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a b s t r a c t

This paper presents a novel dynamic programming approach for multi-objective planning of electrical
distribution systems. In this planning, the optimal feeder routes and branch conductor sizes of a distri-
bution system are determined by simultaneous optimization of cost and reliability. The multiple planning
objectives are minimization of: (i) installation and operational cost, and (ii) interruption cost. The first
objective function consists of the installation cost of new feeder branches and substations, maintenance
cost of the existing and new feeder branches, and the cost of energy losses. The second objective function
measures the reliability of the distribution network in terms of the associated interruption costs for all
the branches, which includes the cost of non-delivered energy, cost of repair, and the customer damage
cost due to interruptions. A dynamic programming based planning algorithm for optimization of the fee-
der routes and branch conductor sizes is proposed. A set of Pareto solutions is obtained using a weighted
aggregation of the two objectives with different weight settings. The proposed approach is evaluated on
21-, 54-, and 100-node distribution systems. The simulation test results are analyzed with various case
studies and are compared with those of two existing planning approaches based on multi-objective evo-
lutionary algorithm.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Electric power distribution system planning is an important
technology for power utilities in the deregulated power market
[1,2]. A typical distribution system planning is broadly categorized
either as a static or an expansion planning [1]. The static planning is
a one-step planning of a new network, whereas an expansion plan-
ning is adopted to plan a network taking the load growth at the
existing nodes and/or inclusion of additional load nodes. An expan-
sion planning can be of single stage for single horizon year or mul-
ti-stage, i.e., stage-by-stage expansion. A proper planning of a
distribution system not only saves expenditure for the utilities
but also helps to meet customer satisfaction, which is very impor-
tant in the competitive power market. A lot of computer-based dis-
tribution systems planning approaches are reported during the
past three decades. State-of-the-art reviews of the reported works
can be found in [3,4]. The distribution system planning is essen-
tially an optimization process to obtain a number of planning/de-
sign variables such as: (i) size and location of distribution
substation, (ii) number of feeders and their routes, and (iii) branch
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of Electrical Sciences, Indian

hoo).
eering, National Institute of
conductor sizes. The planning objectives include minimization
of the installation cost of new facilities (substations/feeders/
branches), cost of capacity addition of existing facilities, mainte-
nance cost of the feeders and network power loss, and maximiza-
tion of the network reliability. This optimization is also subject to
some constraints, such as substation/feeder capacity limit, node
voltage deviation limit, and network radiality.

In the early works [3–5], the planning model is formulated with
one objective, i.e., minimization of installation cost and the cost of
energy losses. The network reliability, an important aspect in the
competitive power market, is also considered as another objective
[6–29]. The network reliability is maximized by optimizing differ-
ent reliability objective functions, such as total (cost of) non-
delivered energy [6–13,24–28], customer outage cost [14], cus-
tomer interruption cost [15,16], and contingency-load-loss index
[29]. Two approaches have been used for optimizing the cost and
reliability. In the first approach [6–16], both objectives are
aggregated to obtain a single solution, while the second approach
[17–29] takes the conflicting natures of the cost and reliability into
account by simultaneous optimization of the two objectives to
obtain a set of non-dominated solutions, called Pareto solutions
[19,20] and a decision maker or the planning engineer selects
one solution for implementation.

The main challenge in this planning is to devise a solution strat-
egy as the objective functions are typically nonlinear, non-convex,
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non-differentiable with discrete and continuous decision variables.
The difficulty increases with higher dimensions that depend on the
number of nodes in the network. The reported solution strategies
fall into two categories: (i) deterministic algorithms and (ii) heuris-
tics-based algorithms. The deterministic algorithms are based on
mathematical optimization technique. They can always produce
same output for a given input. The heuristics-based algorithm
can produce an acceptable solution to a problem in many practical
scenarios, but there is no formal proof of its optimality. The deter-
ministic algorithms that have been used for this problem are:
nonlinear mixed integer programming [7], dynamic programming
[6,8], nonlinear programming [9,10], Benders’ decomposition
[17,18], etc. Most of the heuristics-based algortithms applied to
this problem are based on the evolutionary algorithms (EAs), such
as genetic algorithm (GA) [12–16,19–24], tabu search (TS) [25,26],
artificial immune system (AIS) [27], particle swarm optimization
(PSO) [28,29], and honey bee mating optimization [30].

The evolutionary computation techniques are used as solution
strategies in most of the Pareto-based multi-objective planning ap-
proaches [19–30] due to their multi-point search capability, which
helps to obtain a set of non-dominated solutions in a single run.
However, the major drawback of a multi-objective evolutionary
algorithm (MOEA) is that the convergence is not always guaran-
teed. On the contrary, the deterministic algorithms are well known
for their good convergence characteristics. Till date, few works
[17,18] have reported the use of deterministic algorithms for
simultaneous optimization of multiple objectives to obtain a set
of non-dominated solutions. In [17], a two-step approach based
on linear programming for optimization of continuous variables
followed by integer programming for optimization of integer vari-
ables has been used. The formulation approximates the quadratic
cost function due to energy losses as a linear function and solves
it by linear programming. In [18], the mixed-integer programming
(MIP) is used with commercial MIP-solver GAMS. The branch con-
ductor size optimization has not been considered in both the ap-
proaches in view of both cost and reliability objectives as in
some MOEA-based works [20,28]. There is another powerful deter-
ministic algorithm, i.e., the dynamic programming, which can deal
with this type of objective functions efficiently. Although, it is used
in [6,8], none of the two approaches deals with simultaneous opti-
mization of the objective functions. Moreover, it is reported in [8]
that the computation time of GAMS is reasonably higher than that
of dynamic programming for the same distribution system plan-
ning problem.

