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Abstract: In recent years, driver drowsiness has been one of the major causes of road 
accidents and can lead to severe physical injuries, deaths and significant economic losses. 
Statistics indicate the need of a reliable driver drowsiness detection system which could 
alert the driver before a mishap happens. Researchers have attempted to determine driver 
drowsiness using the following measures: (1) vehicle-based measures; (2) behavioral 
measures and (3) physiological measures. A detailed review on these measures will 
provide insight on the present systems, issues associated with them and the enhancements 
that need to be done to make a robust system. In this paper, we review these three measures 
as to the sensors used and discuss the advantages and limitations of each. The various ways 
through which drowsiness has been experimentally manipulated is also discussed.  
We conclude that by designing a hybrid drowsiness detection system that combines  
non-intusive physiological measures with other measures one would accurately determine 
the drowsiness level of a driver. A number of road accidents might then be avoided if an 
alert is sent to a driver that is deemed drowsy. 

Keywords: driver drowsiness detection; transportation safety; hybrid measures; driver 
fatigue; artificial intelligence techniques; sensor fusion 

 

1. Introduction 

According to available statistical data, over 1.3 million people die each year on the road and 20 to 
50 million people suffer non-fatal injuries due to road accidents [1]. Based on police reports,  

OPEN ACCESS



Sensors 2012, 12 16938 
 

 

the US National Highway Traffic Safety Administration (NHTSA) conservatively estimated that a 
total of 100,000 vehicle crashes each year are the direct result of driver drowsiness. These crashes 
resulted in approximately 1,550 deaths, 71,000 injuries and $12.5 billion in monetary losses [2].  
In the year 2009, the US National Sleep Foundation (NSF) reported that 54% of adult drivers have 
driven a vehicle while feeling drowsy and 28% of them actually fell asleep [3]. The German Road 
Safety Council (DVR) claims that one in four highway traffic fatalities are a result of momentary 
driver drowsiness [4]. These statistics suggest that driver drowsiness is one of the main causes of  
road accidents. 

A driver who falls asleep at the wheel loses control of the vehicle, an action which often results in a 
crash with either another vehicle or stationary objects. In order to prevent these devastating accidents, 
the state of drowsiness of the driver should be monitored. The following measures have been used 
widely for monitoring drowsiness: 

(1) Vehicle-based measures—A number of metrics, including deviations from lane position, 
movement of the steering wheel, pressure on the acceleration pedal, etc., are constantly 
monitored and any change in these that crosses a specified threshold indicates a significantly 
increased probability that the driver is drowsy [5,6]. 

(2) Behavioral measures—The behavior of the driver, including yawning, eye closure, eye 
blinking, head pose, etc., is monitored through a camera and the driver is alerted if any of these 
drowsiness symptoms are detected [7–9]. 

(3) Physiological measures—The correlation between physiological signals (electrocardiogram 
(ECG), electromyogram (EMG), electrooculogram (EoG) and electroencephalogram (EEG)) 
and driver drowsiness has been studied by many researchers [10–14].  

Other than these three, researchers have also used subjective measures where drivers are asked to 
rate their level of drowsiness either verbally or through a questionnaire. The intensity of drowsiness is 
determined based on the rating [15,16]. 

These methods have been studied in detail and the advantages and disadvantages of each have been 
discussed. However, in order to develop an efficient drowsiness detection system, the strengths of the 
various measures should be combined into a hybrid system.  

The organization of this paper is as follows: Section 2 discusses driver drowsiness in detail.  
Section 3 describes the simulated environment for drowsiness manipulation and Section 4 analyses the 
various methods of drowsiness manipulation for study purposes. Section 5 describes the different 
methods that have been studied for detecting driver drowsiness, Section 6 discusses on driving 
conditions and hybrid measures, and Section 7 concludes by presenting the benefit of fusing various 
measures to develop an efficient system. 

