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In response to the growing demand to improve reliability and quality of power supply, distributed mon-
itoring devices are gradually being implemented in distribution networks. On the other hand, utilities are
demanding more accurate and reliable fault location systems to reduce the economic impact of power
outages. This paper presents a novel method that takes full advantage of all available measurements
to provide an accurate fault location. The developed method first uses an iterative state estimation based
algorithm to find the nearest node to the fault location. It then examines all lines connected to the
selected node and locates the fault. The performance of the proposed method is studied by simulation
tests on a real 13.8 kV, 134-node distribution system under different fault scenarios. The results verify
the accuracy of the algorithm and its robustness even under uncertain measured data. The method
robustly handles measurement errors, and is applicable to any distribution network with laterals, load
taps and heterogeneous lines.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Power distribution networks, because of their geographical dis-
persion in urban and rural areas, can be significantly affected by
faults arising from different sources such as adverse weather con-
ditions, bird contacts, vegetation growth and equipment failure.
Over 80% of customer service interruptions are owing to faults
on distribution networks; thus, in order to minimize outage times
and improve the continuity of supply, distribution network
automation has been applied to enhance the reliability, efficiency,
and quality of power supply. In this context, fault management can
be stated as the core of distribution network automation. As one of
the main building blocks of the fault management, fault location
enables fast service restoration and narrows down the search area
to find the fault point.

Considerable studies have been devoted to the development of
practical methods of fault location, thereby reducing the average
outage time and hence improving the reliability. These studies
can be categorized into two main groups. The first group, also
known as outage mapping, are a combination of techniques
applied to narrow down the search area by using various available
data sources like customer outage calls, weather data or fault indi-
cator signals to estimate the most likely affected area [1–3]. The
second group utilize field measurements to locate the fault and
can be classified into impedance based algorithms [4–7], methods
based on traveling waves [8–11], artificial intelligence based meth-
ods [12,13] and algorithms based on sparse voltage measurements
[14–18].

Because of their simplicity and practical feasibility, impedance
based algorithms are the most widely used type of fault location
methods. However, due to the branched nature of distribution net-
works, these algorithms are prone to multiple location estimation
problem. Installation of fault indicators can solve the multiple
estimation problem [19], but increases the implementation cost.
Other solutions such as injection of two sinusoidal signals with
different frequencies [20] or fault diagnosis based on the fault
current patterns [6] would be more cost effective. Traveling wave
based methods produce accurate results for networks with small
configurations and very limited number of laterals and branches
[10,11]. However, in distribution systems with a large number of
laterals and load taps, these methods often require very high
frequency sampling rate to identify the exact fault location.
Methods based on artificial intelligent systems, such as neural net-
works, despite their accuracy and simplicity, require large training
data and retraining following a change in the distribution system
topology [21].
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Recent advances in metering and communication systems, and
the advent of Intelligent Electronic Devices (IEDs) such as power
quality meters, digital protective relays and digital fault recorders
have greatly improved monitoring and protection of modern distri-
bution networks and have provided new opportunities to enhance
fault location methods. Accordingly, another class of fault location
methods has been proposed trying to benefit from the sparse volt-
age measurements, provided by IEDs, in addition to the voltage and
current measured at the upstream substation in order to overcome
some of the aforementioned problems in the previous algorithms
[14–18].

The fault location method proposed in [16], first estimates fault
current by summing fault current contributions from all sources. It
then injects the calculated current at all system nodes to calculate
the change in three phase voltages at all measurement nodes.
Finally, comparing the measured values with calculated values,
the method identifies the faulted node. This work has a simple pro-
cedure; however, its approximate estimate of fault current affects
the accuracy of the results. Authors in [18], propose a method with
the same principles, but instead of estimating the change in volt-
ages, they estimate the fault currents and identify the faulted node
by comparing the estimated currents. The proposed method has
acceptable results with or without synchronization of the mea-
sured values, though, it requires a large number of meters.

The fault location methods proposed in [14,17] are based on the
fact that each fault causes voltage sags with different characteris-
tics at different nodes. Therefore, knowing the voltage sag magni-
tudes at certain measurement nodes, it would be possible to locate
the faulted node. The algorithm assumes the fault at each node
throughout the network and calculates voltage sags using a load
flow program. It then determines the faulted node by comparing
how well the calculated values for each node match the measured
values. The proposed methods successfully find the nearest node to
the fault without synchronization of the measured values, but they
cannot identify the actual location of the fault.

