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Abstract

Mobile crowdsensing has emerged as an effi-
cient sensing paradigm that combines the crowd 
intelligence and the sensing power of mobile 
devices, such as mobile phones and Internet of 
Things gadgets. This article addresses the con-
tradicting incentives of privacy preservation by 
crowdsensing users, and accuracy maximization 
and collection of true data by service providers. 
We first define the individual contributions of 
crowdsensing users based on the accuracy in 
data analytics achieved by the service provid-
er from buying their data. We then propose a 
truthful mechanism for achieving high service 
accuracy while protecting privacy based on 
user preferences. The users are incentivized to 
provide true data by being paid based on their 
individual contribution to the overall service 
accuracy. Moreover, we propose a coalition 
strategy that allows users to cooperate in pro-
viding their data under one identity, increasing 
their anonymity privacy protection, and sharing 
the resulting payoff. Finally, we outline import-
ant open research directions in mobile and peo-
ple-centric crowdsensing.

Introduction
The proliferation of mobile devices with built-
in sensors has made mobile crowdsensing an 
efficient sensing paradigm, especially in peo-
ple-centric and Internet of Things (IoT) services. 
Crowdsensing users collect sensing data using 
their personal mobile devices (e.g., mobile 
phones and IoT gadgets). However, the devel-
opment of crowdsensing services is impeded by 
many challenges, especially criticism of the pri-
vacy protection of crowdsensing users. Service 
providers require true data, which is a key fac-
tor in optimizing data originated services [1]. This 
introduces contradicting incentives of maximizing 
the privacy protection of users and the prediction 
accuracy of service providers. Most of the existing 
incentive models in the literature are monetary 
motivated with sole profit maximization objec-
tive (e.g., [2–4]), while the privacy incentive of 
users is neglected. Therefore, conventional mon-
etary-based incentive models are inapplicable in 
privacy preserving crowdsensing systems, and 
new privacy-aware incentive models are required. 
Several major questions related to developing pri-
vacy-aware incentive models in mobile crowd-

sensing arise. First, how does the crowdsensing 
service define the contributions and payoff alloca-
tions of users with varying privacy levels? Second, 
do crowdsensing coalitions change the attained 
privacy of the cooperative users? Third, how 
do cooperative users divide the coalition payoff 
among themselves?

This article provides answers to the aforemen-
tioned questions by presenting a novel incentive 
framework for privacy preservation and accuracy 
maximization in mobile crowdsensing. Sensing 
users select their preferred data anonymization 
levels without knowing the privacy preferenc-
es of other users. The data anonymization is 
inversely proportional to the accuracy of data 
analytics of the service provider. Accordingly, 
users are paid based on their marginal contri-
butions to service accuracy. Users can be also 
penalized with a negative payoff if they cause 
marginal harm to the service accuracy (e.g., an 
outlier providing misleading data). Moreover, a 
set of k cooperative users can jointly work by 
forming a crowdsensing coalition, increasing the 
anonymity privacy protection measured by the 
k-anonymity metric. The total coalition payoff 
is then divided among the cooperative users 
based on their marginal contributions to the 
coalition’s data quality. Our experiments on a 
real-world dataset of a crowdsensing activity rec-
ognition system show that the payoff allocation 
of a particular user does not directly depend on 
the contributed data size but on the data qual-
ity. Likewise, the payoff allocation is found to 
decrease as the privacy level increases.

The rest of this article is organized as follows. 
We first present an overview of mobile crowd-
sensing in people-centric and IoT services, and 
review some related incentive mechanisms. Next, 
we discuss the privacy preservation in mobile 
crowdsensing. Then we propose an incentive 
framework for privacy preservation and accura-
cy maximization in crowdsensing services. After 
that, we present numerical experiments based 
on a real-world crowdsensing dataset. Finally, we 
outline some interesting research directions and 
conclude the article.

Mobile Crowdsensing and IoT
This section first gives an overview of mobile 

crowdsensing in IoT and then reviews some 
monetary incentive mechanisms in mobile 
crowdsensing. 
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Architectures and Data Management
In mobile crowdsensing, mobile devices and 
human intelligence are jointly adopted for collect-
ing sensing data regardless of geographic separa-
tion among users and service providers. As shown 
in Fig. 1, the design of mobile crowdsensing ser-
vices includes the following stages.

