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Abstract— The fault detection of electrical or mechanical
anomalies in induction motors has been a challenging prob-
lem for researchers over decades to ensure the safety and
economic operations of industrial processes. To address this
issue, this paper studies the stator current data obtained from
inverter-fed laboratory induction motors and investigates the
unique signatures of the healthy and faulty motors with the
aim of developing knowledge based fault detection method for
performing online detection of motor fault problems, such as
broken-rotor-bar and bearing faults. Stator current data collected
from induction motors were analyzed by leveraging fast Fourier
transform (FFT), and the FFT results were further analyzed
by the independent component analysis (ICA) method to obtain
independent components and signature features that are referred
to as FFT-ICA features of stator currents. The resulting
FFT-ICA features contain rich information on the signatures
of the healthy and faulty motors, which are further analyzed
to build a feature knowledge database for online fault detection.
Through case studies, this paper demonstrated the high accuracy,
simplicity, and robustness of the proposed fault detection scheme
for fault detection of induction motors. In addition, with the
integration of the feature knowledge database, prior knowledge
of the motor parameters, such as rotor speed and per-unit
slip, which are needed by the other motor current signature
analysis (MCSA) methods, is not required for the proposed
method, which makes it more efficient compared with the other
MCSA methods.

Index Terms— Data analysis, fast Fourier transform (FFT),
fault detection, feature knowledge database, independent com-
ponent analysis (ICA), induction motors, stator current analysis.

I. INTRODUCTION

EARLY detection of electrical or mechanical anomalies
in induction motors is important for ensuring safe and

economic operation of industrial processes [1]–[7]. There has
been a significant amount of research in this area, including
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vibration analysis [8]–[11] and motor-current analysis or motor
current signature analysis (MCSA) [5], [6], [12]–[15]. Even
though vibration and thermal monitoring methods have been
employed for decades, most of the previous research on online
monitoring or periodic inspections of induction motors are
based on stator-current analysis, which are well known for
providing nonintrusive continuous monitoring [16]–[18].

Broken-rotor-bar and bearing faults are two main fault types
in induction motors [5], [6], [19], [20]. Therefore, this paper
uses these two types of faults as case studies to investigate
fault detection of induction motors.

Since the stator current waveform data (which are also
current signal data) collected from faulty motors are essen-
tially different from those collected from normal motors,
stator-current monitoring is viewed as an important fault
detection method that does not require special access to a
motor [5], [6], [17]. Most research studies on this method
involve decomposing and analyzing stator currents using
various algorithms such as Fourier analysis, linear discrimi-
nant analysis, wavelets, neural networks, and other statistical
analysis methods to decompose and analyze stator current
waveforms [16], [21]–[25]. An improved rotor fault detec-
tion algorithm that uses relative harmonic indexes as a new
fault indicator has also been proposed [26] along with a
statistical method to analyze the spectral data [27]. Following
these, smart sensors that implement methodology based on
multilayer feedforward networks (MFNs) have been used to
detect fault of induction motors [28], [29]. These methods
mainly relate to only one type of fault, such as bearing
defects or rotor faults including broken-rotor-bars, mechanical
unbalance, misalignment and voltage unbalance. Different
from those methods, the scheme in this paper can detect
all kinds of fault types contained in the feature knowledge
database. In addition to using stator-current monitoring, there
are some methods to detect fault of induction motors, for
example, a two-fold method that combines the analysis of
currents and the analysis of infrared data to detect electro-
mechanical failures in induction motors [30]. However, many
of these algorithms are influenced by factors arising from
different inverter frequencies, measurement noise, and fault
conditions, some of which may lead to erroneous fault
detection [31], [32].

Independent component analysis (ICA) is a powerful
computational algorithm that automatically divides a
multivariate signal into additive subcomponents by exploiting
the mutual statistical independence of non-Gaussian source
signals [33]–[37]. It is a blind source separation process
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and has many practical applications such as those in signal
processing [37]. The ICA is capable of capturing the essential
structure of data in many applications, including feature
extraction and signal separation, because of its property of
extracting statistically independent components.

The ICA has been used for studies on fault detection in
induction motors [5], [6], [35]. Widodo et al. [35] applied the
ICA method and employed support vector machines for fault
diagnosis of induction motors using vibration signals collected
at the vertical, horizontal, and axial positions and current
signals in three phases. A total of 78 features were extracted
in the time domain for deriving ten feature parameters. Three
other parameters were separately extracted from the current
signals [35].