The method presented in [15] follows the same principles. For
each node, the method first employs a set of short circuit analysis
to estimate fault resistance. It then applies the estimated resis-
tance and explores the similarity between the measured and calcu-
lated voltage sags to find the faulted node. In the next step, the
algorithm considers the lines connected to the selected node,
moves the fault along these lines and locates the fault. The method
is accurate and can identify the exact fault location; however, using
three iterative stages for estimation of fault resistance, identifica-
tion of faulted node and exact fault location increases the compu-
tational burden, especially for large networks.

Despite the shortcomings mentioned, all of the previously men-
tioned works provide acceptable results. However, since all of
these methods rely on indices defined based on measured voltages,
they would be very sensitive to measurement inaccuracies. There-
fore, whilst all of the previously proposed algorithms use measure-
ments only to define their indices, the main idea of this work is to
incorporate all measured values into calculations through a state
estimation based algorithm to improve both the accuracy and reli-
ability of the results even under uncertain conditions. Each time a
fault is detected, the developed method identifies the nearest node
to fault location using an iterative state estimation based algo-
rithm. It then examines all lines connected to the selected node
and finds the exact fault location. The method has been tested by
simulation studies on a 134-node, real, radial distribution network.
The results verify accuracy and robustness of the method for differ-
ent fault types, positions, and resistances even when there are
measurement and load estimation errors.

The rest of the paper is organized as follows: the concept of
Branch-current-based State Estimation (BSE) is described in Secti
on ‘Branch-current-based state estimation’. Section ‘The algorithm’
presents the outline and a detailed description of the proposed
fault location method. Case study is given in Section ‘Case study’
where the performance of the proposed method is evaluated and
Section ‘Conclusion’ concludes the paper.

Branch-current-based state estimation

State estimation is the process of determining the most likely
state of a system by using its mathematical model and a set of
measurements, which may include any combination of current,
voltage and power measurements.

The measurements relate to system states by a set of nonlinear
functions:

z ¼ hðxÞ þ e ð1Þ
where h(x) is the vector of nonlinear functions, x is the vector of sys-
tem states, and e is the vector of measurement errors.

Branch-current-based state estimation [22,23], commonly used
in distribution networks, is developed based on the weighted least
squares method and uses branch currents as state variables:

x ¼ ½Ir; Ix� ð2Þ
where Ir and Ix are the vectors of real and imaginary parts of the
branch currents.

BSE estimates the state variables (i.e. branch currents) by min-
imizing the following objective function:

jðxÞ ¼
Xm
i¼1

wi zi � hiðxÞð Þ2 ¼ z� hðxÞ½ �TW z� hðxÞ½ � ð3Þ

where W is a weighting diagonal matrix with wi elements.
Minimizing this objective function leads to the best possible

values of state variables using all available measuring resources.
In order to minimize j(x), the first-order optimality conditions have
to be satisfied:

gðxÞ ¼ @jðxÞ
@x

¼ �HTðxÞW z� hðxÞ½ � ¼ 0 ð4Þ

where HðxÞ ¼ @hðxÞ
@x

h i
.

Expanding the nonlinear function g(x) into its Taylor series and
ignoring the higher order terms leads to an iterative solution
scheme known as Gauss–Newton method:

xkþ1 ¼ xk � GðxkÞ� ��1
gðxkÞ ð5Þ

where:
GðxÞ ¼ @gðxÞ

@x ¼ HTðxÞWHðxÞ is the gain matrix [24].
Starting from an initial guess, the state estimation algorithm

iteratively updates the state variables until the objective function
is minimized. The details of BSE are described in [22,23].

The algorithm

The proposed fault location algorithm is developed based on the
concept of the branch-current-based state estimation method. As
shown in the flowchart of Fig. 1, the input data is first checked
for identification and elimination of bad data from the measure-
ment set. Then, the faulted zone is determined as a group of neigh-
boring nodes suspected of being the fault location. The main fault
location process begins in the next step where all the suspected
nodes are ranked by applying the fault at each of them and calcu-
lating a predefined index. The node with the largest value of index
is identified as one end of the affected line. During this process, the
fault is modeled as a special load temporarily connected to each
analyzed node, one at a time, and its current is estimated using
an iterative state estimation algorithm. Finally, the list of ranked
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Fig. 1. Outline of the proposed method.
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nodes is passed on to the next block where the faulted line is iden-
tified among the lines connected to the selected node and the fault
is exactly located. Detailed description of each step is described in
the following.
R

S

Recloser

Sectionalizer

R1
Zone 1

R2

Zone 3

S2
Zone 4

Zone 2
S1

Fig. 2. Identification of the faulted zone in a sample distribution system.
Input data preparation

The required input data for the algorithm are as follows:

(1) Fault type: A fault classification algorithm, such as that
described in [25], is required to identify fault type and
faulted phase or phases. However, since the development
of such algorithms is beyond the scope of this paper, it is
assumed that this information is available.