2. Defining Drowsiness 

The term “drowsy” is synonymous with sleepy, which simply means an inclination to fall asleep. 
The stages of sleep can be categorized as awake, non-rapid eye movement sleep (NREM), and rapid 
eye movement sleep (REM). The second stage, NREM, can be subdivided into the following three 
stages [17]: 



Sensors 2012, 12 16939 
 

 

Stage I: transition from awake to asleep (drowsy) 
Stage II: light sleep 
Stages III: deep sleep 

In order to analyze driver drowsiness, researchers have mostly studied Stage I, which is the drowsiness 
phase. The crashes that occur due to driver drowsiness have a number of characteristics [18]: 

• Occur late at night (0:00 am–7:00 am) or during mid-afternoon (2:00 pm–4:00 pm) 
• Involve a single vehicle running off the road 
• Occur on high-speed roadways 
• Driver is often alone 
• Driver is often a young male, 16 to 25 years old 
• No skid marks or indication of braking 

In relation to these characteristics, the Southwest England and the Midlands Police databases use 
the following criteria to identify accidents that are caused by drowsiness [5]: 

• Blood alcohol level below the legal driving limit 
• Vehicle ran off the road or onto the back of another vehicle 
• No sign of brakes being applied 
• Vehicle has no mechanical defect  
• Good weather conditions and clear visibility 
• Elimination of “speeding” or “driving too close to the vehicle in front” as potential causes 
• The police officer at the scene suspects sleepiness as the primary cause 

Statistics derived using these criteria cannot account fully for accidents caused by drowsiness 
because of the complexity involved; therefore, accidents that can be attributed to driver drowsiness 
may be more devastating than the statistics reveal. Hence, in order to avoid these types of accidents,  
it is necessary to derive effective measures to detect driver drowsiness and alert the driver. 

3. Simulated Environment for Drowsiness Manipulation 

It is not safe and ethical to make a drowsy driver drive on road. Hence, researchers have used 
simulated environments to carry out their experiments. Experimental control, efficiency, low cost, 
safety, and ease of data collection are the main advantages of using simulators [19,20]. The driving 
simulators can be broadly classified as: (1) Low-level simulators (Figure 1(a)) consisting of a 
computer, a monitor, a realistic cockpit, a steering wheel, manual gear box and pedals (clutch, brake 
and accelerator); (2) Mid-level (Fixed-base) simulators (Figure 1(b)) comprising of advanced imaging 
techniques, a large projection screen, a realistic car, and possibly a simple motion base and  
(3) High-level (Motion-based) simulators (Figure 1(c)) typically providing a view close to 360° and an 
extensive moving base [21].  

One important limitation of using driving simulators is that the drivers do not perceive any risk.  
The awareness of being immersed in a simulated environment might give a behavior which is different 
than that on real road [22]. However, researchers have validated that driving simulators can create 
driving environment that are relatively similar to road experiments [23–25]. Researchers have 
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occurred during the peak drowsiness periods of 2:00 am to 6:00 am and 2:00 pm to 4:00 pm. During 
these time frames, the circadian rhythm shows higher chance of getting drowsy and drivers are three 
times more likely to fall asleep at these times than at 10:00 am or at 7:00 pm [31]. Liu et al. pointed 
out that the circadian rhythm produces small, but significant, changes in vehicle-based measures [5]. 
Researchers have asked subjects to drive between 2:30 pm and 5:30 pm in order to monitor drowsiness 
by measuring eyelid movement, ECG and EEG [14].  

The duration of the driving task also plays a major role in influencing drowsiness. Otamani et al. 
found that sleep deprivation alone does not directly influence the brain signals that control drowsiness, 
whereas the duration of task has a strong influence [32]. Researchers have also inferred that prolonged 
driving on a monotonous environment stimulates drowsiness. In fact, it has been observed that the 
subjects can become drowsy within 20 to 25 min of driving [33]. This last finding, reported by Philip et al., 
contradicts the observation made by Thiffault et al. that, in a real environment, the duration of the 
drive does not impact the performance during the first two hours [15]. In addition, researchers have 
found that drowsiness-related crashes are more probable in a monotonous environment than in a 
stimulating environment.  

Therefore, there is a very high probability that a partially sleep-deprived driver will become drowsy 
when driving in a monotonous environment at a constant speed for three hours during a time when 
their circadian rhythm is low. This should be taken into consideration when designing an experiment 
relating to recording driver drowsiness. 

5. Methods for Measuring Drowsiness 

Researchers have used various methods to measure driver drowsiness. This section provides a 
review of the four most widely-used methods, among which the first method is measured either 
verbally or through questionnaire and the remaining three by means of various sensors. 