Motivated by all these issues, an attempt is made to investigate
the use of dynamic programming for simultaneous optimization of
the objective functions in a distribution system planning problem.
The two objective functions of the proposed multi-objective plan-
ning model are formulated as: (i) total installation and operational
cost and (ii) total interruption cost. The total installation and opera-
tional cost is the sum of the total installation costs of new facilities
(substations/feeders/branches) and incremental capacity addition
of the existing facilities, annual maintenance cost, and the dis-
counted present value of the cost of energy losses. The second
objective is the minimization of the total cost associated with the
interruptions in all the branches and it includes three components,
i.e., cost of non-delivered energy, cost of fault repair/maintenance,
and customer damage cost due to interruptions. The first two com-
ponents are utilities’ cost due to faults and the last component is
the customer cost due to interruptions. The last component, a mea-
sure of customer dissatisfaction, is very important in competitive
markets. The solution strategy proposed in this work is based on
dynamic programming for optimization of the feeder routes and
branch conductor sizes. As the cost and reliability conflict with
each other, a set of Pareto solutions is obtained using weighted
aggregation of the objectives with different weight settings. Each
weight combination yields one solution. The proposed approach
is validated on three systems, i.e., 21-, 54-, and 100-node distribu-
tion systems, and on both static as well as expansion planning
problems. The results are analyzed, with different case studies,
and compared with the results of two MOEA-based planning ap-
proaches [20,28].

The key contributions of this paper are:

� A multi-objective planning algorithm using dynamic program-
ming is proposed to determine the optimal feeder routes and
branch conductor sizes with simultaneous optimization of cost
and reliability.
� This planning algorithm is applicable for both static and expan-

sion planning of distribution systems. It can also be used for the
planning of both single and multi-feeder networks.
� An empirical simulation study is carried out to show the advan-

tages of the dynamic programming based conductor size opti-
mization over the conductor size selection. A qualitative and
quantitative performance comparison between the proposed
approach and two other previously reported MOEA-based
approaches is provided to bring out the relative merits and
demerits.

The organization of the paper is as follows. The modeling of
distribution systems is briefly discussed in Section 2. The multi-
objective planning model for electrical distribution systems and
the proposed multi-objective dynamic programming approach
are given in Sections 3 and 4, respectively. The simulation results
are presented in Section 5. Section 6 concludes the paper. A list
of symbols used in this paper is provided in the Appendix A.
2. Distribution system modeling

A typical distribution system consists of various components,
such as substation, feeder, and load. This section provides the mod-
eling of each component of a distribution network in the context of
proposed planning approach. It is to be noted that this work deals
with planning of primary distribution systems, which act as a liai-
son between transmission system and secondary distribution
systems.
2.1. Substation modeling

A substation is the source of a distribution network. Sometimes,
a distribution network is fed from two different substations. How-
ever, in this planning approach, this case is not considered. A sub-
station consists of primary distribution transformers, switchgears,
and several switching and protective equipments. In addition, a
substation may be equipped with voltage regulators and shunt
capacitors banks. In distribution system planning, a substation
modeling basically includes the determination of the optimal size
and site of a substation [1,2]. Since the location of a substation in-
volves several social and political issues, most of the planning ap-
proaches do not include this as an optimization variable. Thus, in
this planning approach, the optimal size of the substation located
at a specified site is determined in static planning. For expansion
planning, the capacity addition required to meet the additional
load demand is determined. This is done by optimizing the instal-
lation cost of the substation and/or the cost of capacity addition of
the existing substation. Total cost of a substation installation and/
or capacity addition typically includes the cost of installation and/
or capacity addition of substation switchgear, protective and
metering arrangements, switching arrangements and installation
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cost of transformer and its accessories. The substation voltage level
is generally specified by the system planner and it is used as the
reference voltage in the planning.

2.2. Feeder modeling

A feeder brings power from substation to load points/nodes in
distribution networks. Single or multiple radial feeders are used
in this planning approach. Basically, the feeder routes and branch
conductor sizes are optimized by minimizing the installation
and/or capacity addition cost along with the cost of energy loss.
To determine the cost of energy loss, the power loss at each feeder
branch is determined by performing load flow. The forward/back-
ward sweep load flow technique is used. The impedance of a feeder
branch is computed by the specified resistance and reactance of
the conductors used in the branch construction. The optimal
branch conductor for a feeder branch is determined from a set of
different types and sizes of branch conductors. The network reli-
ability is modeled by considering the interruption/fault in each fee-
der branch, taken one at a time. The fault in a feeder branch is
simulated by its failure rate and repair duration which are obtained
from conductor specifications.