In contrast to [35], Wang and Chang [5], Wang et al. [6],
and Chua et al. [15] have investigated time-domain, frequency-
domain, and hybrid algorithms, respectively, and exploited
the relative strengths of frequency-domain methods as well
as time-domain methods [5], [6], [15]. Compared with the
78 features mentioned by Widodo et al. [35], less than five
features were needed to detect different faults under fixed
supply frequency situations [5], [6], [15]. In the previous
efforts of this research [5], [6], it was discovered that both
healthy and faulty motors exhibited unique frequency signa-
tures in the frequency-domain analysis compared to the time-
domain analysis. As frequency-domain signatures contain rich
information, only a few features are needed to be extracted
from a moderate volume of signals for detecting consistent
fault detection on induction motors [5] and no prior knowledge
of the motor parameters is required for obtaining the signature
features [6].

The contribution of this paper is to propose a novel scheme
for fault detection such as broken-rotor-bar and bearing faults.
The scheme is based on building a feature knowledge data-
base by analyzing the unique signature features found in
stator current data that can be collected from healthy and
faulty motors, and both fast Fourier transform (FFT) and
ICA analysis are leveraged to obtain the features. The sim-
ilarity principle is then applied to identify the fault type by
comparing the feature of the online detected stator current
data with that of the feature knowledge database. Furthermore,
the proposed scheme can improve the efficiency of online
fault detection at each inverter frequency and under each load
level after finishing the offline training. The novelty of this
paper is that it proposes a new method which makes use of a
newly created healthy and faulty feature knowledge database
for online fault detection of induction motors.

In addition, for simplicity of implementation, the magnitude
of the stator current frequency components as well as the
frequency characteristics of healthy or faulty motors [17], [23]
are both leveraged in this scheme, which greatly enhances the
efficiency of fault detection of induction motors for online
applications.

This paper is divided into six sections. Section II reviews
the MCSA methods and presents the challenges faced by
them. Section III reviews the previous time-domain algorithm
and highlights the problems experienced by it at different
inverter frequencies. Section IV presents the details of the

proposed scheme, which includes the layout of the proposed
scheme, the data collections and preparations for building the
feature knowledge database, theoretical analysis of the pro-
posed method, formulation of the proposed feature knowledge
based scheme, and the development of feature knowledge
database. Section V presents the simulation results and perfor-
mance of the proposed scheme for the case study. Section VI
concludes this paper and presents possible future work.

II. REVIEW OF MOTOR CURRENT SIGNATURE

ANALYSIS METHODS

A. Fault Signatures

Among the many techniques developed for MCSA [5], [6],
[17], [23], FFT is the most widely used tool with the discrete
Fourier transform being more efficient. FFT decomposes a
time domain into components of different frequencies. Motor
stator current acts as an excellent transducer for detecting
faults in motors. During operation, many harmonics may
be present in motor current signals. Thus, frequency spec-
trum shows many peaks, including the inverter (fundamental)
frequency and its harmonics. This is known as the motor
current signatures, which are different between faulty and
healthy motors, because different electrical and mechanical
faults generate different signatures.

1) Signatures of Broken-Rotor-Bars: A broken-rotor-bar
can be considered as some form of rotor asymmetry that
causes unbalanced currents, decreased average torque, and
increased torque pulsations [17]. One significant challenge in
the broken-rotor-bar detection is to distinguish its respective
sidebands especially under low-slip operation. Monitoring the
sidebands fb around the fundamental harmonic is a widely
used approach for diagnosing broken-rotor-bars in induction
motors in the following [17]:

fb = fs(1 ± 2ks), k = 1, 2, 3, . . . (1)

where fs is the inverter frequency and s is the per-unit slip.
2) Signatures of Bearing Faults: Bearing faults take the

form of outer-race, inner-race, ball or cage defects, which
are the main causes of machine vibrations [5], [6]. The
relationship of bearing vibrations to the stator-current spectra
can be determined by considering the respective air-gap eccen-
tricity, which produces anomalies in air-gap flux density.
Vibrations due to bearing faults change the air-gap symmetry
and machine inductances like eccentricity faults. Machine
inductance variations are reflected in the stator current in
terms of current harmonics, which provide an indicator of
bearing faults associated with mechanical oscillations in the air
gap. Bearing fault current harmonic frequencies are expressed
as [5], [6]

fbearing = | fs ± m fv | (2)

where fs is the inverter or fundamental frequency,
m = 1, 2, 3, . . . is the harmonic indexes, and fv can be either
the inner race defect frequency fi or the outer race defect
frequency fo

fi,o = n

2
fr

[
1 ± bd

pd
cos α

]
(3)
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Fig. 1. Broken-rotor-bar frequency components compared with that of healthy
motor under fixed-frequency supply. (a) Motor with broken-rotor-bar fault
tested under full load. (b) Motor with broken-rotor-bar fault tested under no
load. (c) Healthy motor.

where

n number of bearing balls;
fr mechanical rotor speed in hertz;
bd ball diameter;
pd bearing pitch diameter;
α contact angle of the balls on the races.