5.1. Subjective Measures 

Subjective measures that evaluate the level of drowsiness are based on the driver’s personal 
estimation and many tools have been used to translate this rating to a measure of driver drowsiness. 
The most commonly used drowsiness scale is the Karolinska Sleepiness Scale (KSS), a nine-point 
scale that has verbal anchors for each step, as shown in Table 1 [32]. Hu et al. measured the KSS 
ratings of drivers every 5 min and used it as a reference to the EoG signal collected [28]. Portouli et al. 
evaluated EEG data by confirming driver drowsiness through both a questionnaire and a licensed 
medical practitioner [34]. Some researchers compared the self-determined KSS, which was recorded 
every 2 min during the driving task, with the variation of lane position (VLP) and found that these 
measures were not in agreement [35]. Ingre et al. determined a relationship between the eye blink 
duration and the KSS collected every 5 min during the driving task [26].  

Researchers have determined that major lane departures, high eye blink duration and  
drowsiness-related physiological signals are prevalent for KSS ratings between 5 and 9 [26]. However, 
the subjective rating does not fully coincide with vehicle-based, physiological and behavioral measures.  

Because the level of drowsiness is measured approximately every 5 min, sudden variations cannot 
be detected using subjective measures. Another limitation to using subjective ratings is that the  



Sensors 2012, 12 16942 
 

 

self-introspection alerts the driver, thereby reducing their drowsiness level. In addition, it is difficult to 
obtain drowsiness feedback from a driver in a real driving situation. Therefore, while subjective ratings 
are useful in determining drowsiness in a simulated environment, the remaining measures may be 
better suited for the detection of drowsiness in a real environment.  

Table 1. Karolinska sleepiness scale (KSS). 

Rating Verbal descriptions 
1 Extremely alert 
2 Very alert 
3 Alert 
4 Fairly alert 
5 Neither alert nor sleepy 
6 Some signs of sleepiness 
7 Sleepy, but no effort to keep alert 
8 Sleepy, some effort to keep alert 
9 Very sleepy, great effort to keep alert, fighting sleep 

5.2. Vehicle-Based Measures 

Another method to measure driver drowsiness involves vehicle-based measurements. In most cases, 
these measurements are determined in a simulated environment by placing sensors on various vehicle 
components, including the steering wheel and the acceleration pedal; the signals sent by the sensors are 
then analyzed to determine the level of drowsiness. Liu et al. [5] published a review on current 
vehicle-based measures. Some researchers found that sleep deprivation can result in a larger variability 
in the driving speed [36]. However, the two most commonly used vehicle-based measures are the 
steering wheel movement and the standard deviation of lane position.  

Steering Wheel Movement (SWM) is measured using steering angle sensor and it is a widely used 
vehicle-based measure for detecting the level of driver drowsiness [32,33,36]. Using an angle sensor 
mounted on the steering column, the driver’s steering behavior is measured. When drowsy, the number 
of micro-corrections on the steering wheel reduces compared to normal driving [37]. Fairclough and 
Graham found that sleep deprived drivers made fewer steering wheel reversals than normal drivers [36]. To 
eliminate the effect of lane changes, the researchers considered only small steering wheel movements 
(between 0.5° and 5°), which are needed to adjust the lateral position within the lane [32]. Hence, 
based on small SWMs, it is possible to determine the drowsiness state of the driver and thus provide an 
alert if needed. In a simulated environment, light side winds that pushed the car to the right side of the 
road were added along a curved road in order to create variations in the lateral position and force the 
drivers to make corrective SWMs [33]. Car companies, such as Nissan and Renault, have adopted 
SWMs but it works in very limited situations [38]. This is because they can function reliably only at 
particular environments and are too dependent on the geometric characteristics of the road and to a 
lesser extent on the kinetic characteristics of the vehicle [38]. 

Standard Deviation of Lane Position (SDLP) is another measure through which the level of 
driver drowsiness can be evaluated [26]. In a simulated environment, the software itself gives the 
SDLP and in case of field experiments the position of lane is tracked using an external camera. Ingre et al. 
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conducted an experiment to derive numerical statistics based on SDLP and found that, as KSS ratings 
increased, SDLP (meters) also increased [26]. For example, KSS ratings of 1, 5, 8, and 9 corresponded 
to SDLP measurements of 0.19, 0.26, 0.36 and 0.47, respectively. The SDLP was calculated based on 
the average of 20 participants; however, with some drivers, the SDLP did not exceeded 0.25 m even 
for a KSS rating of 9. In the above experiment by performing correlation analysis on a subject to 
subject basis significant difference is noted. Another limitation of SDLP is that it is purely dependent 
on external factors like road marking, climatic and lighting conditions. In summary, many studies have 
determined that vehicle-based measures are a poor predictor of performance error risk due to 
drowsiness. Moreover, vehicular-based metrics are not specific to drowsiness. SDLP can also be 
caused by any type of impaired driving, including driving under the influence of alcohol or other 
drugs, especially depressants [39–41]. 

