicides [55�] and the successful

expression of enzymes of the antioxidant system to pro-

vide increased tolerance to abiotic stresses [56,57].

Although initially, the expression of antigens for subunit

vaccines was the main application of the transplastomic

technology in molecular farming, over the past five years

many more pharmaceutical proteins have been expressed

in transgenic plastids. Some of these proteins could be

expressed to spectacularly high levels, such as several

phage-derived endolysins that potentially can provide

next-generation antibiotics [2,58]. Promising progress

has also been made with the expression of antibody

fragments [59�], blood coagulation factors for the treat-

ment of haemophilia [60] and transforming growth factor

b (TGF-b), a cytokine-type protein that promotes wound

healing and reduces scarring [61].

The expression of industrial enzymes has become an

exciting new area of chloroplast biotechnology. With

the growing interest in renewable energy sources, the

production of biofuel enzymes has received particularly

strong attention. A number of recent studies have demon-

strated that many of the enzymes that potentially can be

used to convert cellulosic biomass into fermentable sugars

can be expressed from the plastid genome to very high

levels. These include, for example, various cellulases,

xylanases, glucosidases, pectate lyases and cutinases [62–
65,43,66–68]. Some of the genes for these enzymes were

taken from thermophilic organisms and therefore have

thermostable properties, a particularly useful feature for

the processing of cellulosic biomass at the industrial scale.

Although, for the time being, the requirement for costly

thermoacidic pretreatment of lignocellulosic biomass

remains the main obstacle to the economically viable

production of cellulosic ethanol, having a cheap source

of enzymes degrading cellulose and hemicellulose

represents an important part of the solution.
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There is also growing interest in using transplastomic

plants as factories for the production of so-called ‘green

chemicals’: raw materials and building blocks for the

chemical industry. The recent production of polyhydrox-

ybutyrate (PHB), a renewable bioplastic, to more than

18% of the dry weight of transplastomic tobacco plants

represents a particularly striking example of the success-

ful redirection of plant metabolism towards the massive

synthesis of a novel compound [33��]. The high-level

accumulation of PHB caused reduced growth of the

transplastomic plants, but this problem can potentially

be solved by making the expression of the PHB operon

inducible (see above).

The rapidly increasing number of proof-of-concept stu-

dies employing plastid transformation in biotechnological

research and the great progress made in the past few years

with both high-level recombinant protein expression and

multigene engineering [69,33��,37��,34] hold great

promise for the commercialization of the technology.

So far, products derived from transplastomic plants have

not yet entered the market, but especially in the phar-

maceutical sector, this is now expected to happen rather

soon.
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