Data Sensing and Gathering: Crowdsensing 
users sense and collect data using mobile devices 
including phones, wearable devices, and in-ve-
hicle sensing devices. Users can also annotate 
the sensory data with subjective observations 
and reports such as their emotions and surround-
ing events. The data is sent to the cloud server 
through various types of networks including cellu-
lar and Wi-Fi networks.

Data Analytics: After receiving the raw data 
from the users, cloud computing can be used to 
store and process the large-scale data. Data ana-
lytics (e.g., machine learning methods) are typical-
ly applied to extract useful information and make 
effective predictions. Services also support data 
visualization, generate reports, and provide plat-
forms to share the outcomes with other collabo-
rative entities, such as social networking services.

Applications

Mobile crowdsensing has become an efficient 
sensing paradigm in people-centric and IoT ser-
vices. People-centric services contain sensing, 
computing, and communication components that 
aim to assist human life. The following are some 
pertinent crowdsensing applications.

Traffic Monitoring: Mobile Millennium1 is a 
traffic crowdsensing service. Millennium collects 
geolocation data from taxi drivers. It also assimi-
lates other data obtained in real time from radars, 
loop detectors and historical databases. The traffic 
information can be accessed by drivers for accu-
rate real-time traffic conditions (e.g., traffic con-
gestion points).

Wi-Fi Sharing: WiFi-Scout2 is a crowdsensing 
service for sharing reviews and connection quality 
of Wi-Fi hotspots. Users can easily search for free 
and paid Wi-Fi hotspots covering the locations 
that they will be visiting. Users are also rewarded 
based on their compliance and review quality.

Healthcare: PatientsLikeMe3 is a healthcare 

crowdsensing service that collects health data 
from patients. The patients provide their expe-
rience on medication, supplements, or devices. 
PatientsLikeMe also sells the collected data to 
pharmaceutical companies in order to improve 
and develop effective medication and healthcare 
equipment.

Monetary Incentive Models

Mobile crowdsensing should incorporate efficient 
incentive mechanisms to attract and retain enough 
crowdsensing users. In [5], the authors compared 
the resulting data quality and user compliance 
of three incentive schemes. The uniform scheme 
pays a user at a fixed rate of 4 cents per complet-
ed task. The variable scheme selects the payoff in 
the range of 2 to 12 cents based on the required 
task and user performance. Finally, the hidden 
scheme includes a lottery factor in defining the 
payoff values where the users are not informed of 
the expected payoff before completing the task. 
The study showed that the variable scheme reduc-
es the total cost by 50 percent compared to the 
uniform scheme for the same completion rate 
and performance. The hidden scheme is found to 
be the least effective incentive scheme.

Next, we review monetary incentive mecha-
nisms for mobile crowdsensing with an emphasis 
on reverse auction mechanisms [6] as they fit well 
and are commonly applied for mobile crowdsens-
ing with multiple users. As shown in Fig. 2, a typ-
ical reverse auction framework occurs between 
the crowdsensing users and service. The crowd-
sensing users compete among themselves to per-
form the sensing task. The service provider first 
announces the description of the crowdsensing 
tasks to potential mobile users. Users are rational 
entities and will set their bids based on the cost 
of the crowdsensing task. In order to maximize 
the utility of the crowdsensing service, the auction 
system determines the task assignment and payoff 
of each user including both selected and reject-
ed bids. For example, the crowdsensing tasks are 
assigned to the winning users with the lowest bids 
to perform the crowdsensing tasks and submit the 
data to the service. The service provider will pro-
vide the agreed payoff to the winning users. Table 
1 provides a summary of the monetary incentive 

1 http://traffic.berkeley.
edu, accessed 18 December 
2016. 
 
2 http://wifi-scout.sns-i2r.
org, accessed 18 December 
2016. 
 
3 https://www.patients-
likeme.com, accessed 18 
December 2016.

Figure 1. System model of mobile crowdsensing.

