
Support Vector Machines and Word2vec for Text

Classification with Semantic Features

Joseph Lilleberg

Computer Science Department
Southwest Minnesota State University

Marshall, MN 56258
USA

joseph.lilleberg@smsu.edu

Abstract-With the rapid expansion of new available

information presented to us online on a daily basis, text

classification becomes imperative in order to classify and

maintain it. Word2vec offers a unique perspective to the text

mining community. By converting words and phrases into a

vector representation, word2vec takes an entirely new approach

on text classification. Based on the assumption that word2vec

brings extra semantic features that helps in text classification,

our work demonstrates the effectiveness of word2vec by showing

that tf-idf and word2vec combined can outperform tf-idf

because word2vec provides complementary features (e.g.

semantics that tf-idf can't capture) to tf-idf. Our results show

that the combination of word2vec weighted by tf-idf and tf-idf

does not outperform tf-idf consistently. It is consistent enough to

say the combination of the two can outperform either
individually.

Keywords-word2vec; tf-idf; text classification; scikit-learn;

support vector machines; unsupervised learning; supervised

learning, semantic features

I. INTRODUCTION

Text classification is widely seen as a supervised learning
task that is defined as the identification of categories of new
documents based on the probability suggested by a specified
training corpus of already labelled (identified) documents. As
the amount of available textual information of new documents
available online increases, managing to classify them properly
becomes more difficult. This is because the ability to
effectively retrieve the correct categories for new documents
relies heavily upon the amount of labelled documents already
available for reference [11].

Traditional document representation involves classification
using information retrieval techniques such as continuous bag
of-words or tf-idf. Widely used in natural language processing,
these techniques help in providing a simplified representation
of documents through various features. Continuous bag-of
words by disregarding grammar and word order but keeping
multiplicity and tf-idf by reflecting the importance of a word to
a particular document in a collection of documents or corpus
[13, 21].

With Google's introduction of word2vec, a new approach
to document representation emerged. In our work, we worked

Proc. 20151IEE 14th Inl'l Coni. on Cognitive Inlormatics & Cognitive Computing IIccrcn51

N. Ge. I.lu. Y. Wang. N. Howard. P. Chen. X. Tao. B. Zhang. & LA. Zadeh IEdsJ

918-1-4613-1290-91151$31.00 ©2015 IEEE

Yun Zhu, Yanqing Zhang

Computer Science Department
Georgia State University

Atlanta, Georgia 30302-5060
USA

yzhu7@student.gsu.edu, yzhang@gsu.edu

under the assumption that word2vec brings extra sematic
features that help in text classification. Our initial approach
involved classifying documents with word2vec without
omitting stop words by simply summing them. Then by
comparing these results against tf-idf without stop words, we
observed that tf-idf with stop words was clearly out performing
word2vec. So then we looked at a tf-idf weighted approach by
adding weights to each word based on its frequency within the
document using word2vec while omitting stop words, creating
weighted sums of word vectors. The results were that
word2vec weighted by tf-idf without stop words outscored
word2vec with stop words. Also, word2vec weighted by tf-idf
without stop words fell short in comparison to tf-idf without
stop words. By combining word2vec weighted by tf-idf
without stop words and tf-idf without stop words, we were able
to achieve better results than tf-idf without stop words alone.
With the assumption that word2vec brings extra semantic
features, we propose that the combination of word2vec
weighted by tf-idf without stop words and tf-idf without stop
words can outperform either word2vec weighted by tf-idf
without stop words and tf-idf with or without stop word.

II. WORD2VEC AND TF-IDF

The purpose of text classification is to categorize
documents into a fixed number of predefined categories. Each
document can be classified in multiple, exactly one, or no
category at all. The classification of documents is seen as a
supervised learning task because the objective is to use
machine learning to automatically classify documents into
categories based on previously labelled documents [11]. Some
of the popular techniques in automatic text classification are
NaIve Bayes classifier, SVM (support vector machines), and
tf-idf (term frequency - inverse document frequency) [12].
Our work focuses on using tf-idf in conjunction with
word2vec.