5.3. Behavioral Measures 

A drowsy person displays a number of characteristic facial movements, including rapid and 
constant blinking, nodding or swinging their head, and frequent yawning [7]. Computerized,  
non-intrusive, behavioral approaches are widely used for determining the drowsiness level of drivers 
by measuring their abnormal behaviors [42]. Most of the published studies on using behavioral 
approaches to determine drowsiness, focus on blinking [43–45]. PERCLOS (which is the percentage of 
eyelid closure over the pupil over time, reflecting slow eyelid closures, or “droops”, rather than blinks) 
has been analyzed in many studies [8,46–48]. This measurement has been found to be a reliable 
measure to predict drowsiness [46] and has been used in commercial products such as Seeing 
Machines [49] and Lexus [50]. Some researchers used multiple facial actions, including inner brow 
rise, outer brow rise, lip stretch, jaw drop and eye blink, to detect drowsiness [9,42]. However, 
research on using other behavioral measures, such as yawning [51] and head or eye position 
orientation [52,53], to determine the level of drowsiness is ongoing (Table 2).  

The main limitation of using a vision-based approach is lighting. Normal cameras do not perform 
well at night [43]. In order to overcome this limitation, some researchers have used active illumination 
utilizing an infrared Light Emitting Diode (LED) [43]. However, although these work fairly well at 
night, LEDs are considered less robust during the day [54]. In addition, most of the methods have been 
tested on data obtained from drivers mimicking drowsy behavior rather than on real video data in 
which the driver gets naturally drowsy. Mostly, image is acquired using simple CCD or web camera 
during day [55] and IR camera during night [56] at around 30 fps. After capturing the video,  
some techniques, including Connected Component Analysis, Cascade of Classifiers or Hough 
Transform, Gabor Filter, Haar Algorithm are applied to detect the face, eye or mouth [8,42,44,56].  
After localizing the specific region of interest within the image, features such as PERCLOS, yawning 
frequency and head angle, are extracted using an efficient feature extraction technique, such as 
Wavelet Decomposition, Gabor Wavelets, Discrete Wavelet Transform or Condensation  
Algorithm [7,42,44,56]. The behavior is then analyzed and classified as either normal, slightly drowsy, 
highly drowsy through the use of classification methods such as support vector machine, fuzzy 
classifier, neural classifier and linear discriminant analysis [7,42–44]. However, it has been found that 
the rate of detecting the correct feature, or the percentage of success among a number of detection 
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attempts, varies depending on the application and number of classes. The determination of drowsiness 
using PERCLOS and Eye Blink has a success rate of close to 100% [43] and 98% [45], respectively. 
However it has to be noted that, the high positive detection rate achieved by [43] was when the 
subjects didn’t wear glasses. Likewise, as most researchers conducted their experiments in simulated 
environment they achieved a higher success rate. The positive detection rate decreased significantly 
when the experiment was carried out in a real environment [15].  

Table 2. List of previous works on driver drowsiness detection using behavioral measures. 

Ref. 
Sensor 
used 

Drowsiness 
Measure 

Detection 
techniques  

Feature  
Extraction 

Classificatio
n 

Positive 
Detection 

rate  

[55] 