Crowdsensing 
users

Wearable and  IoT
gadgets

Smart vehicles

RFID
devices

Smart buildings

Sensing
data

Mobile phones

Data sensing and gathering

Data visualization

Machine learning
models

Cloud computing

Internet

Wi-Fi network

Base
station

Cellular network

Data analytics

Sensors: GPS, camera, temperature sensor, accelerometer, etc



IEEE Communications Magazine • June 2017134

models reviewed in this section. From the table, 
“risk-neutral” means that the user is unaware of 
the loss of its payoff, for example, when choos-
ing between guaranteed $5 and conditioned $10 
payoffs. A “profitable” solution guarantees a non-
negative utility for the service provider. An “indi-
vidual rational” solution guarantees a nonnegative 
utility for each user. A “truthful” solution guar-
antees that users cannot increase their payoff by 
submitting misleading bids for the crowdsensing 
task. Therefore, a truthful incentive mechanism 
provides a dominant strategy for rational users in 
bidding their true cost of performing the crowd-
sensing task.

We divide the incentive schemes into two 
main categories of threshold winner and contribu-
tion-dependent payoffs. 

Threshold Winner Payoff: In this payoff 
scheme, only the winning users will be paid for 
performing the sensing task, and there is no pay-
off allocation for rejected users. For example, the 
authors in [7] presented a Bayesian reverse auc-
tion model for target tracking with crowdsourcing, 
assuming that the value estimate of a user can be 
drawn from a continuous probability distribution. 
The residual energy of the mobile devices has an 
impact on the prior distribution of the user bids. 
The objective of this model is maximizing the total 
target tracking utility of the service by solving the 
multiple-choice knapsack problem. Likewise, the 
authors in [2] proposed two complementary pay-
off scenarios of user-centric and platform-centric 
schemes. In the user-centric scheme, the service 
defines the payoff using a reverse auction by 
following the steps shown in Fig. 2. In the plat-
form-centric scheme, the crowdsensing problem 
is formulated as a Stackelberg game. The Nash 

equilibrium is solved using backward induction 
and found to be unique. A major limitation of [2, 
7] is assuming a known prior distribution of user 
bids. In the real world, users can collude and sub-
mit misleading bids to increase their own payoff. 
This problem is solved in contribution-dependent 
payoff schemes, as discussed next.

Contribution-Dependent Payoff: A practical 
incentive mechanism requires all participants to 
be truthful. One principal way to achieve truth-
ful user interaction is by choosing an appropriate 
pricing scheme where the payoff allocations of 
participants are not solely defined by their bids. 
The authors in [3] applied the Vickrey-Clarke-
Groves (VCG) reverse auction with the objective 
of minimizing the sum of payoff values to crowd-
sensing users. A user is paid based on the differ-
ence between the sum of costs with and without 
that particular user. Reporting truthful bids is a 
weakly-dominant strategy in the VCG auction. 
The authors in [4] modeled the mobile crowd-
sensing problem as an all-pay auction where the 
crowdsensing users are not required to submit 
their bids at the beginning of the auction. Instead, 
the payoff is calculated based on the user contri-
butions after completing the sensing tasks. The 
users with the highest contribution receive a pay-
off, while the rest of the users do not receive any 
payoff allocation.

Privacy Preservation in 
Mobile Crowdsensing

Even though most of the existing works in the 
literature focus on monetary incentive models 
to achieve the maximum possible payoff alloca-
tion, privacy preservation is still a top priority for 

Figure 2. Crowdsensing incentive mechanism as a reverse auction.
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Table 1. Summary of the monetary incentive models in mobile crowdsensing.

Model Main entities Payoff scheme Maximization objective Solution properties

Bayesian auction [7]
Multiple risk-neutral 
users

Threshold winner payoff The target tracking accuracy
Bayesian Nash equilibrium (profitable 
and individual rational)

Sealed-bid auction [2]
Fixed budget with 
risk-neutral users

Threshold winner payoff
The service utility (more user and 
less payoff)

Profitable and individual rational

Stackelberg competition [2]
A leader (service) 
and followers (users)

Threshold winner payoff The service utility
Nash equilibrium (profitable and 
individual rational)

Vickrey auction [3]
Multiple risk-neutral 
users

Contribution-dependent payoff Data integrity Profitable and truthful

All-pay auction [4]
Risk-averse and 
risk-neutral users

All-pay contribution-dependent payoff The service utility
Nash equilibrium (profitable and 
individual rational)
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crowdsensing users. In this section, we first dis-
cuss the data anonymization properties that can 
be used to measure the privacy protection. Then 
we discuss the challenges of privacy preservation 
in mobile crowdsensing.