2.3. Load modeling

The load at a node of any primary distribution network is the to-
tal load demand of the secondary distribution transformer con-
nected at the node. It is basically the total load of the secondary
distribution network fed from the node. In this planning approach,
balanced three-phase constant power load model is used [2]. In gen-
eral, the load demand data at each node is obtained using load fore-
casting method and the data are directly used in the planning stage.
3. Multi-objective planning model for electrical distribution
systems

The objectives of this planning approach are to optimize the
cost and reliability simultaneously so as to obtain an economical
and yet reliable network. In this work, the cost is optimized by
minimizing the total installation and operational cost, considered
as objective function-1. The reliability is optimized by minimizing
the total cost associated with network failure, named as the total
interruption cost (i.e., objective function-2). The objective func-
tion-1 consists of the costs due to installation of new facilities
(substations/feeders/branches), incremental capacity addition of
existing facilities, annual maintenance, and discounted present va-
lue of the cost of the energy losses. The objective function-2 con-
sists of three components, i.e., cost of non-delivered energy, cost
of fault repair/maintenance, and the customer damage cost due
to interruptions; the first two components are utility’s cost and
the last component is the customer cost, due to interruptions.
The first two parts of the reliability objective are formulated
according to formulation given in [20]. The utility components
are the expenditures due to fault repair/maintenance (function of
system average failure rate) and the cost of non-delivered en-
ergy/revenue loss (function of system average outage duration).
The customer component is basically a measure of customer dis-
satisfaction due to faults. It is a function of the composite customer
damage function (CCDF) [31] and the average outage duration. The
CCDF typically includes the costs due to loss of production for the
manufacturing industries, loss of sale for the commercial custom-
ers and additional expenditure due to alternative supply for the
domestic customers. It is expressed as a sum of the weighted dam-
age costs (in $/MW/h) due to different types of customers; the
weights may vary depending on the percentage of different types
of customers in an area and their relative importance. The mathe-
matical expressions for the objective functions are given in:
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where the power loss in any branch is a quadratic function as
follows,

Pl
i;j ¼ 3I2

i;jri;j ð3Þ

The additional branches and substations are chosen from a set
of pre-defined conductor and substation sizes, respectively. The
optimization is carried out under the following constraints: (i)
power demand and supply balance, (ii) limits on power flows in
substation and feeder branches according to the respective capac-
ities, (iii) upper and lower limits for the node voltages, and (iv) net-
work radiality. A feeder branch capacity is decided based on the
thermal limit of its conductor. This optimization problem is essen-
tially a bi-objective minimization problem to find the optimal fee-
der routing along with the optimum branch conductor sizes. Two
different categories of branch conductors are used in the planning.
The first category of conductors has lower failure rate. Hence, they
are more reliable and costlier. The second category of conductors
has higher failure rate. Hence, they are less reliable and cheaper.
Hence, if all or most of the branches of a network are built with
the second type of conductor, the network becomes costlier yet
reliable and vice versa. Apart from the branch conductor selection,
the network topology/structure has significant influence on the
reliability of the network. The network topologies with more lat-
eral branches are more reliable. However, they are costlier because
the circuit length increases with more lateral branches.

3.1. Pareto-dominance principle [20]

The Pareto-dominance principle states that for an m-objective
optimization (say, minimization) problem, a solution x is said to
dominate another solution y if

8i; fiðxÞ 6 fiðyÞ; and 9j; such that f jðxÞ < fjðyÞ ð4Þ
where fiji¼1;���;m are the objective functions. The solutions which are
not dominated by each other are called the non-dominated solu-
tions. A set of non-dominated solutions constitutes a Pareto front.
The simultaneous optimization of multiple objective functions can
be done in various ways for example, weighted aggregation meth-
od, Pareto-based method, lexicographic ordering, non-Pareto-based
method, etc. as can be obtained in [29]. The approach followed in
the paper is the weighted aggregation method, in which all objec-
tives are aggregated with weights. The objective functions are
firstly normalized and then aggregated with different combinations
of the weights so as to obtain the whole Pareto-set.

4. Multi-objective dynamic programming for planning of
distribution systems

The two key ingredients of the dynamic programming are opti-
mal substructure and overlapping sub-problems [32,33]. Firstly,
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the dynamic programming decomposes a multi-stage decision
problem into several overlapping sub-problems [32] as shown in
Fig. 1. Then, it solves all the sub-problems recursively, in a bot-
tom-up fashion starting with an independent sub-problem, say
sub-problem-1 in Fig. 1. A problem exhibits optimal substructure
if an optimal solution consists of all the optimal solutions of its
sub-problems.