(2) System information: These data are extracted from the dis-
tribution system database and include network topological
information, such as line sections length and impedance,
and location of loads.

(3) Estimated load demand: Forecasted load demand is required
to provide pseudo measurements to ensure the observability
of the distribution system.

(4) Real measurements: In addition to the voltage and current
measurement at the head of main feeder, synchronized volt-
ages at sparse measurement nodes are used to perform the
proposed method. There are two main methods for synchro-
nization of the measurements: global positioning system
(GPS) and computer network.

(5) Other available measurements such as non-synchronized
voltages, line currents or powers can also be employed to
enhance the method performance. The details of integration
of different measurements into state estimation are
described in [22,23].
(6) Field data: All accessible field data such as smart meter data
or fault indicator signals, if available, could provide the
required information for identification of the faulted zone
[1].

Bad data detection and identification

Measuring devices are imperfect and may contain errors from
various sources. The errors caused by measurement inaccuracies
or noise are usually small but the errors caused by communication
failures and improper connection or calibration are normally large
and called bad data, which should be eliminated from the mea-
surement set.

Several methods are reported in the literature for detection and
elimination of bad data from the measurement set. In this paper,
the normalized residual test is used which is composed of the fol-
lowing steps [24]:

(1) Solve the state estimation problem and obtain the measure-
ment residuals:
ri ¼ zi � hiðx̂Þ; i ¼ 1; . . . ;m ð6Þ

where x̂ is the estimated value of the states;

(2) Calculate the normalized residuals:
rNi ¼ jrijffiffiffiffiffiffi
Xii

p ; i ¼ 1; . . . ;m ð7Þ
where Xii is the i-th diagonal element of the residual covari-
ance matrix:
X ¼ W�1 � HG�1HT ð8Þ

where W, H and G are previously defined in Section ‘Branch-
current-based state estimation’;

(3) Find the largest element in the vector of normalized residu-
als (rN

max

i ).
(4) Compare rN

max

i against a threshold. If rN
max

i > c, then the i-th
measurement will be suspected as bad data. Else, stop, no
bad data is detected. The threshold (c) is a constant previ-
ously determined based on the maximum value of the nor-
malized residuals when no bad data is detected.

(5) Eliminate the i-th measurement if it is a bad data and go to
step 1.

Identification of the faulted zone

Power companies normally depend on customer trouble calls
for outage mapping and hence reducing the search space for fault
location. However, in modern distribution networks, Advanced
Measuring Infrastructure (AMI) for processing smart meter data
has become an available option for determining the affected part
of the network [1,26]. Furthermore, the use of IEDs with communi-
cation capabilities, that are able to detect and report a fault condi-
tion, could provide the required information for identification of
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the faulted zone [1,27]. As an example, consider the system shown
in Fig. 2. If a fault occurs in each zone, all devices upstream of the
faulted zone will indicate a fault condition; therefore, the affected
zone would be the one with all the devices from the path from the
substation reporting the fault. For example, if R1, R2 and S2 indi-
cate a fault condition, zone 4 would be the affected part of the
network.

Regardless of the method employed, identification of faulted
zone narrows down the search space and significantly reduces
the required time and computational burden.

Ranking the nodes

Considering the fault as a special load temporarily connected at
the faulted node, the presence of this new load changes the actual
load demand of the node. Thus, performing state estimation using
the previously estimated load demand and during fault real time
measurements, results in highly erroneous estimates. In other
words, the occurrence of a fault leads to creation of large normal-
ized residual values in state estimation results (see Eq. (7)).

The proposed fault location algorithm is based on the fact that
the correction of the bad data (i.e. load demand of the faulted
node) significantly reduces the normalized value of residuals.
Therefore, the node which modification of its load demand results
in the least values of normalized residuals would be the faulted
node. This modification is performed by correction of the equiva-
lent current of the estimated load demand of the faulted node:

IECMLi ¼ PLi þ jQLið Þ
Vi

� ��

ILi ¼ IECMLi þ IF

ð9Þ

where IECMLi and ILi are the equivalent current of the estimated load
demand and the modified value of the load current for node i,
respectively, and IF is the fault current.

In the proposed method, all suspect nodes are examined by
applying the fault at each of them and performing state estimation.
At each iteration of the state estimation, the fault current is calcu-
lated by Eq. (10), and the load current of the node under investiga-
tion is modified by Eq. (9).