Tf-idf, defined as term frequency-inverse document
frequency, is used to determine what words of a corpus may
be favorable to use based on each word's document frequency.
Tf-idf representation ranks among the best approaches for
retrieving documents and labeling them. However, there is no
compelling reason in preferring tf-idf to any other experience-

136

based techniques for problem solving [19]. Tf-idf calculates a
value for each word in a document through an inverse
proportion of the frequencies of the word in a certain
document and to the percentage of documents to which the
word appears in. The higher tf-idf values words have imply
they have a stronger relationship in the document which they
appear [14].

Tf-idf is the composite weight of two statIstIcs, term
frequency and inverse document frequency. Term frequency is
when each term is given a weight by assigning a weight to the
term t based on the number of occurrences in document d
denoted by tft,d [15]. Since there exists various ways to
determine term frequency, we will use the raw frequency of a
term in a document which is given as follows:

tf(t,d) = 0.5 +
0.5 x f(t,d)

max{f(w,d):w Ed)
[13]

Other ways include Boolean "frequencies" or logarithmically
scaled frequencies [l3].

By denoting the total number of documents in a collection
as N, we can define inverse document frequency of a
term t as:

id£ = logl:!...-I
dft

[15]

In word2vec, there are two main learning algorithms,
continuous bag-of-words and continuous skip-gram. [4] With
continuous bag-of-words, the order of the words in the history
does not influence the projection. It predicts the current word
based on the context. Skip-gram predicts the surrounding
words given the current word. Unlike the standard bag-of
words model, continuous bag-of-words uses a distributed
representation of the context. It's also important to state that
the weight matrix between input and the projection layer is
shared for all word positions [3]. Our work uses the Skip-Gram
model by default which has the training complexity
architecture of

Q = C x (D + D x log2(V)),

where the maximum distance for words is C, D are word
representations, and V is dimensionality [3]. This means that
for each training word, we will randomly select a number R in
range < I;C > and use R words from history and R words from
the future of the selected word as correct labels. This requires
us to do two R word classifications with the selected word as
input and each of the R+R words as output. Using binary tree
representations of the vocab the number of output units that are
need evaluation can go down to approximately log2(V) [3, 10].

For our work, vocab = {tj liE l...N} where N is the vector
size and documents dj = <Wj ... wj>. Let w2v(tj) denote the
vector representation of our approach. Then

I. R(dj) = L w2v(t) where t E dj

2. w_R(dj) = LI WI w2v(t) where Wt = tf-idf weight of t

3. C(dj) = concatenate(tf-idf(di), w_R(dj))

Mathematically speaking, our first step is the summation of
vector representation using word2vec. We then applied weights
using tf-idf weighting with word2vec. Then we concatenated
tf-idf with our word2vec weighted by tf-idf. The concatenation
merges the vectors (i.e. suppose that tf-idf has a size of 2000
and w _ R has size 200, then the concatenation representation
would have a size of 2200).

When dealing with text classification, it's imperative to
remove stop words. Stop words are common words such as
"the, a, of, for, he, she, etc." that provide no significant
importance to classification. It is common for text
classification to completely ignore stop words. This is because
they usually slow down the process without any improvement
in accuracy or performance. The elimination or reduction of
stop words is likely to provide more beneficial results [16]. Our
work demonstrates this effect below.

III. OUR WORK

Word2vec has garnered a lot of interest in the text mining
community [3, 4, 10]. Unlike most text classification,
word2vec can be seen as both supervised and unsupervised. It
is supervised in the sense that the model derives a supervised
learning task from the corpus itself using either the continuous
bag-of-words model or continuous skip-gram model. It is
considered unsupervised in the sense that you can provide any
large corpus of your choice [2]. Since word2vec is unable to
distinguish the importance of each word in respect to the
document being classified as it treats each word equally, it
becomes difficult to extract which words hold higher value
over others in respect to a particular document.