Further information about the bearing faults can be found
in [5] and [6]. Information about the bearing construction is
required to calculate the exact characteristic frequencies in (3).

B. Challenges for Classifying Healthy and Faulty Motors

1) Broken-Rotor-Bars: Accurate values of the inverter fre-
quency and measured motor speed are required in (1) for
calculating the broken-rotor-bar frequency. Fig. 1(a)–(c) shows
the frequency components of the stator current from the
motor with broken-rotor-bars and the healthy motor under fix-
frequency supply at full load and no load. Sidebands of the
broken-rotor-bars around the fundamental frequency can be
explicitly observed under full load.

Challenges: It is difficult to separate a broken-rotor-bar
motor under no load, as shown in Fig. 1(b) from a healthy
motor, as shown in Fig. 1(c). Moreover, the broken-rotor-bar
fault signatures (sidebands) depend on the inverter frequency
and slip, as shown in (1). In addition, Fig. 1 shows the
difficulty in distinguishing the sidebands under low load due
to diminishing slips, which compounds the difficulty against
using sideband as a robust means of detecting rotor bar faults
under wide ranges of load and inverter frequency.

2) Bearing Faults: The inverter frequency, measured motor
speed, and physical parameters of the bearing are required
in (2) and (3) to calculate the bearing fault frequency.
Another parameter required in (2) is the harmonic number m,
which is not readily available. By applying the frequency auto
search algorithm [32], the estimated bearing fault signatures
fbearing can be obtained. The bearing fault signature frequen-
cies increase with the inverter frequency. The bearing fault
frequency signatures are located in higher frequency band
compared with the fault signatures of broken-rotor-bars [5],
[6].

Challenges: Bearing faults produce harmonics in high-
frequency bands, which may be close to or coincide with
certain noise frequencies [5], [6]. The amplitude of some
bearing fault signature frequency can be uncertain and

Fig. 2. Healthy and fault features of the current signals collected under fixed
frequency. (a) No load. (b) With load [from no load (load level 0) to load
level 5] [5], [6], [15]. �’s—healthy. +’s—bearing fault. ∗’s—broken-rotor-
bar. Blue �’s, +’s, and ∗’s—no load. Green �’s, +’s, and ∗’s—load level 1.
Red �’s, +’s, and ∗’s—load level 2. Pink �’s, +’s, and ∗’s—load level 3.
Black �’s, +’s, and ∗’s—load level 4. Cyan �’s, +’s, and ∗’s–load level 5.

Fig. 3. Time-domain healthy and fault features of the current signals obtained
using the inverter at variable frequencies. �’s—healthy. +’s—bearing fault.
∗’s—broken-rotor-bar. Blue �’s, +’s, and ∗’s–20 Hz. Green �’s, +’s, and
∗’s—25 Hz. Red �’s, +’s, and ∗’s—37.5 Hz. Pink �’s, +’s, and ∗’s—43.5 Hz.
Black �’s, +’s, and ∗’s—50 Hz. Cyan �’s, +’s, and ∗’s—55 Hz.

diminishing due to noise or baseline drifting [5], [6]. These
can add further problems for the detection of bearing faults if
the bearing parameters are not known. Uncertain harmonics
of bearing faults and other parameters, which are motor
and/ or operation specific, also pose additional problems.
Therefore, it is especially hard to diagnose bearing defect
under changing inverter frequency.

III. REVIEW ON THE PREVIOUS TIME-DOMAIN

ALGORITHM AND ITS PROBLEMS AT

VARIABLE FREQUENCIES

Wang and Chang [5], Wang et al. [6], and Chua et al. [15]
have employed the ICA algorithm for extracting fault signa-
tures in the time domain on measured motor stator current
at a fixed frequency. A fuzzy neural network (FNN) or a
fuzzy system (FS) has also been developed in [15] to classify
the extracted ICA features. After learning, the FNN performs
robust detection of motors having broken-rotor-bar and bearing
faults supplied from fixed frequency at no load [Fig. 2(a)] and
five load levels [Fig. 2(b)]. The FS is subsequently applied
to the same motors supplied at different inverter frequencies
with lesser performance as in the following observations [15]
(Fig. 3).
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Fig. 4. Layout of the proposed feature knowledge based fault detection
scheme. (a) Creation of healthy and faulty feature knowledge database.
(b) Fault detection on new stator current signal data.

1) Motors Fed From Each Fixed Inverter Frequency:
The time-domain ICA algorithm correctly classifies the
two faulty signals from the healthy signals.