CCD micro 
camera with 

Infra-Red 
Illuminator 

Pupil Ada-boost 
Red eye effect, 

Texture detection 
method 

Ratio of  
eye-height 

and eye-width 
92% 

[43] 
Camera and 
Infra-Red 

Illuminator 

PERCLOS, 
eye closure 
duration, 

blink 
frequency, 
and 3 other 

Two Kalman filters 
for pupil detection  

Modification of the 
algebraic distance 

algorithm for conics 
Approximation & 

Finite State Machine 

Fuzzy 
Classifier 

Close to 
100% 

[7] CCD camera Yawning 
Gravity-center 

template and grey 
projection 

Gabor wavelets LDA 91.97% 

[42] 
Digital Video 

camera  
Facial action Gabor filter  

Wavelet 
Decomposition 

SVM  96% 

[44] 
Fire wire 

camera and 
webcam 

Eye Closure 
Duration & 
Freq of eye 

closure 

Hough Transform  
Discrete Wavelet 

Transform 
Neural 

Classifier  
95%  

[9] Camera 
Multi Scale 

dynamic 
features 

Gabor filter Local Binary Pattern Ada boost 98.33% 

[56] IR Camera Eye State Gabor filter 
Condensation 

algorithm 
SVM 93%  

[45] 
Simple 
Camera 

Eye blink 

Cascaded Classifiers 
Algorithm detects 
face and Diamond 
searching lgorithm 

to trace the face 

Duration of eyelid 
closure, No. of 

continuous blinks, 
Frequency of eye 

blink  

Region Mark 
Algorithm  

98% 

[8] 
Camera with 

IR 
Illuminator 

PERCLOS 
Haar Algorithm to 

detect face 
Unscented Kalman 

filter algorithm 
SVM 99%  
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Another limitation of behavioral measure was brought out in an experiment conducted by  
Golz et al. They evaluated various drowsiness monitoring commercial products, and observed that 
driver state cannot be correlated to driving performance and vehicle status based on behavioral 
measures alone [57]. 

5.4. Physiological Measures 

As drivers become drowsy, their head begins to sway and the vehicle may wander away from the 
center of the lane. The previously described vehicle-based and vision based measures become apparent 
only after the driver starts to sleep, which is often too late to prevent an accident.  

However, physiological signals start to change in earlier stages of drowsiness. Hence, physiological 
signals are more suitable to detect drowsiness with few false positives; making it possible to alert a 
drowsy driver in a timely manner and thereby prevent many road accidents.  

Table 3. List of previous works on driver drowsiness detection using physiological signals. 

Ref. Sensors Preprocessing  Feature Extraction Classification 
Classification 
accuracy (%) 

[12] 
EEG, 
ECG, 
EoG 

Optimal Wavelet 
Packet, Fuzzy 

Wavelet Packet 

The Fuzzy MI-based  
Wavelet-Packet Algorithm 

LDA, 
LIBLINEAR, 
KNN, SVM 

95–97%  
(31 drivers) 

[58] ECG Band Pass Filter  Fast Fourier Transform (FFT) Neural Network 
90%  

(12 drivers) 

[59] EEG 

Independent 
Component 

Analysis 
Decomposition 

Fast Fourier Transform  
Self-organizing 
Neural Fuzzy 

Inference Network  

96.7%  
(6 drivers) 

[10] 
EEG, 
EMG 

Band Pass Filter & 
Visual Inspection 

Discrete Wavelet Transform 
(DWT) 

Artificial Neural 
Network (ANN) 

Back Propogation 
Algorithm (Awake, 

Drowsy, Sleep) 

98–99%  
(30 subjects) 

[60] EEG 
Low pass  

filter 32 Hz 
512 point Fast Fourier Transform 

with 448 point overlap 
Mahalanobis 

distance 
88.7%  

(10 subjects) 

[28] 
EoG, 
EMG  

Filtering & 
Thresholding 

Neighborhood search SVM 
90%  

(37 subjects) 

[61] 
EEG, 
EoG, 
EMG 

Low pass pre 
Filter and Visual 

Inspection 
Discrete Wavelet Transform ANN 

97–98%  
(10 subjects) 

[62] EEG 
Least mean square 

algorithm and 
Visual Inspection 

Wavelet packet analysis with 
Daubechies 10 as mother wavelet 

Hidden Markov 
Model 

84%  
(50 subjects) 

Many researchers have considered the following physiological signals to detect drowsiness: 
electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG) and electro-oculogram 
(EoG) (Table 3). Some researchers have used the EoG signal to identify driver drowsiness through eye 
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movements [12,28,61]. The electric potential difference between the cornea and the retina generates an 
electrical field that reflects the orientation of the eyes; this electrical field is the measured EoG signal. 
Researchers have investigated horizontal eye movement by placing a disposable Ag-Cl electrode on 
the outer corner of each eye and a third electrode at the center of the forehead for reference [28]. The 
electrodes were placed as specified so that the parameters - Rapid eye movements (REM) and Slow 
Eye Movements (SEM) which occur when a subject is awake and drowsy respectively, can be detected 
easily [30]. 