There have been various ways in the approach others have
taken with word2vec. Christopher Moody, a Data Scientist at
UC Santa Cruz, has developed his own search site,
ThisPlusThat, using word2vec. Using word2vec's algorithm to
understand concepts of words and being able to add or subtract
like vectors, Moody was able to disambiguate the words in the
text using Hadoop's mapping function and develop a search
site that lets you 'add' words as vectors [17]. Another approach
taken was to expand the word2vec framework to capture
meaning across languages. This approach was taken by Lior
Wolf and colleagues from Tel Aviv University. By
representing a word in two languages using a common
"semantic" vector space, the result can be used to improve
lexicons of under-resourced languages [18].

Our approach to word2vec based under the assumption that
word2vec brings extra sematic features that help in text
classification is a new approach because most work involving
word2vec, to our knowledge, doesn't involve tf-id£ By adding
weights to each word based on its frequency within the
document in word2vec and omitting stop words, we created
weighted sums of word vectors. Using the weighted sums of
word vectors to represent documents combined with tf-idf
without stop words, we propose that word2vec weighted by tf
idf combined with tf-idf will outperform tf-idf alone. We used
skip-gram by default because skip-gram has the highest
semantic accuracy but at the cost of time efficiency [3]. Our
work also settled on a default vector size of 100 for the
majority of our experiments for time efficiency. The result of
one case is given in Table 1. When looking at these results, it's

137

important to note that the categories play a huge role in the
scores. Categories such as sports and agriculture are more
likely to have higher scores because they are unlikely to have
similar key terms in them as opposed to agriculture and
nutrition. Another important factor is the set of documents used
to train the model. Different sets of documents used to train the
model can change the values significantly depending on the
topics chosen.

Table 1: Accuracy of different techniques using word2vec and
tfidf

2 Different Categories of different topics Score

Word2vec with stop words
0.841892

Tf-idf with stop words
0.894595

Word2vec weighted by tf-idf w/o 0.895946
stopwords

Tf-idf without stop words
0.881081

Word2vec weighted by tf-idf w/o stop 0.897297
words + Tf-idf without stop words

Using word2vec, our initial approach was a summation of
vectors in a particular document and then using a linear support
vector machine (linearSVM) to help classify them. We then
tried a summation but without stop words and weighted them
by tf-id£ We then used tf-idf with and without stop words to
indicate how well our approach compared.

By weighting word2vec with tf-idf without stop words and
then combining it with tf-idf without stop words, we achieved
scores that resulted better than tf-id£ We ran several test cases
and we concluded word2vec weighted by tf-idf without stop
words combined with tf-idf without stop words will not always
perform better than tf-idf. This is because although in most
instances the combination word2vec with tf-idf without stop
words and tf-idf without stop words performed better, there a
few cases that it did not concluding that it will not always
perform better. However, in cases where tf-idf outperformed
the combination, the difference was almost insignificant so it's
reasonable to say that the results of the combination are reliable
to use.

IV. RESULTS

Since word2vec is only able to convert words or
phrases into vector space representation, our approach was to
use the weighted sum of the word vectors to represent each
document. With a 20 newsgroup text dataset provided by [1],
we acquired 18,000 newsgroup posts on 20 topics that were
split into 2 subsets: one for training (training data) and one for
testing (test data). We used Scikit-Iearn.org's module to load
the posts as a list of raw texts [6]. We then used word2vec to
train our own model. Since word2vec's training is an
unsupervised task, there's no way to truly evaluate the result.
The evaluation depends on the end application. Using the
training data and test data, we cleaned the documents (e.g.
removing capitalization, removing punctuation, tokenization,
etc.) Once the documents were cleaned, we converted them

into vector space representation giving us a word2vec training
and test model. Using Scikit-Iearn.org's LinearSVC (Linear
Support Vector Classification), we fit our word2vec training
model against the training data target. We then used the predict
feature of LinearSVC to predict the class labels in our
word2vec test model. By comparing the test data target against
our word2vec test model, we acquired the accuracy score for
word2vec with stop words [7].