2) Motors Fed From Each Different Inverter Frequency:
Drifting of the two faulty clusters is, however, clearly
noteable, although the healthy cluster appears relatively
stationary.

It is obvious from the above item 2) that the time-domain
algorithm needs to be improved for providing robust online
induction motor fault detection at variable frequencies.

IV. PROPOSED FEATURE KNOWLEDGE BASED FAULT

DETECTION SCHEME FOR INDUCTION MOTORS

As mentioned in Sections II and III, the proposed method
should resolve the challenges and limitations faced by the
existing methods. It should have the ability to automatically
perform fault detection without requiring much knowledge on
induction motors in order to prove its effectiveness in meeting
the target of performing consistent fault detection at different
inverter frequencies. Therefore, a fault detection scheme is
proposed in this paper to resolve the challenges and problems.
The details on the proposed scheme will be discussed in the
following sections.

A. Layout of the Proposed Scheme

The layout of the proposed scheme for online induction
motor fault detection is shown in Fig. 4. It includes two
computational modules: 1) creation of a feature knowledge
database and 2) fault detection through the analysis of new or
incoming stator current data.

As shown in Fig. 4(a), the first module builds a feature
knowledge database using a collection of measured stator cur-
rent data. Stator current data from nonfaulty and faulty motors
are converted from time domains into frequency domains
using the FFT technique in the FFT block. In ICA Block A,
independent components were extracted by applying the ICA
to the FFT results, and FFT-ICA features were also calculated

Fig. 5. Fault motors. (a) Denting the seal of the bearing to simulate bearing
fault. (b) Two holes are drilled on the rotor bar to simulate broken-rotor-bar
fault [5], [6].

in ICA Block A. The FFT-ICA features were then normalized
by using healthy motors as benchmarks to form a feature
knowledge database.

Fig. 4(b) shows the second module that performs fault diag-
nosis on each new stator current data. The results of the FFT
and ICA Block B were used to obtain the FFT-ICA features
of the new current data. Different from the ICA Block A in
the first module [Fig. 4(a)], the FFT results are directly used
to obtain the FFT-ICA features in ICA Block B using the
independent components which are obtained in ICA Block A
using the training data. The FFT-ICA features from the new
current data were also normalized in ICA Block B using the
FFT-ICA features of healthy motors obtained in ICA Block A.
In the comparison block of Fig. 4(b), the normalized
FFT-ICA features are then compared with the feature knowl-
edge database to arrive at the fault diagnosis decision.

In the proposed scheme, the feature knowledge database for
describing the features of healthy motors as well as faulty
motors is necessary. As shown in Fig. 4(b), the proposed
fault detection scheme can be utilized for online usage after
the development of a feature knowledge database performed
in Fig. 4(a). As shown in Fig. 4, online diagnosis of motor
faults comprises of three steps:

1) applying the FFT to identify the current inverter
frequency from newly collected current data;

2) applying the independent components that are obtained
using the training stator current data to obtain the
FFT-ICA features and performing normalization;

3) detecting the motor problems according to the principle
of maximum similarity by comparing its normalized
FFT-ICA features with those in the feature knowledge
database.

B. Data Collections and Preparations for Building
the Feature Knowledge Database

The previous experimental setup [5], [6] for collecting
diagnostic data from laboratory induction motors is leveraged
in this research for building the feature knowledge database.
The stator current waveform data are collected from both the
healthy and faulty motors. Bearing and broken-rotor-bar faults
as shown in Fig. 5 presented in [5] and [6] are used for the
case studies in this paper.

All faulty and healthy induction motors are driven by
the same voltage-fed pulse width modulated inverter. During
data collection, the induction motors were each loaded with
a DC generator and a variable resistance. Their stator currents
are measured with a four-channel digital oscilloscope from
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each of the three motors [5], [6]. Experiments are conducted
with resistance increasing from zero to full load in five steps
[registering six different levels: level 0 (no load), level 1,
level 2, . . . , level 5].

Based on the previous experiments [5], [6], the induction
motors are connected to the 3-phase ac power supply through
an inverter. The inverter provides a selection of variable
frequency from 0 to 55 Hz. In this paper, six frequencies
(20, 25, 37.5, 43.5, 50, and 55) are arbitrarily selected for the
case study. The stator current waveforms are collected from
each motor at each frequency at the selected sampling rate
for 20 s.