Privacy Properties and Data Anonymization

Mobile crowdsensing comes with challenging pri-
vacy issues. In particular, crowdsensing users are 
typically concerned that their personal informa-
tion can be leaked from the collected data. Per-
sonal information of users can be categorized into 
three main classes:
•	 Explicit identifiers are the data attributes that 

directly reveal the user identity (e.g., full 
name and social security number).

•	 Non-explicit identifiers can be combined with 
background knowledge to reveal the user 
identity (e.g., zip code and birth date).

•	 Sensitive attributes can be utilized to extract 
private information about the user (e.g., real-
time activity tracking using accelerometer 
data) [8].
Explicit identifiers should be completely 

removed before trading the crowdsensing data 
among businesses. To protect the non-explic-
it identifiers and sensitive attributes, data ano-
nymization methods can be applied to sensing 
data.

Privacy is defined by the information gain 
of an adversary. The following syntactic privacy 
properties can be used to define of the privacy 
protection requirements.

k-anonymity [9]: This property is developed 
to guarantee that a data sample of a particular 
user in public datasets cannot be re-identified by 
potential intruders. Specifically, for a crowdsens-
ing service to possess the k-anonymity property, 
each user should not be distinguishable from at 
least k – 1 other users. For example, a user should 
be unidentifiable by combining the available gen-
der and birth date crowdsensing data. This can be 
achieved by transformation techniques, such as 
identity generalization and suppression, to reduce 
the granularity of the data. For example, the birth 
dates can be replaced by date ranges instead of 
the exact values.

l-diversity [10]: The k-anonymity does not 
work well if the sensitive data attributes lack 
diversity. For example, if a few users of a health-
care crowdsensing service used a particular zip 
code and are infected by a disease, background 
knowledge can be used to reveal the health pri-
vacy of a user which is known by the adversary 
to use that zip code. In order to avoid this pri-
vacy threat, the l-diversity property requires that 
each equivalence class has at least l “well-repre-
sented” values. An equivalence class is a set of 
data samples with the same anonymized data 
attributes.

t-closeness [11]: The t-closeness property 
requires the distribution of sensitive values within 
each equivalence class to be “close” to their dis-
tribution in the entire original dataset. t-closeness 
is an extension of the l-diversity model as it takes 
the distribution of sensitive values into account. 
t-closeness can be achieved by adding random 
noise to sensitive data attributes. For example, 
adding Gaussian noise to accelerometer data can 
restrict the tracking of particular activities.

Challenges of Privacy Preservation in 
Mobile Crowdsensing

The authors in [12] reviewed the privacy threats 
and protection methods during the task manage-
ment in mobile crowdsensing. A taxonomy of 
privacy methods was provided including pseud-
onyms, connection anonymization, and spatial 
cloaking. The authors also highlighted the chal-
lenging process of defining the user contribution 
in incentive-based task assignment. The authors 
in [13] discussed the privacy and data integrity of 
mobile crowdsensing. The privacy is observed to 
be user-dependent.

Achieving the syntactic privacy properties can 
reduce the accuracy of data analytics algorithms. 
Applying strict data anonymization to all users 
results in poor accuracy of the data analytics. 
Instead, users can be given the choice of setting 
their preferable data anonymization level such 
that reliable users receive high payoff allocation. 
The trade-off between privacy preservation and 
accuracy maximization should also be taken into 
consideration, which is the main objective of the 
next section.

Incentive Mechanism for 
Privacy Preserving Crowdsensing

In this section, we introduce a privacy preserv-
ing incentive framework for mobile crowdsens-
ing where participating users can protect their 
private data by data anonymization. The level of 
data protection will accordingly be used to set 
the resulting payoff allocation such that the users 
have an incentive to provide their true data. We 
first present the system model and major entities. 
Then we discuss the proposed incentive frame-
work, which is intended to maximize the accuracy 
of data analytics while preserving the privacy of 
crowdsensing users.