IðkÞF ¼ Iðk�1Þ
F þ Imea

S � IcalS

� �
ð10Þ

where Imea
S and IcalS are measured and calculated current at the feeder

head and IðkÞF is the fault current at k-th iteration.
The node at which applying the fault (i.e. modifying its load cur-

rent) produces the least value of normalized residuals would be the
nearest node to the actual location of the fault. Therefore, for each
node, the following index is calculated and the node with the lar-
gest value of the index is identified as one end of the faulted line:

R ¼
Xn
i¼1

X3
j¼1

rNL ði; jÞ

Index ¼ 1
Rþ e

ð11Þ

where rNL ði; jÞ is the value of normalized residual of the load pseudo
measurement for j-th phase of i-th node, and e is a small number to
avoid division by zero.

The flowchart of the proposed ranking algorithm is illustrated
in Fig. 3. Once the list of the suspect faulted nodes is prepared,
the ranking algorithm starts from the first node. For each node,
considering the fault as a load temporarily connected at the node
and performing state estimation, the Index value is calculated.
Applying the fault at the nearest node to the fault location would
result in the least differences between the calculated and
measured values (i.e. residuals). Thus, in the final step all nodes
are ranked based on the Indexwhich is a cumulative representation
of normalized values of residuals.

Identification of the faulted line and fault location

During the process of ranking, a fault current value is estimated
for each node. In [17], this fault current is used to define an angle
index \Zx for all analyzed nodes and the angle index is then
employed to better rank the nodes.

\Zxi ¼ \Vcalc;i
F � \Icalc;iF ð12Þ

where \Vcalc;i
F and \Icalc;iF are the calculated angle of node voltage and

fault current at node i.
In this work, the \Zx value helps to identify the faulted line

among the lines connected to the previously selected node and
to locate the fault. Applying a fault at the beginning of the faulted
line and moving it along the line, the estimated value of \Zx will
change as shown in Fig. 4. This change is to compensate the reac-
tive part of line impedance and since line reactance has a linear
relationship with its length, the trend will be linearly upward. This
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means that the sign of \Zx is always negative at the beginning of
the faulted line, and positive at its end. Therefore, among the lines
connected to the selected node, fault will be on the line with oppo-
site sign of \Zx at its ends. Furthermore, according to the trend
shown in Fig. 4, the fault location can be simply calculated by solv-
ing the linear equation between the angle index and the distance:

d ¼ L� \Zb
x

\Zb
x � \Ze

x

ð13Þ

where d is the distance to the fault from the beginning of the line, L

is the length of the line, and \Zb
x and \Ze

x are the estimated angle
index values at the beginning and at the end of the line.

During the process of fault location, once the nodes are ranked
based on the procedure explained, the algorithm will be applied to
all top ranked nodes, one by one, to identify the exact fault location
around them. Starting from the first top ranked node, the steps of
the algorithm are as follows:

(1) Use Eq. (12) to calculate an angle index \Zx for all analyzed
nodes.

(2) Find all lines connected to the i-th top ranked node.
(3) If any of the selected lines has the opposite sign of \Zx at its

ends, use Eq. (13) to find the exact fault location in that line.
(4) Examine the next top ranked node.

The algorithm continues by considering a defined number of
nodes and finds all possible fault locations around them.

Case study

The overhead, three phase, 13.8 kV, 134-node distribution sys-
tem from [18] is used to test the proposed fault location algorithm.
Five voltage measurements are arbitrarily placed in the system, at
nodes 20, 51, 87, 118 and 127. The test feeder is simulated in the
Alternative Transient Program (ATP) with loads modeled as con-
stant impedances. The phasor values of voltage and current at
the substation and the phasor value of voltage at each meter posi-
tion are obtained by applying a full cycle Fourier algorithm on the
corresponding waveforms [28].

Two sets of simulation tests are carried out. The first test set is
performed under ideal conditions, whereas in the second test set
the ability of the proposed method is evaluated in the presence
of errors in measurements and load forecasts. In each test set, sev-
eral cases are investigated considering different fault scenarios (see
Fig. 5).

Performance under ideal condition

In this part, it is assumed that the field recorded data are free of
errors and the loads are accurately estimated. In order to assess the
accuracy of the proposed method, faults are applied at different
lines considering various fault resistances. In each case, first, nodes
are ranked and then the fault location algorithm is performed for
the first two top ranked nodes.