It is well known that the resolution (represented as �ω)
or the sampling rate is critical to discern the peaks and
there must not be any important information missing from
the measured signal data. However, greater resolution requires
higher sampling rate and thus higher data storage. Initially,
to meet the requirements of high resolution, a high sampling
rate of 50 kHz was done using the oscilloscope with a data
length of 1 M samples (=20 s × 50 kHz) over a sampling
duration of 20 s. Subsequently, by progressively reducing
the sample size and evaluating the resulting accuracy of the
detection against the desired level, the final frequency value
of 3.84 kHz is attained.

At each inverter frequencies of 20, 25, 37.5, 43.5, 50,
and 55 Hz and under each load level, 30 current waveforms
are collected from each kind of the motors. One-fifth of the
data are used for training and four-fifth for testing.

C. Theoretical Analysis for Supporting the Proposed Scheme

The frequency-domain signatures F(ω) can be obtained
from a time-domain waveform f (t) by using FFT

f (t) → ( f (t1) f (t2) · · · f (tL)) (4)

F(ω) = FFT( f (t)) (5)

where f (ti )(i = 1, 2, . . . , L) represents the amplitude at time
ti (i = 1, 2, . . . , L), L is a record length of samples, and FFT
represents FFT function. The frequency-domain signatures
F(ω) generated by this transformation include the magnitude
information about each frequency components as follows:

F(ω) → (a(ω1) a(ω2) · · · a(ωN )) (6)

where a(ωi )(i = 1, 2, . . . , N) is the magnitude of frequency
component ωi (i = 1, 2, . . . , N), �ω = ωi+1 − ωi is the
resolution selected, and N is the selected number of the
frequency components.

F(ω) in (6) represents the frequency-domain signatures of
the healthy motor. From the stator current signals of two
faulty motors, fbr(t) and fbe(t), corresponding frequency-
domain signatures, Fbr(ω) and Fbe(ω), can be obtained
similarly

Fbr(ω) → (abr(ω1) abr(ω2) · · · abr(ωN )) (7)

Fbe(ω) → (abe(ω1) abe(ω2) · · · abe(ωN )) (8)

where abr(ωi )(i = 1, 2, . . . , N) and abe(ωi )
(i = 1, 2, . . . , N) are the magnitudes of frequency

components ωi (i = 1, 2, . . . , N) of broken-rotor-bar motors
and bearing fault motors, respectively.

According to (1) and (2), the frequency spectrum of the
broken-rotor-bar motor has sidebands around the fundamental
harmonics, and the frequency spectrum of the bearing fault
motor is with the frequency signatures of the bearing faults
compared with that of the healthy motor. Therefore, (6)–(8)
can be merged into the following:
F_signals

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn) a(ωbr1) · · · a(ωbrk)

m︷ ︸︸ ︷
0 · · · 0

a(ω1) · · · a(ωn)

k︷ ︸︸ ︷
0 · · · 0 a(ωbe1) · · · a(ωbem)

⎞
⎟⎟⎟⎟⎟⎟⎠
(9)

where n represents the number of characteristic frequencies of
the healthy motor, k represents the number of characteristic
frequencies of the broken-rotor-bar motor, and m represents
the number of characteristic frequencies of the bearing fault
motor.

Equation (9) can be simplified as

F_signals =
⎛
⎝ Ab 0 0

Ab Abr 0
Ab 0 Abe

⎞
⎠ (10)

where Ab = (
a(ω1) a(ω2) · · · a(ωn)

)
represents the

frequency characteristics of the healthy motor, which are
also the basic characteristics of all the motors, Abr =
(a(ωbr1) a(ωbr2) · · · a(ωbrk)) represents the frequency char-
acteristics of the motor with broken-rotor-bars, and Abe =
(a(ωbe1) a(ωbe2) · · · a(ωbem)) represents the frequency char-
acteristics of bearing fault motors.

The first row of (9) and (10) represents the magnitudes
of different frequency components about the healthy motor,
i.e., the magnitudes of healthy motor frequency signatures.
Because the healthy motor is assumed to be ideally normal,
the magnitudes of faulty frequency components are zero.
Similarly, the second row of (9) and (10) shows the
magnitudes of frequency signatures of broken-rotor-bar
motors, and the magnitudes of bearing fault frequency com-
ponents are zero. The third row shows the magnitudes of
frequency signatures of bearing fault motors and the magni-
tudes of broken-rotor-bar fault frequency components are zero,
as shown in (9) and (10).

According to (9) and (10), different faults cause their
frequency-domain signatures to have different frequency
signatures, such as Abr and Abe. The most important obser-
vation is that frequency characteristics of healthy or faulty
motors are in fact represented by the magnitudes of the
frequency components rather than the frequency components
themselves. This means that if the frequency components are
fundamental constants, only the magnitudes of the frequency
components are used to detect faults from healthy motors
according to (9) and (10) regardless of other information or
parameters of the motor.
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Fig. 6. FFT results in frequency domain using decibel scale and the
obtained independent components from them. (a1) F_Signal of a healthy
motor. (a2) F_Signal of a bearing fault motor. (a3) F_Signal of a motor with
the broken-rotor-bar fault. (b1)–(b3) Independent components obtained from
the signatures of (a1)–(a3).