As noted earlier, both the objective functions for the problem at
hand are functions of branch power flows. The power flow in a
branch depends on the load in all the downstream nodes. The opti-
mization of a branch/feeder route can be carried out after optimi-
zation of all its downstream branches. Thus, the distribution
system planning problem can be decomposed into several overlap-
ping sub-problems. In this work, the use of dynamic programming
for optimization of network topology and branch conductor sizes
has been investigated via two implementation methods: (i) non-
iterative two-step method, and (ii) iterative two-step method. In
this section, the two support subroutines, i.e., network topology
optimization and branch conductor size optimization are described
followed by the constraint handling techniques and the main
algorithm.
4.1. Step #1: Network topology optimization

The optimization of network topology starts with geographical
division of the network service area into a number of stages (say,
M) as shown in Fig. 2a; M is a user-defined parameter. For static
planning, the first stage is assigned to contain the substation only
whereas, for expansion planning, the existing network is kept in
the first stage. The example shown in Fig. 2a is for a typical static
planning problem. The feeder routes are optimized starting from
stage-M proceeding towards stage-1 in a backward sequence.
The reason to go for this backward sequence optimization is that
the power flow in any branch depends on all of its following nodes’
load demand as shown in Fig. 2b (Li = load demand at node i). The
power flows in the terminal branches are completely independent
of the power flows in any other branch. The optimization starts
with any furthest node of the last stage as the reference node
(Fig. 2c); thus this reference node becomes a leaf node. Then, all
other nodes in this stage are connected one by one so as to mini-
mize a weighted objective function constructed using the normal-
ized installation and operational cost ðCnorm

IO Þ and the normalized
interruption cost ðCnorm

Fa Þ, as given in:

CT ¼ w1Cnorm
IO þw2Cnorm

Fa ; such that w1 þw2 ¼ 1 ð5Þ

During this optimization, the binary variable (y) for all optimal
branches/feeder routes is one and it is zero for all other routes. For
example, if a branch between nodes i–j is found to be optimal the
value of y for this branch is 1, i.e., yi,j = 1. In this way the dynamic
programming handles the integer variables of this planning. The
continuous variable, i.e., power flow in each branch, is obtained
by performing load flow. The predefined weight combinations
determine the relative importance of the respective objectives.
Fig. 1. Decomposition of a problem into several overlapping sub-problems in
dynamic programming.
The optimization of all subsequent stages is performed sequen-
tially as shown in Fig. 2c. The optimization of one stage yields a
sub-network. The sub-network obtained after optimization of
one stage along with the sub-networks of all the previous stages
forms a partial network (PN) which becomes an input to the next
stage. The partial network evolves from stage to stage as shown
in Fig. 2d and, after the first stage optimization; it becomes the fi-
nal (complete) network topology.

All nodes are connected one by one. Whenever a node is added
to the network, it becomes a part of the partial network and it is
never considered to be added again with the network. Thus, there
is no chance of any violation of the radiality constraint. This is an
important advantage of the proposed approach over the approach
used in [8] as there is no need to impose additional penalty due to
violation of the radiality constraint thereby saving some computa-
tional efforts.

The social and environmental obstacles in the network service
area can be easily considered in the proposed algorithm defining
a (binary) node connectivity matrix (B). If there is no obstacle to
building a feeder route between nodes p and q, then B(p,q) = 1; else
B(p,q) = 0. The subroutine for building a sub-network j is shown in
Fig. 3, which is basically used in each stage of the optimization of
network topology. It is done using two arrays, i.e., {a}, {b} consist-
ing of the nodes of previous and current stages, respectively. At the
very beginning, i.e., at stage M, {a} is initialized with any one of the
furthest leaf nodes (the chosen reference node) and {b} is initial-
ized with rest of the nodes of stage-M. The network building pro-
cesses for both static and expansion planning are same for all the
stages except for stage-1. In stage-1, {b} consists of the substation
node only and all the nodes of the existing network in static and
expansion planning, respectively. In stage-1, the best feeder route
between the substation and the partial network (built so far) is
determined for static planning and the best feeder route between
the existing and the partial networks is determined in expansion
planning.

The building process of a partial network is illustrated with an
example in Fig. 4. The partial network, as shown in Fig. 4a, consists
of nodes 1–4 and nodes 5–7 are to be connected with this network.
For addition of one node in the partial network, the elements of the
two arrays are: {a} = {1,2,3,4} and {b} = {5,6,7}. To add a node to
the partial network, the best possible feeder route is to be deter-
mined from the all possible feeder routes as indicated by broken
lines. If any obstacle exists in any route (for example, say, between
nodes 7–2), the corresponding element of the B matrix becomes
zero {i.e., B(7,2) = 0 for route 7–2} and it is discarded. Out of all
possible routes, the best route is selected based on the objective
function CT. For example, if the best route is found as 5–3, it is con-
nected with the network (Fig. 2b) and the arrays are updated
accordingly (i.e., {a} becomes {1,2,3,4,5} and {b} becomes {6,7}).
During this route selection process, the node, which is to be con-
nected with the network, is considered to have a fictitious source
for performing load flow. The idea is to obtain the best route which
can carry the load demands of the partial network. The location of
this fictitious source changes after addition of each node and it be-
comes the original source (substation node) only after optimiza-
tion of stage-1. As the location this fictitious source changes from
node to node, the amount of power flow through any route also
changes. For example, the amount of power flow through route
5–3 is different if the fictitious source is located at 6 compared
to the fictitious source location at node 7, as shown in Fig. 4c
and d. The amount of power flow through all branches in a stage
can be obtained after the partial network topology optimization
of this stage.