System Model

As shown in Fig. 3, the crowdsensing system 
under consideration consists of the following 
three main entities.

Crowdsensing users are the participants who 
collect sensing data using their personal mobile 
devices (e.g., mobile phones and IoT gadgets). 
The contribution of a particular user to the crowd-
sensing community is defined based on the qual-
ity of the sensing data from the data analytics 
perspective. A user with positive contribution to 
the sensing process is considered pivotal. Users 
can apply data anonymization (e.g., adding noise 
to the sensing data) to protect their privacy and 
personally identifying information. Additionally, 
crowdsensing coalitions can be built as an effi-
cient scheme for achieving k-anonymity protec-
tion, where k is the number of cooperative users 
in the coalition.

A service provider buys data from the crowd-
sensing users through a mediator, applies data 
analytics, and delivers a service to a set of custom-
ers. The provider makes a profit by charging the 
customers a subscription fee.

A mediator is the auction management enti-
ty that controls the exchange of data between 
the crowdsensing users and the service provid-
er. Moreover, the mediator divides the payoff 
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received from the service provider among the 
crowdsensing users based on their contributions 
to the crowdsensing system.

We next discuss the privacy preserving model 
through which the crowdsensing users can sell 
data to the service provider and receive a payoff 
according to their individual contributions, as illus-
trated in Fig. 3. First, we define the individual con-
tributions and resulting payoffs of the users from 
the data analytics perspective. Second, we devel-
op a privacy preserving mechanism that gives 
the users an incentive for contributing their true 
data with the lowest possible data anonymization 
level. Third, we consider the case where users can 
form a crowdsensing coalition for identity gener-
alization, and we present a fair payoff allocation 
among cooperative users.

Data Analytics

Crowdsensing data D = {(xi,yi)}
L
i=1 usually includes 

tuples of sensing feature set xi  RM and a class 
label yi  R, where L is the number of data tuples 
and M is the number of data attributes. The feature 
set xi includes the sensing data, such as images in 
vision services and geographic coordinates in trans-
port services. The class label yi contains human 
input and is only available in supervised data ana-
lytics (e.g., specifying accident events in transport 
services). After collecting sufficient data, the ser-
vice provider applies data analytics methods such 
as deep learning [14] to build data originated ser-
vices. For example, transport services can provide 
accurate prediction of vehicle arrival times and road 
congestion. We denote the accuracy function of 
the data analytics model trained using dataset D as 
f(D). f(D) measures the performance of the service 
in providing accurate prediction of the ground truth. 

Incentive Mechanism Design

We consider a set of N users who are connect-
ed to a privacy preserving crowdsensing service. 
Each user n generates true sensing data Dn and 
selects a data anonymization level pn. The data 
anonymization can be performed by adding ran-
dom noise to the true data xi subject to pn, for 
example, Gaussian noise N(0, pnIM) with zero 
mean and a variance of pn, where IM is the iden-
tity matrix of size M. Each user submits its ano-
nymized data ~Dn and data anonymization level 
pn to the crowdsensing mediator, without know-
ing the preferences of other users. The full ano-
nymized dataset 

!Dn = ∪
1≤n≤N

!Dn
 

and data anonymization preferences P = p1, …, 
pn} are collected by the mediator from all users. 
According to the VCG auction [6], the mediator 
calculates the payoff of user n as follows:

Fn = f( ~Dn) – f( ~D–n),	 (1)

where ~D–n is the anonymized data after excluding 
the data of user n. The following three cases for 
the payoff function exist:
•	 If Fn > 0, the user will receive a positive pay-

off allocation of Fn as its data contribution 
increases the accuracy. These users are 
called pivotal.

•	 If Fn = 0, the user does not change the crowd-
sensing choice or the service accuracy. Such 
users receive zero payoff and can be advised 
to decrease their data anonymization level.