According to the above theoretical analysis, only the magni-
tudes of the selected frequency components in (9) and (10) are
used to calculate the features for the proposed fault detection
scheme, as shown in Fig. 4. This allows the proposed method
to overcome the challenges mentioned above.

D. FFT-ICA Feature Analysis for the Proposed Scheme

According to the ICA algorithms [33], [34], [36], [37], the
frequency signatures shown in (9) and (10) can be represented
as follows:

F_Signals = A · ICs (11)

where ICs is a set of vectors that represents independent
components and A is a constant matrix to be estimated.
By rearranging (11), the independent components ICs is
obtained as follows [5], [6], [36], [37]:

ICs = W · F_Signals (12)

where W is the (pseudo)inverse of the matrix A of (11), which
is known as the transformation matrix [5], [6], [36], [37].

Using the vectors of F_Signals in (9), the statistically
extracted independent components, ICs , in (12) is expressed
in the form as below

ICs =
⎛
⎝ IC1

IC2
IC3

⎞
⎠ =

⎛
⎝ ic11 ic12 . . . ic1N

ic21 ic22 . . . ic2N
ic31 ic32 . . . ic3N

⎞
⎠. (13)

The resulting independent components ICs reflects in
the characteristic of signatures F_Signals in (12). Each
ICi (i = 1, 2, . . .) in (13) is of the same length and in the
same unit as each of the F_Signals [5], [6], [36], [37].

The examples of FFT results and the obtained independent
components from them are shown in Fig. 6. Using (12),

performing ICA on the chosen sets of the FFT results
(signatures) that are shown in Fig. 6(a1)–(a3), the independent
components as shown in Fig. 6(b1)–(b3) are obtained.

ICs as well as the signatures F_Signals are then used to
calculate FFT-ICA features as follows:

F_Features = F_Signals · ICsT (14)

where F_Features are the FFT-ICA features of the frequency
signatures F_Signals.

According to (14), the signatures, F_Signals, and the
obtained independent components ICs contribute to the
FFT-ICA features. In other words, all the magnitude infor-
mation of the frequency components in frequency signatures
F_Signals have contributions to the FFT-ICA features. There
is no need to know the exact value of the parameters, k and m,
in (9) for the proposed method.

For example, F_Signali is the frequency-domain signatures
of the i th time-domain waveform

F_Signali = ( ai (ω1) ai (ω2) . . . ai (ωN) ) (15)

where ai (ω1), ai(ω2), . . . , ai (ωN) represents the magnitude
information about frequency components, ω1, ω2, . . . , ωN ,
respectively.

F_Signali can be converted to an M-dimension feature by
independent components ICs

(F_Featurei1 F_Featurei2 . . . F_Featurei M )

= F_Signali ·

⎛
⎜⎜⎝

ic11 ic12 . . . ic1N

ic21 ic21 . . . ic2N

. . . . . . . . . . . .
icM1 icM1 . . . icM N

⎞
⎟⎟⎠

T

(16)

where F_Featurei1, F_Featurei2, . . . , F_Featurei M represent
FFT-ICA feature 1, FFT-ICA feature 2, . . . , and FFT-ICA
feature M of the i th signature F_Signali , respectively.

A frequency-domain signature F_Signali from the stator
current signal data is transferred to a low-dimension feature
F_Featurei1, F_Featurei2, . . . , F_Featurei M . It means that a
higher dimension signature was mapped into a lower dimen-
sion feature since M � N .

As shown in (15) and (16), all the magnitude information of
the selected frequency components were used to compute the
M-dimension feature of the signatures. All the M-dimension
features of training data from the healthy and faulty motors
were exploited for establishing healthy and faulty feature
database, as shown in Fig. 4(a), for fault detection of their
faults, such as the broken-rotor-bar and bearing faults.