The heart rate (HR) also varies significantly between the different stages of drowsiness, such as 
alertness and fatigue [13,63]. Therefore, heart rate, which can be easily determined by the ECG signal, 
can also be used to detect drowsiness. Others have measured drowsiness using Heart Rate Variability 
(HRV), in which the low (LF) and high (HF) frequencies fall in the range of 0.04–0.15 Hz and  
0.14–0.4 Hz, respectively [12,58]. HRV is a measure of the beat-to-beat (R-R Intervals) changes in the 
heart rate. The ratio of LF to HF in the ECG decreases progressively as the driver progresses from an 
awake to a drowsy state [14,58].  

The Electroencephalogram (EEG) is the physiological signal most commonly used to measure 
drowsiness. The EEG signal has various frequency bands, including the delta band (0.5–4 Hz), which 
corresponds to sleep activity, the theta band (4–8 Hz), which is related to drowsiness, the alpha band 
(8–13 Hz), which represents relaxation and creativity, and the beta band (13–25 Hz), which 
corresponds to alertness [10,59,60,62]. A decrease in the power changes in the alpha frequency band 
and an increase in the theta frequency band indicates drowsiness. Akin et al. observed that the success 
rate of using a combination of EEG and EMG signals to detect drowsiness is higher than using either 
signal alone [10].  

The measurement of raw physiological signals is always prone to noise and artifacts due to the 
movement that is involved with driving. Hence, in order to eliminate noise, various preprocessing 
techniques, such as low pass filter, digital differentiators, have been used (Table 2). In general, an 
effective digital filtering technique would remove the unwanted artifacts in an optimal manner [64]. A 
number of statistical features are then extracted from the processed signal using various feature 
extraction techniques, including Discrete Wavelet Transform (DWT) and Fast Fourier Transform 
(FFT) [10,59,60]. The extracted features are then classified using Artificial Neural Networks  
(ANN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), or other similar 
methods [12,28,61].  

The reliability and accuracy of driver drowsiness detection by using physiological signals is very 
high compared to other methods. However, the intrusive nature of measuring physiological signals 
remains an issue to be addressed. To overcome this, researchers have used wireless devices to measure 
physiological signals in a less intrusive manner by placing the electrodes on the body and obtaining 
signals using wireless technologies like Zigbee [65], Bluetooth [66]. Some researchers have gone 
further ahead by measuring physiological signals in a non intrusive way; by placing electrodes on the 
steering wheel [67,68] or on the driver’s seat [67,69]. The signals obtained were then processed in 
android based smart phone devices [70,71] and the driver was alerted on time. The accuracy of a  
non-intrusive system is relatively less due to movement artifacts and errors that occur due to improper 
electrode contact. However, researchers are considering to use this because of its user friendliness.  
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In recent years, experiments are conducted to validate non-intrusive systems [68,69]. The advantages 
and disadvantages of the different type of measures are summarized in Table 4. 

Table 4. Advantages and limitations of various measures. 

Refs. Measures Parameters Advantages Limitations 

[26,35] 
Subjective 
measures 

Questionnaire Subjective 
Not possible in 

real time 

[5,72] 
Vehicle based 

measures 

Deviation from the lane position 
Loss of control over the steering 

wheel movements 
Nonintrusive  Unreliable 

[15,54] 
Behavioral 
Measures 

Yawning 
Eye closure Eye blink 

Head pose 

Non-intrusive; 
Ease of use 

Lighting 
condition 

Background 

[67,69] 
Physiological 

measures 
Statistical & energy features derived 

from ECG EoG EEG 
Reliable; 
Accurate 

Intrusive  

6. Discussion 

The various measures of driver drowsiness reviewed in this work are based purely on the level of 
drowsiness induced in the subject, which, in turn, depends on the time of day, duration of the task and 
the time that has elapsed since the last sleep. However, when developing a better drowsiness detection 
system, several other issues need to be addressed; the two most important ones are discussed below. 