This approach can also be extended for obtaining multi-feeder
networks. In those cases, the division of the service area can be
done in different ways as shown in Fig. 5 for double and triple
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Fig. 2. Multi-stage decision process in distribution network topology optimization: (a) division of the service area of a distribution system into a number of stages; (b) an
example showing the dependency of branch flow; (c) multi-stage decision process to get network topology using dynamic programming; (d) stage by stage evolution of the
network.
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feeder networks. For multi-feeder networks, the optimization
starting from stage-M to stage-1 is performed for all the feeders
in a similar manner as described above. The element of stage-1
for each feeder is substation for static planning (and the existing
network for expansion planning).
4.2. Step #2: Branch conductor size optimization

Branch conductor size optimization is performed only after
obtaining the complete/partial network topology. The conductor
size for each branch is optimized from the gC number of available
conductor sizes. Each conductor size has different capacity, failure
rate and repair duration. Before the branch conductor optimiza-
tion, a load flow is performed to obtain minimum conductor size
required to satisfy branch current capacity constraint for each
branch. These sizes are stored into an array min_cond_size
{min_cond_size(l, m, k) = minimum conductor size required to sat-
isfy branch current capacity constraint for the kth branch of the
mth stage of the lth feeder}. The conductor size used for any branch
is kept above the required minimum size. The branch conductor
sizes are optimized sequentially starting from any terminal branch
of the last stage, i.e., stage-M, and moving towards the substation
stage by stage. In any stage, the conductor size optimization of
all the terminal branches is done first (in any order) before going
for other non-terminal branches. A typical single-feeder network
with seven branches is shown in Fig. 6 to illustrate the process. To-
tal number of stages in this example is 3. Hence, the branch con-
ductor optimization can be started either from Br-7 or Br-6 of
stage-3. For this stage, the sequence of optimization can be Br-
7 ? Br-6 ? Br-5. The reason for this sequential optimization is
the dependency of branch power flow as explained earlier. For
example, the power flow in Br-5 depends on the branch flow in
Br-6 while the power flows in Br-7 and Br-6 do not depend on
any other branch’s flow. After stage-3, this optimization moves
toward stage-2 and so on. During any intermediate stage, (say,
stage-2) this optimization again starts with any terminal branch
and continues till conductor size for all branches are optimized.
During this optimization step, the branch conductor sizes are
optimized by minimizing the weighted objective function given
in Eq. (5). The same procedure is followed for all the feeders in a
multi-feeder network. The subroutine for branch conductor size
optimization is given in Fig. 7.
4.3. Constraint handling techniques

The constraints in this planning optimization are taken care of
as follows:

� Power demand and supply balance is met by the load flow.
� The node voltage limit violation information is incorporated in

terms of a penalty factor in the objective function given in Eq.
(5). The penalty factor, computed as the product of the absolute
value of the maximum node voltage deviation from a specified
nominal value and a very high integer number, is added to the
value of CT. This penalty factor is used in the optimization of
both network topology and conductor sizes.
� The branch current capacity constraint is maintained by per-

forming load flow to obtain minimum conductor size required
to satisfy branch current capacity constraint for each branch.
These sizes are stored into an array. The conductor size used
for any branch is always kept above the required minimum size.
If the substation power demand exceeds its capacity, a decision
on incremental capacity addition for the substation is taken.
� The radiality constraint is never violated as the nodes are con-

nected one by one. If a node is added to the network, it is
deleted from the array {b} and added to the array {a}. Hence,
there is no chance of connecting any node twice with the
network.

4.4. Complete algorithm

The optimization of network topology and branch conductor
sizes is performed using dynamic programming with two types
of implementation schemes: (i) non-iterative two-step method,
and (ii) iterative two-step method. In the non-iterative method,
the branch conductor size optimization is done after network
topology optimization. In the iterative approach, both the optimi-
zation steps are carried out iteratively in each planning stage.
The complete flow charts for both the methods are given in Fig. 8.

5. Simulation results

The proposed multi-objective distribution system planning
algorithm using dynamic programming is evaluated via computer
simulation studies using MATLAB 7.0 on two typical distribution



Fig. 3. Subroutine for building partial network j after optimization of Stage j
(indices p and q represent an element of arrays {a} and {b}, respectively).

(a) (b)
Fig. 5. Division of network service area to obtain multi-feeder networks (a) double
feeder, (b) Triple feeder.