•	 If Fn < 0, the user has a negative contribu-
tion (e.g., excessive data anonymization) and 
will accordingly be penalized with a negative 
payoff. The data collected from such users 
should not be used in the data analytics.
Sending true data to the service provider is a 

weakly dominant strategy under the VCG rules 
regardless of the data anonymization levels of the 
other users.

Crowdsensing Coalition

A set of k users can cooperate to form a crowdsens-
ing coalition, denoted by K, which increases the pri-
vacy level by providing the data of the cooperative 
users under one generalization identity and achieving 
k-anonymity privacy protection. Those k users must 
be connected using D2D communication without tra-
versing the service provider. The generalization iden-
tity guarantees that a data sample cannot be used to 
identify its source from the k cooperative users. K is 
a virtual alliance of users who work collectively and 
are seen as one sensing entity by the service provider. 
Specifically, the service provider cannot identify the 
source of data samples as a particular data sample 
can relate to any of the k cooperative users. The pay-
off of the coalition is

FK = f( ~D) – f( ~D–K),	 (2)

where ~D–K is the anonymized data after excluding 
the data from all users in the coalition K. Solution 
concepts from cooperative game theory, such as 
the Shapley value and Nash bargaining solution 
[15], can be applied to share the resulting payoffs 
among the cooperative users in the coalition K. 
From the Shapley value, the payoff allocation (i.e., 
monetary payment), of each user is defined based 
on its contribution to the coalition.

Numerical Results
In this section, we present numerical experiments 
to evaluate the performance of the proposed pri-
vacy preserving framework.

System Setup

In this section, we use a real-world dataset [8] 
of a crowdsensing activity recognition system of 
six activities including walking, jogging, upstairs, 
downstairs, sitting, and standing. The dataset 

Figure 3. System model of the privacy preserving crowdsensing framework 
supporting both data anonymization and identity generalization through 
crowdsensing coalition formulation. Cooperative users are connected using 
device-to-device (D2D) communication.
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includes L = 1,098,207 samples of accelerome-
ter data that were collected by N = 36 users. The 
mobile devices sampled at a rate of 20 Hz result-
ed in M = 120 data features of framed 3-axial 
acceleration. We assume that the service provider 
uses deep learning [14] to develop the predic-
tion service. The service provider buys the crowd-
sensing data from the users through the auction 
mediator and sells an activity tracking service to 
customers.

We assume that users 2 and 3 protect their sen-
sitive activities by adding varied levels of Gaussian 
noise N(0, pnIM) to the acceleration data. Accord-
ingly, users 2 and 3 acquire the t-closeness prop-
erty, where t is equal to the variance of the added 
noise pn. The payoff of each user is defined based 
on the payoff rule in Eq. 1. Moreover, users 2 and 
3 can collaborate in the crowdsensing coalition K 
to acquire the k-anonymity protection, where k = 
2 for two cooperative users. The coalition’s total 
payoff is defined based on the payoff rule in Eq. 
2, while the payoff sharing among users 2 and 3 is 
defined according to the Shapley value.

User Contributions and Pivotal Users

Figure 4 shows the contributed data rates from 
each user and the resulting service accuracy f(⋅) 
by training a deep learning model on the data 
of each user separately. Two key results can be 
noted. First, the data rate varies among different 
users. However, there is no correlation between 
the service accuracy from the data analytics 
perspective and the contributed data rate from 
the sensing perspective. The service accuracy 
depends on the quality of the used mobile device, 
the user’s performance during task execution, and 
data annotation. For example, user 1 contributes 
more data than user 2, while the accuracy result-
ing from the data of user 1 is lower than that of 
user 2. Second, users 3 and 6 are pivotal, and 
they score the highest standalone accuracy values 
of 68.3 and 68.1 percent, respectively. The stand-
alone accuracy for the rest of the users is less than 
64 percent. The pivotal users are important to the 
service provider to ensure high service accuracy.