6.1. Comparison of Simulated and Real Driving Conditions 

It is not advisable to force a drowsy driver to drive on roads. Consequently, many experiments have 
been conducted in simulated environments and the results of the experiments are then elaborately 
studied. Dinges et al. presented various challenges involved in real time drowsiness detection [46].  
The subjective self-assessment of drowsiness can only be obtained from subjects in simulated 
environments. In real conditions, it is unfeasible to obtain this information without significantly 
distracting the driver from their primary task. Some researchers have conducted experiments to 
confirm the validity of simulated driving environments. For example, Blana et al. observed that the 
mean lateral displacement of the vehicle from the center of the roadway, obtained in real and simulated 
environments is statistically different for speeds higher than 70 km/h. This finding implies that  
real-road drivers feel less safe at higher speeds and, as a result, increase their lateral distance.  
The drivers in a simulated environment, however, did not appear to perceive this risk [72].  
Most experiments using behavioral measures are conducted in a simulated environment and the results 
indicate that it is a reliable method to detect drowsiness. However, in real driving conditions,  
the results might be significantly different because a moving vehicle can present challenges such as 
variations in lighting, change in background and vibration noise, not to mention the use of sunglasses, 
caps, etc. Philip et al. compared drowsiness in simulated and real conditions and concluded that it can 
be equally studied in both environments but the reaction time and the sleepiness self-evaluation are 
more affected in a simulated environment which provides a more monotonous task [15].  
Engstorm et al. observed that the physiological workload and steering activity was higher in a real 
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environment. This result can be interpreted as an indication of increased effort, which seems reasonable 
given the higher actual risk in real traffic [73]. Hence, while developing a drowsiness detection system, 
the simulated environment should be as close to a replica of the real environment as possible.  

6.2. Hybrid Measures 

Each method used for detecting drowsiness has its own advantages and limitations. Vehicle-based 
measures are useful in measuring drowsiness when a lack of vigilance affects vehicle control or 
deviation. However, in some cases, there was no impact on vehicle-based parameters when the driver was 
drowsy [26], which makes a vehicle-based drowsiness detection system unreliable. Behavioral measures 
are an efficient way to detect drowsiness and some real-time products have been developed [74]. 
However, when evaluating the available real-time detection systems, Lawrence et al. observed that 
different illumination conditions affect the reliability and accuracy of the measurements [74]. 
Physiological measures are reliable and accurate because they provide the true internal state of the 
driver; however, their intrusive nature has to be resolved. Among all physiological parameters 
investigated, ECG can be measured in a less intrusive manner. EEG signals require a number of 
electrodes to be placed on the scalp and the electrodes used for measuring EoG signals are placed near 
the eye which can hinder driving. Non-obtrusive physiological sensors to estimate the drowsiness of 
drivers are expected to become feasible in the near future [70,75]. The advantages of physiological 
measures and the increasing availability of non-intrusive measurement equipment make it beneficial to 
combine physiological signals with behavioral and vehicle-based measures. A sample drowsiness 
detection system developed by combining ECG signals, standard deviation of lane position and facial 
images is shown in Figure 2. 

Figure 2. A sample hybrid drowsiness detection system using multiple sensors. 

 

Few research studies are attempting to detect driver drowsiness by the fusion of different  
methods [14,76–78]. Cheng et al. combined behavioral measures and vehicle based measures and 
concluded that the reliability and accuracy of the hybrid method was significantly higher than those 
using single sensors [78]. Guosheng et al. used a mixture of subjective, behavioral (PERCLOS) and 
physiological measures (ECG, EEG) to detect drowsiness and found that this combination resulted in a 
significantly higher success rate than any individual metric. The average square error while removing 
physiological features were 1.2629, while the average square error for fusion was 0.5269 [14].  
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Although hybrid systems using different sensors have not been tested in a real environment,  
it would be interesting to investigate the ability to detect drowsiness using a combination of 
physiological signals with other measurements.  

7. Conclusions  

In this paper, we have reviewed the various methods available to determine the drowsiness state of 
a driver. Although there is no universally accepted definition for drowsiness, the various definitions 
and the reasons behind them were discussed. This paper also discusses the various ways in which 
drowsiness can be manipulated in a simulated environment. The various measures used to detect 
drowsiness include subjective, vehicle-based, physiological and behavioral measures; these were also 
discussed in detail and the advantages and disadvantages of each measure were described. Although 
the accuracy rate of using physiological measures to detect drowsiness is high, these are highly 
intrusive. However, this intrusive nature can be resolved by using contactless electrode placement. 
Hence, it would be worth fusing physiological measures, such as ECG, with behavioral and  
vehicle-based measures in the development of an efficient drowsiness detection system. In addition,  
it is important to consider the driving environment to obtain optimal results. 
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