Fig. 6 shows the Index values for a single line to ground (AG)
fault at line 107–112, 85 m from node 107 with Rf = 10X. Node
112 has the largest Index value and would be one end of the
faulted line. The other possible ends are nodes 107 and 113 that
are the nodes on the other side of lines initiating from node 112.
Fig. 7 shows the angle index values (\Zx). As explained in Sectio
n ‘Identification of the faulted line and fault location’, the line
between nodes 112 and 113 cannot be a possible location of the
fault because they have the same sign of \Zx, but line 107–112
can be a candidate. Hence, using Eq. (13) the fault is located at
80.4 m from node 107 at line 107–112. Node 107 is the second
node with the highest value of the Index. Considering this node
as a possible end of the faulted line, nodes 106, 108 and 112 are
the other possible ends. Investigation of the \Zx values in Fig. 7,
reveals that the line between nodes 106 and 107 cannot be a pos-
sible location of the fault. Line 107–112 is already investigated and
thus the fault is located at line 107–108, 23.55 m from node 107 as
the second candidate.

Several other cases are also investigated considering different
fault types, positions and resistances. Table 1 shows the deviation
between the estimated and actual fault points (D) in meters for sin-
gle line to ground faults (AG). The results are obtained for different
fault scenarios and in each case, the selected lines are listed in
order. In the upper part of Table 1, the estimations aremade assum-
ing that the affected zone is previously identified, whilst in the
lower part the results are obtained by applying the algorithm to
all nodes of the entire network. For example, for an AG fault
occurred at line 90–119with Rf = 5X, either the faulted zone is pre-
viously identified or not, the fault location software informs the
maintenance crew that the fault is located at line 90–199 and esti-
mates its location by an error of 8.64 m. But if the affected zone is
not identified, the software also selects line 90–91 as the second
candidate. Comparison of results obtained for different fault resis-
tance values reveals that the fault location error increases with
the increase of fault resistance. Nevertheless, in all cases the faulted
line is correctly identified and the estimations are always accurate.

Reviewing the results presented in the upper and lower parts of
Table 1 for different fault scenarios, it can be concluded that the
proposed algorithm is able to produce the same results with or
without identification of the faulted zone. However, by determin-
ing the affected zone, instead of applying the algorithm to each
node throughout the network, it should only be applied to the
nodes within the identified zone, hence significantly reducing the
computational burden.

Table 2 shows the difference between the estimated and actual
fault locations in meters for the same fault scenarios but different
fault types. Comparison of the results shows that the proposed fault
location algorithm reproduces almost the same results for different
fault types. Table 3 shows the results of the same tests for the fault
location method proposed in [14]. This method finds the nearest
node to the fault location; therefore, the errors reported in Table 3
for this algorithm are the distance between the selected node and
actual fault location and the reported lines are the lines connected
to the selected node. Compared to Table 2, almost in all cases the
proposed algorithm produces more accurate results. For example,
for a fault at line 74–75, the method proposed in [14] selects node
74 that is 55 m away from the fault location, whereas the proposed
method gives more accurate results. As another example, for a fault
on line 38–40, the method proposed in [14] selects node 40 as the
nearest node with an estimation error of 109 m. For the same fault,
the proposed algorithm selects node 38 and introduces line 38–40
and line 38–39 as the candidate faulted lines. The main advantage
of the method proposed in [14] is its low computational time. For
the test cases presented in Tables 2 and 3, the mean computational
times for the proposed method and the algorithm proposed in [14]
was 7 s and 22 s, respectively. Compared to required time for the
consequence activities such as repair crew dispatching and line
patrolling, both computational times are negligible.

Performance under non-ideal condition

In this part, the accuracy and robustness of the proposed algo-
rithm are evaluated under load estimation uncertainties, measure-
ment inaccuracies and presence of bad data. Different fault
scenarios are simulated and since the single line to ground faults
occur most frequently, results are only presented for this type of
fault.



Fig. 5. Topology of the 134-node distribution network.
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Effect of voltage measurement and load estimation inaccuracies
In distribution systems, loading data are often obtained by pro-

cessing the historical costumer load data and due to costumer
behavior uncertainties, the load profiles cannot be accurately
estimated. In order to test the performance of the proposed
method under uncertain loading conditions, the load data
employed in simulations is taken as the benchmark and the
forecasted load data is created by the random variation of them
within specified ranges:
Pi;j ¼ Pact
i;j 1þ epi;jrL

� �

Qi;j ¼ Qact
i;j 1þ eqi;jrL

� � ð14Þ

where Pi,j, Qi,j, P
act
i;j ; Q

act
i;j and ei,j are the forecasted and actual load

data and a random number between �1 and 1 for i-th node and j-th
phase, respectively, and rL is the range of deviation considered.