Fig. 6. A typical single-feeder network.
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system planning problems. The first type is an expansion planning
problem for a 21-node distribution system [20,34] in which there
(a)

Fig. 4. An example to show the building process of partial network: (a) a partial networ
lines, (b) the best possible feeder route to add one node with fictitious source at 5, (c and
7, respectively.
are four existing branches and the remaining 16 nodes are to be
connected via multi-objective optimization. The second type is a
static planning problem, i.e., planning of a completely new net-
work. Two different distribution systems are taken for the static
planning, i.e., 54-node [35] and 100-node systems [20,34]. The cus-
tomer damage cost is assumed to be 0.67 $/MW/min of failure
[28,31]. The detailed derivation of this cost function can be ob-
tained from [31]. For simplicity, all the nodes are assumed to have
same customer damage cost. In reality, this may vary from node to
node depending upon the percentage of different customers. Some
typical features of these systems are:

� All the three chosen systems have one substation (at a suitably
chosen location).
� Nine different conductor sizes are used in the optimization of

the 21-node and 100-node systems. Two conductor sizes are
used for the 54-node system.
(b)
(d)

(c)

k shown in solid lines along with several possible feeder routes shown with broken
d) two possible connections to add one node further with fictitious sources at 6 and



Fig. 7. Subroutine for branch conductor size optimization.
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� Minimum and maximum node voltage limits are taken as 0.92
and 1.08 p.u., respectively. Substation voltage is assumed to
be 1.05 p.u.
� Base voltages for 21-node, 54-node, 100-node systems are

13.8 kV, 12 kV, and 34.8 kV, respectively.

5.1. Expansion planning

For the expansion planning problem of the 21-node distribution
system, 50 different combinations of weights, uniformly varying
between 0 and 1, are considered. The number of stages (M) is taken
as 5. The set of non-dominated solutions constituting a Pareto-
front, obtained with the proposed multi-objective dynamic
programming, is shown in Fig. 9. From this set of non-dominated
network set, the decision maker can choose one for implementa-
tion considering the relative emphasis of each objective. It is
instructive to examine how the two objective function values on
the Pareto-front (of the networks obtained) change with different
weights assigned to each objective. These variations with respect
to weight w1 are shown in Fig. 10. It indicates that one objective
increases with the weight while other decreases. The reason be-
hind this is: an increase in w1 increases the relative importance
of objective function-1 in the weighted objective function of
Eq. (5) and thus decreases the relative importance of objective
function-2. Hence, the objective function-1 reaches its best at
w1 = 1. This also illustrates the conflicting nature of the two
objective functions. It gives an idea to the system planner on the
required investment for certain network reliability.

Two sample networks, i.e., the most economical and most reli-
able networks as indicated in the Pareto-front, are shown in Fig. 11.
The existing branches are shown with bold lines and the node
numbers and conductor sizes are shown by bold and italic numer-
als, respectively. The substation is at node 1. These solutions illus-
trate that the most reliable network (Fig. 11a) consists of branches
with conductor size 9 that has lower failure rate but higher instal-
lation cost and it has more lateral branches that reduces power
flow in some branches. The most economical network (Fig. 11b)
is possibly the shortest path network having conductor sizes (be-
tween 1 and 7) with lower installation cost and higher failure rate.

In Fig. 12, the way partial networks evolve to the final optimal
network by dynamic programming is shown for better visualiza-
tion of the network topology optimization for the weight combina-
tion (0.5,0.5). The division of the stages is shown with dotted lines
and the existing network between nodes (1–5) is also shown.

5.1.1. Advantages of conductor size optimization over conductor size
selection

The conductor size optimization is very important in the distri-
bution system planning. Most of the previous works are based on
conductor size selection. The minimum conductor size required
to satisfy branch current capacity constraint is selected for each
branch. The conductor size optimization is carried out only in
few works [20,27,28]. An investigation is carried out to study the
influence of the conductor size optimization on the Pareto-fronts.
The results are shown in Fig. 13. A much better Pareto-front is ob-
tained with the planning incorporating conductor size optimiza-
tion. It is to be noted that the computational time (Processor:
Intel Pentium D CPU, 3 GHz, 1 GB RAM) for the planning with con-
ductor size optimization (1.895 min) is not much higher than that
of planning with conductor size selection, i.e., 1.69 min.

5.1.2. Performance comparison of non-iterative and iterative two-step
methods

The performances of the non-iterative and iterative two-step
methods are compared for the 21-node distribution system
considering 50 different combinations of weights. The respective
Pareto-fronts are shown in Fig. 14. It is observed that better
Pareto-front is obtained with the iterative two-step approach.
The computational time required for the iterative and the non-
iterative two-step approaches are 9.15 min and 1.895 min, respec-
tively. Thus, the iterative method is computationally very much
expensive compared to the non-iterative method. It is expected
as the conductor size optimization is carried out in each planning
stage. The computational time with the iterative approach for
higher node systems could be extremely high. Hence, all subse-
quent studies on higher node systems are carried out with the
non-iterative two-step method.