For tf-idf, we used Scikit-Iearn.org's TfidNectorizer.
Using TfidNectorizer's fit and transform feature, our tf-idf
training model learned the vocabulary and document frequency
of each word in the training data [8]. After fitting our tf-idf
training model predicting the class labels in our tf-idf test
model using TfidNectorizer's predict feature, we acquired the
score for tf-idf with stop words. When fewer categories are
used, the scores of word2vec and tf-idf are relatively close;
however, the gap between word2vec and tf-idf increases as the
number of categories increased with tf-idf placing higher as
shown in Fig. 2. When we use various category sizes and
topics, we can notice that the again fewer categories provides
the better results as can be seen in Fig 1. As the categories
increase in size, the difference between their scores becomes
less significant also. For tf-idf without stop words, we
replicated the process that we used for tf-idf with stop words
but initialized the TfidNectorizer to omit stop words instead.
The result was an increase in performance between tf-idf and
tf-idf with stop words.

Unlike tf-idf, word2vec has some pitfalls when it
comes to the removal of stop words. First, word2vec neglects
the value of each word in respect to the document being
classified which makes accurate classification difficult.
Second, word2vec is unable to distinguish the frequency at
which words appear which is especially importantly because
stop words can skew the results. In order to cope with these
disadvantages, we developed an algorithm that would be able
to acquire the top words. This was done by using the tf-idf
training and test models without stop words to determine the
top words by counting the document frequency of each word
and selecting the least frequent words. We then placed weights
on these words giving them higher importance when we took
the weighted sum of vectors. After fitting word2vec weighted
by tf-idf model against the training data target and predicting
the class labels, our results outscored our previous word2vec
model in every instance. However, it was still unable to match
the success tf-idf without stop words.

By combining the vector representations of word2vec
weighted by tf-idf without stop words and tf-idf without stop
words, we were able to achieve results that outscored tf-idf
without stop words in most cases. Although our combined
vector representations were able to achieve better results, it was
still capable of being outscored by tf-idf without stop words.

The results are shown in Fig. 1 and Fig. 2 where the
following numbers correspond to the following techniques: 1

138

corresponds to Word2Vec with stop words, 2 corresponds to tf
idf with stop words, 3 corresponds to tf-idf without stop words,
4 corresponds toWord2Vec weighted by tf-idf without stop
words, and 5 corresponds to Word2Vec & tf-idf combined
without stop words.

Figure 1: Accuracy scores of x number of categories using
word2vec and tf-idf with various category sizes and topics.

100%

90%

80%

70% • 20 Different

60% Categories

50% • 10 Different

40% Categories

30% o 2 Different
20% Categories
10%

0%

1 2 3 4 5

Figure 2: Accuracy scores ofx number of categories sharing
the same topic.

95.00%

90.00%

85.00%

80.00%

75.00%

70.00%

65.00%

60.00%

1 2 3 4

V. CONCLUSION

5

. 4 Categories

• 3 Categories

o 2 Categories

Our work shows that the combination of word2vec
weighted by tf-idf without stop words and tf-idf without stop
words can outperform either word2vec weighted by tf-idf
without stop words or tf-idf with or without stop words
However, the combination does not outperform tf-idf with or
without stop words every time. It even fails to outperform the
existing methods in some instances. However, the difference
when the combination of word2vec weighted by tf-idf without
stop words and tf-idf without stop word is outs cored is
negligible being less than a hundredth. Therefore, it is
reasonable enough to say that word2vec weighted by tf-idf
without stop words and tf-idf without stop words is reliable.

With our assumption that word2vec brings extra sematic
features, we can conclude that the combination of word2vec
weighted by tf-idf without stop words and tf-idf without stop
words can result in better scores as can be seen in Table 1
between the comparison of word2vec weighted by tf-idf
without stop words against the combination and then the
comparison between tf-idf without stop words against the
combination. In Figure 1 we can also see that as we increase
the number of different categories, the difference in scores
decreases meaning adding more categories is insignificant and
doesn't offer much , if any, new information. We can also
conclude with our approach in Figure 2 that having fewer
categories can result in higher scores.