The proposed scheme estimates the value of each new
inverter frequency fs and adjusts the frequency range accord-
ing to ω1 and ωN . This paper carried out the analysis using
different frequency ranges. After testing the accuracy of the
proposed scheme, the selected frequency range [0, 1000] is
found to be good enough. Apart from achieving a high com-
putational efficiency, the dynamically reduced frequency range
also improved the noise immunity of the proposed algorithm,
as noise in measurement switching transients and high-order
harmonics occurs mostly at frequencies much higher than the
frequency range of [0, 1000].
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E. Development of Feature Knowledge Database Considering
the Effect of Load and Different Inverter Frequencies

The feature knowledge database is built using the stator
current waveform from the healthy and the faulty motors under
each load level at each inverter frequency. Both the load and
inverter frequency affect the frequency signatures of faulty
motors. Therefore, (10) can be extended according to (i, j)
(i represents the different inverter frequency and in order to
make it easy, i = 1, 2, . . . , I level is used in this paper and
j represents the load level, and in this paper, j = 1, 2, . . . , L)

F_signals =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ab(1, 1) 0 0
Ab(1, 1) Abr(1, 1) 0
Ab(1, 1) 0 Abe(1, 1)

Ab(1, 2) 0 0
Ab(1, 2) Abr(1, 2) 0
Ab(1, 2) 0 Abe(1, 2)

...
...

...
Ab(1, L) 0 0
Ab(1, L) Abr(1, L) 0
Ab(1, L) 0 Abe(1, L)

...
...

...
Ab(I, L) 0 0
Ab(I, L) Abr(I, L) 0
Ab(I, L) 0 Abe(I, L)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where in each element AT (i, j), T represents the type of motor
(b: healthy, br: broken-rotor-bar fault, and be: bearing fault),
in which i represents the supply frequency level and j repre-
sents the load level. All those data are used to establish the
database of Fig. 4(a).

Equation (17) can be rearranged as

F_signals =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ab(1, 1) 0 0
Ab(1, 2) 0 0

...
...

...
Ab(I, L) 0 0
Ab(1, 1) Abr(1, 1) 0
Ab(1, 2) Abr(1, 2) 0

...
...

...
Ab(I, L) Abr(I, L) 0
Ab(1, 1) 0 Abe(1, 1)
Ab(1, 2) 0 Abe(1, 2)

...
...

...
Ab(I, L) 0 Abe(I, L)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

where

F_signals_Ab(i, j) = (Ab(i, j) 0 0) (19)

represents the signatures of healthy motors, which are the
benchmarks of

F_signals_Abr(i, j) = (Ab(i, j) Abr(i, j) 0) (20)

and

F_signals_Abe(i, j) = (Ab(i, j) 0 Abe(i, j)). (21)

Fig. 7. Simulation results of the proposed scheme. �’s—healthy.
+’s—bearing fault. ∗’s—broken-rotor-bar fault. Blue �’s, +’s, and
∗’s—20 Hz. Green �’s, +’s, and ∗’s—25 Hz. Red �’s, +’s, and ∗’s—37.5 Hz.
Pink �’s, +’s, and ∗’s—43.5 Hz. Black �’s, +’s, and ∗’s—50 Hz. Cyan �’s,
+’s, and ∗’s—55 Hz.

As mentioned in Section IV-B, stator current data are
collected from the healthy and faulty motors running at
six inverter frequencies, under no load and five other load
levels (six load levels in this paper), respectively. To provide
a holistic view of the healthy and faulty motors’ feature
knowledge database, each FFT-ICA feature, which is
obtained using (16), is normalized using the corresponding
FFT-ICA feature of the healthy motor as a benchmark to form
the feature knowledge database. After establishing the feature
knowledge database, each newly measured set of stator current
data is imputed into the second module as shown in Fig. 4(b)
for performing fault detection.

V. SIMULATION RESULTS AND PERFORMANCE OF THE

PROPOSED SCHEME FOR THE CASE STUDY

The proposed scheme is validated in the laboratory using
three-phase, two-pole, 1.1 kW induction motors. The motors
are supplied with different frequencies: 20, 25, 37.5, 43.5, 50,
and 55 Hz. For each induction motor case, 30 current signal
segments are collected from each motor at each frequency.
The statistical analysis carried out to detect fault is described
next.

A. Two Broken Rotor Bars and Bearing Fault

Fig. 7 shows the simulation results of the proposed scheme.
Both the training and testing results are almost similar to
each other to the point where they overlap. Compared with
the time-domain algorithm (Figs. 2 and 3), the proposed
algorithm outperforms the previous algorithm and there is no
drift (Fig. 3) in the two faulty clusters with changing inverter
frequency, as shown in Fig. 7. This demonstrates robustness
and reliability of the proposed method.

Fig. 8(a) and (b) shows the normalized FFT-ICA features
versus inverter frequency. More importantly, the dimensional-
ity reduction of the new FFT-ICA feature space is observed.
The FFT-ICA features have the same discriminative power,
which implies that for the problems in this paper, only one
FFT-ICA feature will be adequate for classifying the fault
motors from healthy motors across all inverter frequencies.
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Fig. 8. Two FFT-ICA features versus inverter frequency after normalization
using healthy motors as the benchmarks.