5.2. Static planning

The proposed algorithm is also applied for static planning of
the 54-node and 100-node systems. The node locations and kVA



(a) (b)
Fig. 8. Overall flow chart of multi-objective dynamic programming for multi-feeder electrical distribution system planning: (a) non-iterative two-step method and (b)
iterative two-step method.
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demands for the 54-node system are taken from [35]. In [35], the
reliability is not considered in the planning. To incorporate
reliability aspect into the planning of this network, two types of
conductors, as given in Table 1, are assumed. The data for the
100-node system are given in [34]. In this planning, 50 and 25
different combinations of weights are used for the 54-node and
100-node system, respectively. The numbers of stages are taken
as 5 and 10 for the 54-node and 100-node system, respectively.
The Pareto-fronts for the 54- and 100-node systems are shown
in Figs. 15 and 16, respectively. The objective of this simulation
study is to show the performance of the proposed algorithm on
higher dimensional systems, i.e., higher node systems, and also
to validate the algorithm for the static planning. The computa-
tional times for the 54-node and 100-node systems are
60.15 min and 398.79 min, respectively. It is to be noted that less
number of weight combinations are intentionally taken for the
100-node system as higher computational time is required to exe-
cute a single weight combination. This illustrates that the dynamic
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programming requires high computational time for the planning
of higher node systems.
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Fig. 11. Two sample networks from the Pareto-front: (a) m
5.2.1. Multi-feeder network planning
In the planning case studies presented above, the number of

feeders is assumed to be 1. Since the distribution systems generally
consist of a large number of nodes, the system planner generally
thinks of planning a multi-feeder network. This can be achieved
using the proposed approach as discussed earlier (Fig. 5). The loca-
tion of the substation is approximately chosen in the middle of the
service area and division of the service area is carried out as shown
in Fig. 5. The feeder routes are optimized sequentially, i.e., starting
with feeder-1 followed by feeder-2, 3, and so on, as given in the
flowchart of Fig. 8. The proposed approach is applied to obtain
two-feeder networks for the 54-node system. The Pareto-front ob-
tained with two-feeder networks is compared with that of a single
feeder network in Fig. 17. It shows that the upper part of the
Pareto-front is better in case of double feeder network while the
lower half is better in case of single feeder network. It is obvious
as the single feeder networks are economical but less reliable. On
the contrary, the double feeder networks are more reliable and
hence, less economical. The power loss and node voltages are
significantly improved with double feeder networks compared to
those of single feeder networks as shown in Fig. 18.
5.2.2. Sensitivity test (with different number of stages)
There is a user-defined parameter, i.e., number of stages (M).

A sensitivity test is required to assess the performance of the
proposed approach with respect to this parameter. The Pareto-
fronts obtained, for the 54-node system, with two values of M,
i.e., 2 and 5, are shown in Fig. 19. The results illustrate that the
performance of the proposed approach is better with less number
of stages. The reason is that, for smaller values of M, there are
more number of nodes per stage. Therefore, more numbers of
combinations are to be evaluated for getting a sub-network from
each stage and this also increases the computational time. This
points to the fact that the global best can only be obtained from
all possible combinations of branches in one go and that can be
obtained with M = 1. The computational time with (for the pro-
cessor specification given earlier) M = 2 is 237.8742 min. which
is much higher than that of the execution time with M = 5, i.e.,
61.3942 min. The computational time is also system dependent
and it generally increases with number of nodes in the system.
In general, a trade-off between the accuracy in terms of obtaining
better results and computational time should be done. It is left to
the system planner to decide about the acceptability of a network
design.
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Table 1
Specification of conductor sizes for optimization of 54-node system.

Conductor type Current capacity (A) Resistance (X) Reactance (X) Failure rate (fault/km/year) Failure duration (h/fault/year) Installation cost ($)

1 150 0.5762 0.5184 0.096 10.75 10000
2 230 0.4724 0.2875 0.064 8.95 15000
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Fig. 15. Pareto front for the static planning for 54-node distribution system.

0 0.5 1 1.5 2 2.5

x 10
4

5

6

7

8

9

10

11

12

13
x 106

Total interruption cost ($)

To
ta

l i
ns

ta
lla

tio
n 

an
d 

op
er

at
io

na
l c

os
t (

$)

Fig. 16. Pareto front for the static planning for 100-node distribution system.
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5.2.3. Performance comparison with MOEA
In this section, the performance of the proposed multi-objective

dynamic programming (MODP)-based planning algorithm is com-
pared with two MOEA-based planning algorithms, published in the
literature. The first one is the multi-objective GA (MOGA)-based
planning algorithm [20]. The second one is the multi-objective
PSO (MOPSO)-based planning algorithm [28]. The reason for
choosing these two specific algorithms is that the branch conduc-
tor optimization is carried out along with network topology opti-
mization in both the approaches. Moreover, the test systems
used in the optimization in both the works are same as that of
the present work. As the objective function formulation of the
present work is different from [20], the MODP is applied to opti-
mize the objective functions formulated in [20] for expansion plan-
ning of the 21-node distribution system. The qualitative and
quantitative comparisons are summarized as follows.