Voltage measurements are also prone to errors due to bad cal-
ibration, unreliable communications, noises and meter inaccura-
cies. In order to study the effect of meter inaccuracies and noises,
random errors are added to the data generated during simulation:

VMi ¼ Vact
Mi ð1þ eirV Þ ð15Þ

where VMi, V
act
Mi and ei are the measured voltage, the actual value of

voltage and a random number between�1 and 1 for the i-th voltage
meter, respectively, and rV is the range of deviation considered.

Besides the mentioned sources of measurement inaccuracies,
signal phase angle deviations due to synchronization error would
also cause measurement errors. There are two main methods for
synchronization of the measurements: global positioning system
(GPS) and computer network. Whilst the IEEE Standard for
Synchrophasor Measurements specifies a theoretical accuracy of



Table 1
Distance between the estimated and actual fault points (D) in meters for single line to ground faults (AG).

Rf Fault at line 7–8
160 m from 7

Fault at line 38–40
39 m from 38

Fault at line 74–75
55 m from 74

Fault at line 90–119
44 m from 90

Fault at line 107–112
85 m from 107

Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m)

With identification of the
faulted zone

1X 7–8 18.99 38–39
38–40

98.83
0.27

74–75 0.34 90–119 10.34 107–112
107–108

9.07
114.59

5X 7–8 12.9 38–39
38–40

99.3
1.21

74–75 0.07 90–119 8.64 107–112
107–108

7.24
113.59

10X 7–8 2.6 38–40
38–39

4.85
94.95

74–75 0.25 90–119 1.08 107–112
107–108

4.59
108.55

20X 7–8 43.3 38–40
38–39

20.07
80.1

74–75 20.28 90–119 30.89 107–112
107–108

59.22
92.2

Without identification of
the faulted zone

1X 7–8 18.99 38–39
38–40

98.83
0.27

74–75 0.34 90–119
90–91

10.34
71.06

107–112
107–108

9.07
114.59

5X 7–8 12.9 38–39
38–40

99.3
1.21

74–75 0.07 90–119
90–91

8.64
77.48

107–112
107–108

7.24
113.59

10X 7–8 2.6 38–40
38–39

4.85
94.95

74–75 0.25 90–119
90–91

1.08
71.88

107–112
107–108

4.59
108.55

20X 7–8 43.3 38–40
38–39

20.07
80.1

74–75 20.28 90–119
90–91

30.89
51.53

107–112
107–108

59.22
92.2

Table 2
Distance between the estimated and actual fault points (D) in meters for different fault types.

Fault type Fault at line 7–8
160 m from 7

Fault at line 38–40
39 m from 38

Fault at line 74–75
55 m from 74

Fault at line 90–119
44 m from 90

Fault at line 107–112
85 m from 107

Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m)

Single line to ground fault (AG)
(Rfa = 2X)

7–8 18.45 38–39
38–40

99.76
0.27

74–75 0.112 90–119 10.48 107–112
107–108

10.03
114.8

Line to line fault (AC)
(Rfa, Rfc = 2X)

7–8 17.18 38–39
38–40

101.12
0.91

74–75 0.43 90–119 11.74 107–108
107–112

111.21
7.06

Line to line to ground fault (BCG)
(Rfb, Rfc = 2X, Rf = 5X)

7–8 15.43 38–39
38–40

100.81
0.65

74–75 4.08 90–119 12.61 107–112
107–108

68.83
90.39

Three phase to ground fault (ABCG)
(Rfa, Rfb, Rfc = 2X, Rf = 5X)

7–8 13.69 38–39
38–40

70.09
0.21

74–75 0.08 90–119 9.086 107–112
107–108

4.54
115.71

Table 3
Distance between the estimated and actual fault points (D) in meters for different fault types obtained by the method proposed in [14].

Fault type Fault at line 7–8
160 m from 7

Fault at line 38–40
39 m from 38

Fault at line 74–75
55 m from 74

Fault at line 90–119
44 m from 90

Fault at line 107–112
85 m from 107

Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m)

Single line to ground fault (AG)
(Rfa = 2X)

8–9
8–7

40 39–38 109 74–75 55 90–119 44 108–107
108–109

85

Line to line fault (AC)
(Rfa, Rfc = 2X)

8–9
8–7

40 39–38 109 74–75 55 90–119 44 108–107
108–109

85

Line to line to ground fault (BCG)
(Rfb, Rfc = 2X, Rf = 5X)

8–9
8–7

40 39–38 109 74–75 55 90–119 44 108–107
108–109

85

Three phase to ground fault (ABCG)
(Rfa, Rfb, Rfc = 2X, Rf = 5X)

8–9
8–7

40 39–38 109 74–75 55 90–119 44 108–107
108–109

85
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synchronization better than 1 ls (0.02 degree in 60 Hz) [29], the
real world tests on phasor measurement units have shown the
phase angle errors are in the range of 0.1 degree [30]. On the other
hand, in [31] it is shown that network synchronization can achieve
synchronization accuracy of better than 4 ls (0.08 degree in
60 Hz).