The Impact of Privacy on Accuracy

In Fig. 5a, we consider the impact of the data 
anonymization level on the accuracy of the 
crowdsensing service. Several important results 
are observed. First, there is an inverse relation-
ship between the prediction accuracy and the 
data anonymization level. The maximum service 
accuracy of f(D) = 92.5 percent is achieved when 
all users provide true data samples without any 
anonymization. This maximum value decreases 
as user 3 increases the level of data anonymiza-
tion. A high level of data anonymization can be 
required by the users to protect their privacy. 
Second, the service provider has an incentive to 
reject users with high data anonymization levels. 
For example, the service will reject user 3 when its 
data anonymization level is greater than 8, which 
is labeled “critical point 1” in Fig. 5a. This is due to 
the resulting harm to the overall system accuracy. 
Third, the prediction accuracy decreases as more 
users adopt the data anonymization scheme. For 
example, the accuracy is negatively affected when 
both users 2 and 3 apply the data anonymization 
compared to the case of user 3 only. According-

ly, the crowdsensing system has an incentive for 
reducing the number of users applying the data 
anonymization scheme. As presented next, this 
can be achieved by increasing the payoff alloca-
tion of users who provide their true data.

Payoff Allocation

Figure 5b shows the payoff allocation of users 2 
and 3 under the varied data anonymization levels. 
First, the payoff allocation of any user decreases 
as its data anonymization level increases. For a 
high data anonymization level which is equal to or 
greater than the over anonymization levels speci-
fied in Fig. 5b, users will be penalized by receiving 
negative payoff. Second, pivotal users receive a 
higher payoff compared to normal and low-per-
forming users; for example, the payoff of user 3 is 
greater than that of user 2. For the crowdsensing 
coalition case, the payoff allocation to the coop-
erative users is found using the Shapley value, 
which reflects the individual contribution of each 
user. The cooperative users receive not only the 
same payoff in both the crowdsensing coalition 
and the standalone cases, but also a higher level 
of the k-anonymity privacy protection.

Future Directions
Based on the proposed incentive framework, the 
following open research directions can be further 
pursued. 

Cooperation and Competition 
among Service Providers

To collect high-quality data, service providers may 
cooperate or compete with each other to attract 
and retain crowdsensing users. With cooperation, 
service providers collude to set payoff strategies 
that maximize their profit as a cooperative coali-
tion. In the competitive scenario, service provid-
ers can apply non-cooperative game and Nash 
equilibrium solutions for the service’s subscription 
fee and crowdsensing data’s prices. The strategic 
interaction among providers can also benefit the 
users in making higher revenues.

Figure 4. User contribution to the crowdsensing service.
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Incentive Mechanism Design for Fog Computing

Analyzing crowdsensing data can be computa-
tionally expensive. Fog computing provides a 
solution by allowing partial data processing at the 
mobile devices owned by users. In such a design, 
users are paid not only for sensing data, but also 
for available computing power. Incentive mech-
anisms are required to attract large contributions 
from users as fog nodes. Likewise, mobile devices 
come with varying hardware resources; methods 
for defining the user contributions in fog comput-
ing are also required.

Dynamic and Heterogeneous Crowdsensing

Crowdsensing users can be heterogeneous in 
term of the sensing precision and technical expe-
rience. Thus, the service provider has an incentive 
of attracting powerful users by increasing their 
payoff allocations, and the incentive mechanism 
has to optimize these payoff values. Additionally, 

users asynchronously join and leave the crowd-
sensing system. Stochastic optimization methods 
(e.g., Markov decision processes) can be formu-
lated to determine the optimal payoff rates over 
time, for example, to attract users during the off-
peak times.

Conclusion
Privacy awareness has the potential to significant-
ly boost the performance of mobile crowdsens-
ing, attracting more sensing users, and enabling 
the protection of privileged information. This arti-
cle has presented an incentive mechanism for 
privacy preservation and accuracy maximization 
in mobile crowdsensing. It has been shown that 
the coalition strategy can be used by users to 
send their data under one generalized identity, 
increase the k-anonymity privacy protection, and 
share the resulting payoffs among cooperative 
users based on their individual sensing contri-
bution. The proposed incentive framework has 
been evaluated using a real-world crowdsensing 
dataset. Finally, open research directions have 
been presented.
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Figure 5. Performance of the proposed privacy preserving framework under 
varied privacy levels: a) the resulting accuracy of the deep learning service 
trained on the crowdsensing data; b) the payoff allocation of Users 2 and 3. 
The privacy level is equal to the variance of the added Gaussian noise.
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