� A quantitative performance comparison of the most reliable and
the most economical solutions obtained from the proposed
dynamic programming and the results reported in [20] are
shown in Table 2. The results clearly illustrate the better perfor-
mance with MODP. Moreover, the MODP is simpler to imple-
ment compared to the MOGA because there is no need for so
many heuristic crossover and mutation operators as used in
the MOGA.
� The Pareto-fronts for the 21-node and 100-node systems

obtained with the proposed MODP and MOPSO [28] are shown
in Figs. 20 and 21, respectively. In MODP, 50 different combina-
tions of weights for the 21-node system and 5 different combi-
nations of weights for the 100-node system are used. The
number of stage is taken as 5 for both systems. The results show
that the lower half of the Pareto-front for the 21-node system is
better with the MODP than that of the MOPSO. The computa-
tional times to obtain the Pareto-front for 21-node system are
almost the same for both the approaches (1.895 min for the pro-
posed MODP and 1.765 min for the MOPSO). The Pareto-fronts
for the 100-node system are mostly similar. A better spread of
solutions can be obtained with the MODP. However, the compu-
tational time with the proposed MODP is very high, i.e.,
370 min. to execute 5 different combinations of weights to
obtain the Pareto-front. On the contrary, the whole Pareto-front
is obtained within 50 min. with the MOPSO.

In conclusion, it can be said that a better result can be obtained
with the MODP compared to the MOEAs. But, it suffers from the
curse of dimensionality for higher node systems.
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Table 2
Comparison of results between MOGA-based planning [20] and MODP-based
planning.

Solutions Objective functions (MOGA
[20]) ($)

Objective functions ($)
(MODP)

First Second First Second

Most economical 6.7 � 105 843.79 6.5 � 105 639.6468
Most reliable 17.07 � 105 7.71 14.75 � 105 5.9175
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Fig. 20. Pareto-fronts for 21-node distribution system obtained with the MODP and
MOPSO.
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6. Conclusion

In this work, a multi-objective dynamic programming approach
for electrical distribution system planning has been proposed. The
two objective functions are formulated as: (i) total installation and
operational cost and (ii) total interruption cost. The first objective
represents the cost of a network. The second objective is a
measure of network reliability. Both non-iterative and iterative
two-step dynamic programming methods are proposed for opti-
mization of the feeder routes and branch conductor sizes. In both
the methods, a set of Pareto solutions is determined using
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weighted aggregation of the objectives with different settings of
weights. Obviously, the performance of the iterative approach is
found to be better, but it is very much computationally expensive.
The advantage of the conductor size optimization over the
conductor size selection is shown with an empirical study. The
proposed approach is validated on both static and expansion plan-
ning problems using three different test systems, i.e., 21-, 54-, and
100-node distribution systems. It is also applicable for the plan-
ning of both single and multi-feeder networks. Finally, the perfor-
mance comparisons with two MOEA-based planning algorithms
illustrate that better performance can be obtained with the pro-
posed approach. However, it has a limitation that it suffers from
the curse of dimensionality. However, the proposed algorithm
can be further extended so as to incorporate the sectionalizing
switches, tie-lines, capacitor banks and the distributed generation
into the planning. The incorporation of the uncertainty associated
with the load demand into the planning model can be a future
scope of research. The proposed approach can also be modified
as a multi-stage formulation problem for expansion planning. This
needs further investigations.
Appendix A

List of symbols
CIO
 Total installation and operational cost ($)

CFa
 Total interruption cost ($)
CIb
 Branch installation cost per unit length ($/km)
CR
 Conductor replacement cost per unit length ($/km)
CMb
 Annual branch maintenance cost ($/km/year)
CV
 Variable cost i.e., cost of energy losses ($)

lj(Pj)
 Length (power flow) of branch i–j
Pl
i;j
Power loss in branch i–j
Ii,j(ri,j)
 Current (resistance) in branch i–j

ta
 Total planning time (year)

#
 Load loss factor

y
 Binary decision variable for capacity addition
CIs
 Substation installation cost ($)
CIC
 Substation incremental capacity addition cost ($)

COt
 Utility outage cost per unit length ($/MW/fault)

CNDE
 Cost of non-delivered energy ($/MW/h)

CCCDC
 Composite customer damage cost ($/MW/h)

k
 Branch average failure rate

d
 Branch average failure duration per failure� �

DF
 Discount factor DF ¼ 1

ð1þuÞt ; u ¼ discount rate
Nb
 Number of additional branches to be installed

Ebr
 A set of existing branches in the network

Abr
 Total number of allowable branches for feeder

routes

Ns
 Number of additional substations to be installed

Nse
 Number of existing substations

CT
 Weighted objective function

Cnorm

IO
 Normalized total installation and operational cost
Cnorm
Fa
 Normalized total interruption cost
w1, w2
 Weights assigned to objective functions 1, 2

M
 Total number of stages

PNM
 Partial network after optimization of stage-M

{a}, {b}
 A set of the nodes of previous and current stages

gC
 Number of available conductor sizes

NF
 Number of feeders

gw
 Total number of different weight combinations

Nb(l, m)
 Number of branches in the mth stage of lth feeder
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