As an example to illustrate the accuracy of the proposed state
estimation based method in fault analysis, Fig. 8 shows the differ-
ences between the calculated and actual values of fault voltage
magnitudes under uncertain loading conditions. The deviations in
voltage magnitudes calculated by the proposed state estimation
based algorithm are remarkably low and about one-tenth of the
during fault load flow method proposed in [14]. It should be noted
that such small differences would have considerable impacts on
the performance of the fault location algorithms which are based
on the deviation between the measured and calculated values.
Fig. 8 shows that the proposed state estimation based approach,
by using all available measuring sources for during fault
calculations, reduces the effect of the inaccuracies and ensures
its effectiveness even under uncertain conditions.
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Fig. 8. Difference between the calculated and actual voltage magnitudes for a single line to ground fault at node 80 with Rf = 10X.
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Seven cases are considered to assess the accuracy and reliability
of the algorithm under non-ideal conditions:

Case (1) Random variation of all loads within 20% of deviation
(rL = 0.2).
Case (2) Random variation of all loads within 50% of deviation
(rL = 0.5).
Case (3) Random variation of all measured voltages within 0.5%
of deviation (rV = 0.005).
Case (4) Random variation of all measured voltages within 1% of
deviation (rV = 0.01).
Case (5) Random variation of phase angle of all measured volt-
ages within 0.1 degrees.
Case (6) Random variation of all loads and measured voltage
magnitudes and phase angles within 50%, 1% and 0.1 degree
respectively.

In all the considered scenarios, it is assumed that the faulted
zone is previously identified. In each case, first, the algorithm
described in Section ‘Ranking the nodes’ is applied to rank all the
nodes within the affected zone. Then the fault location algorithm
is performed for the first three top ranked nodes.

The results are summarized in Table 4, where almost in all
cases, the affected line is correctly identified. By comparing
Tables 4 and 1, it can be concluded that load estimation uncertain-
ties do not have a significant impact on the method performance.
Variation of all loads within 20% and 50% of deviation has led to
almost the same results. The comparison also indicates that ran-
dom errors within 0.5% of measured voltages do not affect the fault
location results, but higher rate of errors may slightly decrease the
method performance. The results for Case 5 shows that the
Table 4
Distance between the estimated and actual fault points (D) in meters for single line to groun
conditions).

Cases under
study

Fault at line 7–8
160 m from 7

Fault at line 38–40
39 m from 38

Fault a
55 m f

Selected lines
in order

D (m) Selected lines
in order

D (m) Select
in ord

Case 1 7–8 9.28 38–39
38–40

91.19
9.42

74–75

Case 2 7–8 18.54 38–39
38–40

91.24
9.32

74–75

Case 3 7–8 13.07 38–39
38–40

93.75
6.61

74–75

Case 4 7–8 21.85 38–39
38–40

88.11
12.19

74–75

Case 5 7–8 20.823 38–39
38–40

88.75
15.19

74–75

Case 6 9–10 48.17 38–39
38–40

89.5
16.01

74–75
proposed method can tolerate phase angle errors within 0.1
degrees but compared to ideal condition (i.e. Table 1) its accuracy
decreases.

Case 6 is the worst situation considered where loads, voltage
magnitude and phase angle measurements are randomly changed.
Compared to the results obtained for Case 2, Case 4 and Case 5, the
estimation errors are increased but all the results are still
satisfactory.

Effect of bad data and the quantity of measurements
In the previous part, the effect of meter inaccuracies and noise

in voltage measurements is studied. But, sometimes problems such
as bad calibration or improper connection of measurements can
cause higher errors in some meters. In such a case, bad data detec-
tion and identification should be performed to filter the erroneous
data.

In the proposed method, as shown in Fig. 1, before performing
the process of fault location, the prefault data and measurements
are first employed to identify and eliminate the bad data from
the measurement set.