Our work with word2vec is only one of many approaches
word2vec in text classification. It's also a different approach
taken by others in the sense that it incorporates tf-idf in
conjunction with word2vec instead of disambiguating the
words which, to our knowledge, hasn't been done yet [17].
Although our approach only scratches the surface, better
results can still be achieved. Word2vec brings extra tools that
aren't offered anywhere else in text classification currently
making word2vec very beneficial. The potential it brings to
text classification is still unknown. However, we believe that
word2vec has a lot to offer to text classification based our
evidence and results. Future work includes ways to improve
the consistency of word2vec weighted by tf-idf without stop
words and tf-idf without stop words so that it'll outscore
word2vec weighted by tf-idf without stop words and tf-idf
with or without stop words in every instance. This can be
achieved many different ways such as modifying the stop
word list or modifying the weights we add to words such as
what determines the weighting. As well as using other
methods in conjunction with the combination of tf-idf such as
mapping, or using a combination of techniques, like word2vec
and tf-idf, with the meaning of the words captured [17, 18].

ACKNOWLEDGMENT

This research is supported by the NSF REV grant #
1156733.

REFERENCES

[I] Feature extraction, Scikit-Iearn.org, 201 I [Online] Scikit-Iearn: Machine
Learning in Python, Pedregosa et aI., JMLR 12, pp. 2825-2830, 20 I I.
Available: http://scikit-Iearn.org/stable/modules/feature_extraction.html
. [Accessed: 19 July 2014].

[2] C. S. Perone "Machine learning :: Text feature extraction (tf-idt) - Part
I," pyevolve.sourceforge.net, 18 September 201 I. [Online]. Available:
http://pyevolve.sourceforge.net/wordpressl?p=1 589. [Accessed: 19 July
2014].

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, " Efficient Estimation of
Word Representations in Vector Space," arxiv.org, , 7 September 2013.
[Online]. Available: http://arxiv.org/pd£l1301.3781.pdf [Accessed: 20
July 2014].

[4] "word2vec," code.google.com, [Online] 2013. Available:
hltps:llcode.google.com/p/word2vec/. [Accessed: 20 July 2014].

[5] Radim, Rehui'ek. " Word2vec Tutorial", radimrehurek.com, [online] 2
Feburary 2014, hltp:llradimrehurek.coml20 14/02/word2vec-tutoriall
(Accessed: 19 July 2014).

139

[6] The 20 newsgroups text dataset, Scikit-Iearn.org, 20 II [Online] Scikit
learn: Machine Learning in Python, Pedregosa et aI., JMLR 12, pp.
2825-2830, 20 II. Available: http://scikit
learn.org/stable/datasets/twenty _ newsgroups.html. [Accessed: 19 July
2014].

[7] sklearn.svm.LinearSVC, Scikit-Iearn.org, 20 II [Online] Scikit-Iearn:
Machine Learning in Python, Pedregosa et aI., JMLR 12, pp. 2825-2830,
20 II. Available: http://scikit
I earn. org/ stab Ie/mod u I es/ generated/ sk learn. svm. L inearS V C. html# sk I ear
n.svm.LinearSVC.predict . [Accessed: 19 July 2014].

[8] sklearn. feature_extraction. text.TfidfV ectorizer, Scikit-Iearn.org, 20 I I
[Online] Scikit-Iearn: Machine Learning in Python, Pedregosa et aI.,
JMLR 12, pp. 2825-2830, 20 II. Available: http://scikit
learn.org/stable/modu les/generated/sklearn. feature _ extracti on. text. Tfidf
Vectorizer.html . [Accessed: 19 July 2014].

[9] Wikipedia contributors, " Vector space model," en.wikipedia.org, 9 July
2014. [Online]. Available:
http://en. wikipedia.org/w/index. php?title=Docu ment_ c1assi fication&oldi
d=612457216. [Accessed: 18 July 2014].