In order to evaluate the ability of the algorithm in identifying
the bad data and hence working with a reduced number of mea-
surements, voltages measured at nodes 87 and 118 are multiplied
by factors of 0.9 and 1.1, respectively. Using the prefault measure-
ments, state estimation is performed and the normalized residuals
for measured voltages are calculated. As shown in Fig. 9, the calcu-
lated values clearly indicate the presence of bad data. Hence, as
described in Section ‘Bad data detection and identification’, the
voltage at node 118 is eliminated from the measurement set. State
estimation is subsequently repeated using the remaining
measurements. As can be seen in Fig. 9, after elimination of the
d faults (AG) with Rf = 10X (the performance of the proposed method under non ideal

t line 74–75
rom 74

Fault at line 90–119
44 m from 90

Fault at line 107–112
85 m from 107

ed lines
er

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m)

6.46 90–119 5.54 107–112
107–108

6.15
109.54

6.8 90–119 6.01 107–112
107–108

9.3
108.31

3.06 90–119 5.6 107–112
107–108

5.86
112.52

7.69 90–119 5.77 107–112
107–108

7.85
113.85

8.8 90–119 12.71 107–112
107–108

10.16
115.73

11.04 90–119 16.69 107–108
107–112

121.3
11.32
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Fig. 9. Normalized residuals of measured voltages in presence of bad data at nodes 87 and 118.

Table 5
Distance between the estimated and actual fault points (D) in meters using a reduced number of measurements.

Rf Fault at line 7–8
160 m from 7

Fault at line 38–40
39 m from 38

Fault at line 74–75
55 m from 74

Fault at line 90–119
44 m from 90

Fault at line 107–112
85 m from 107

Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m) Selected lines
in order

D (m)

1X 7–8 19.05 38–39
38–40

70.09
0.2

74–75 0.41 90–119 10.41 107–108
107–112

166
1.2

5X 7–8 13 38–39
38–40

99.33
1.46

74–75 1.85 90–119 7.79 107–108
107–112

165.53
0.64

10X 7–8 2 38–39
38–40

95.67
5.07

74–75 2.68 90–119 3.94 107–108
107–112

161.85
6.83

20X 7–8 50.12 38–39
38–40

20.26
80.51

74–75 21.94 90–119 44 107–108
107–112

148.75
18.48
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detected bad data, the calculated values of normalized residuals
are still over the detection threshold. Therefore, voltage measure-
ment at node 87 is also identified as a bad data and eliminated
from the measurement set. State estimation is repeated using the
modified measurement set. As shown in Fig. 9, after elimination
of the bad measurements, the largest value of normalized residuals
is below the threshold, ensuring the quality of the remaining
measurements.

In order to evaluate the ability of the proposed algorithm using
the remaining 3 voltage measurements, different fault scenarios
are considered and Table 5 summarizes the results. In all cases
the affected line is correctly identified and the results are still
satisfactory. Therefore, the proposed method is robust enough to
work with a reduced number of measurements, but its accuracy
and error tolerance may be decreased. On the other hand,
increasing the number of meters improves both the accuracy and
robustness of the method.

In this paper, it is assumed that the employed measurement
devices are already installed for other purposes like power quality
monitoring. The proposed method aims to use the data from the
available measurements to enhance the fault location accuracy.
The minimum number of the measurement devices required for
fault location depends on their location. However, if a distribution
company decides to dedicate a number of measurement devices for
the fault location purpose, a method similar to the optimal meter
placement algorithm proposed in [17] can be employed.

Conclusion

This paper presents a new algorithm that uses sparse measure-
ments for fault location in distribution networks. The proposed
method is tested by simulation studies for different fault types,
positions, and resistances. The simulation results validate the
accuracy of the proposed method. The major contributions of the
paper are summarized as follows:
(1) A new fault location algorithm is proposed that incorporates
all of the available measurements such as voltage, current or
power into calculation to provide the best estimation.

(2) Simulation studies have shown that compared to the previ-
ously proposed methods, the presented algorithm is more
accurate.

(3) The integrity of the data collected from IEDs in distribution
networks is not guaranteed. Measuring devices may contain
small errors due to measurement inaccuracies or noises, and
large errors caused by communication failures and improper
connection or calibration. Compared to the previously pro-
posed methods that mostly require accuracy in measure-
ments and load profile estimation, the proposed method is
able to handle measurement errors. The method first
assesses the input data and eliminate the measurements
having large errors. It then uses a state estimation based
method incorporating all remaining measurements which
significantly reduces the impact of their random small errors
and load estimation uncertainties.

(4) The proposed method requires only a few number of meters
such as digital fault recorders or power quality meters to
enhance its accuracy and robustness.
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