[10] Y. Goldberg and O. Levy, " word2vec Explained: Deriving Mikolov et
al.'s Negative-Sampling Word-Embedding Method," arxiv.org, 15
Feburary 2014. [Online]. Available: http://arxiv.org/pdf/l402.3722.pdf
[Accessed: 20 July 2014].

[II] T. Joachims, " Text Categorization with Support Vector Machines:
Learning with Many Relevant Features," www.cs.comell.edu, 1998.
[Online]. Available:
http://www.cs.comell.edu/people/tj/publications/joachims_98a.pdf.
[Accessed: 20 July 2014].

[12] Wikipedia contributors, "Document classification," en. wikipedia.org,
II June 2014. [Online]. Available:
http://en. wikipedia.org/w/index. php?title= Vector_space _ model&oldid=
616216662. [Accessed: 18 July 2014].

[13] Wikipedia contributors, " Tf-idf," en.wikipedia.org, II July 2014.
[Online]. Available:
http://en. wikipedia.org/w/index. php?title=TfOIoE2%80%93 idf&0Idid=61
6537234. [Accessed: 18 July 2014].

[15] P. Fan and T. Pong, "Knowledge Representation from Lecture Videos
through Multimodal Analysis"in Proceedings of the International

Journal of Information and Education Technology 2013; Cambridge,
United Kingdom: Cambridge University Press, June 2012. Available:
http://nlp.stanford.eduIlR-book/pdf/06vect.pdf [Accessed: 19 July
2014]

[16] B. Patel and D. Shah, "Significance of Stop Word Elimination in Meta
Search Engine," in Proceedings of the 2013 International Conference on
Intelligent Systems and Signal Processing (ISSP), Mar 1-2, 2013, Anand
(Gujarat), India. Gujarat: IEEE, 2013. Available: IEEEXplore,
http://i eeex pI ore. ieee. org. ezproxy. gsu. edu/ sta mp/ sta mp.j sp?tp=&arnu mb
er=6526873. [Accessed: 19 July 2014].

[17] C. Moody, "ThisPlusThat: A Search Engine That Lets You 'Add' Words
as Vectors," insightdatascience.com, 13 November 2013. [Online].
Available:
http://insightdatascience. comlblog/th isplusthat_ a_search _engine _ thaUe
ts_you_add_words_as_vectors.html. [Accessed: 19 July 2014]

[18] Lior Wolf, Yair Hanani, Kfir Bar, and Nachum Dershowitz, April 2014,
"Joint word2vec Networks for Bilingual Semantic Representations"
(Poster), Conference on Intelligent Text Processing and Computational
Linguistics (CICLing), Kathmandu, Nepal.

[19] C. Elkan; "Deriving TF-IDF as a fisher kernel"in String Processing and
Information Retrieval; Mariano Consens and Gonzalo Navarro, 12th
International Conference, SPIRE in Buenos Aires, Argentina, Springer
Berlin Heidelberg, pp 295-300, 2005.

[20] A. L. Maas and A. Y. Ng, " A Probabilistic Model for Semantic Word
Vectors," in Proceedings of the NIPS 2010 Workshop on Deep Learning
and Unsupervised Feature Learning, I 0 December, 20 I 0, Palais des
Congres de Montreal/Convention and Exhibition Center, Montreal,
Quebec, Canada. http://ai.stanford.edu/-ang/papers/nipsdluflIO
ProbabilisticModelSemanticWordVectors.pdf [Accessed: 19 July
2014].Congres de Montreal/Convention and Exhibition Center,
Montreal, Quebec, Canada.
http://ai.stanford.edu/-ang/papers/nipsdlufll 0-
ProbabilisticModelSemanticWordVectors.pdf [Accessed: 19 July
2014].

[21] Wikipedia contributors, " Bag-of-words model," en.wikipedia.org, 9 July
2014. [Online]. Available: http://en.wikipedia.org/wiki/Bag-of-
words_model. [Accessed: 18 July 2014

140