Fig. 9. Simulation results of the FFT-ICA feature 1; �’s—healthy motor.
◦’s—one-broken-rotor-bar motor. �’s—half-broken-rotor-bar motor.

B. One Broken Rotor Bar and Half Broken Rotor Bar

The normalized FFT-ICA features for healthy, half-broken-
rotor-bar, and one-broken-rotor-bar motors are compared with
those in the knowledge database in Fig. 9 and are shown to
match very well. In this paper, the magnitudes of the fault
frequencies are used to detect faults from induction motors.
However, the difference between the detection of half-broken-
rotor-bar, one-broken-rotor-bar fault, and two-broken-rotor-bar
fault is just in the magnitude of the feature frequencies [38].
In addition, according to the theoretical spectrum analysis, the
spectral lines of the feature frequencies of the half-broken-
rotor-bar and one-broken-rotor-bar faults are slightly less than
that of the two-broken-rotor-bar fault [39], [40]. Therefore,
for the same motor at certain inverter-frequency and under
certain load level, the spectral lines of the feature frequen-
cies of the half-broken-rotor-bar, one-broken-rotor-bar, and
two-broken-rotor-bar faults are unique [23], [38], [39], [41].
The ICA has been demonstrated to be capable of capturing
the healthy and faulty independent components. This means
that the proposed scheme can distinctly differentiate the half-
broken-rotor-bar and one-broken-rotor-bar faults of the motor
according to the spectral lines of the feature frequencies.
On the other hand, the challenges for detecting half-broken-
rotor-bar and one-broken-rotor-bar faults are also encountered
in detecting the two-broken-rotor-bar fault of induction motors.
Under no-load condition, it is difficult to separate the fea-
ture frequencies fbL and fbR of the broken-rotor-bar motor
from fs because they are very closely located in the frequency
spectrum [21], [38]. The proposed scheme that detects the
two-broken-rotor-bar fault in this paper can also effectively

TABLE I

COMPARISON BETWEEN THE PROPOSED METHODOLOGY
AND THE PREVIOUS METHODOLOGY

address the challenges of detection of half-broken-rotor-bar
and one-broken-rotor-bar faults. Based on the above analysis,
as long as the feature knowledge database contains feature
components of half-broken-rotor-bar fault, one-broken-rotor-
bar fault, and other faults, the proposed scheme is able to
detect the actual fault type of induction motors.

As mentioned in Section IV-B, one-fifth of data were
used for training and four-fifth have been used for testing.
According to the simulation results, all 1080 samples (360
healthy, 360 bearing faults and 360 broken-rotor-bars or 360
half-broken-rotor-bars and 360 one-broken-rotor-bars) were
classified correctly. Both classification for rate the training and
testing accuracy achieved 100% for the problem in this paper.

As discussed in Sections I and II, many existing frequency-
based techniques require the user to possess some level of
expertise regarding the motor parameters, operations, and
design that are all dependent information on motors. These
collectively make online applications difficult.

The scheme proposed in this paper provides a solution
that overcomes the challenges mentioned above. Using the
proposed scheme, one only needs to input a new set of motor
current signal data, as the fault feature database is already
established. The ensuing online fault detection can then be
fully automated. Thus, the proposed feature knowledge based
fault detection scheme is an ideal potential procedure for
online monitoring of induction motors, especially in remote
locations, where manual inspections are expensive or even
unavailable. Due to its simplicity, the proposed algorithm is
ideal also for implementation on the fault detection of other
pieces of equipment, as the majority of computation involves
simple data processing of the features of the obtained data and
estimation of the new data as input for the proposed method.

The computation of the FFT-ICA features of a new stator
current waveform involves only simple partial substitution of
the obtained FFT results into (16) in ICA Block B as shown
in Fig. 4. The comparison block simply requires retrieval of
data from the fault signature database, and normalizing and
comparing the newly computed FFT-ICA feature against preset
levels. The comparisons of the previous methods, such as
time-domain methods, frequency-domain methods, hybrid
time–frequency-domain analysis algorithms, and park trans-
form with the MFN method [14], [15], [28], [29], with the
method implemented in this paper is shown in Table I. The
proposed scheme has shown to give better results under
changing frequency. Because this paper leverages on the
magnitude of the stator current frequency components and the
frequency components for both the healthy and faulty motors,
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it has shown that the conditions with broken-rotor-bar and
bearing faults can now be more accurately diagnosed.

VI. CONCLUSION

This paper has presented a new scheme for online fault
detection in induction motors that makes use of a newly
created healthy and faulty feature knowledge database, making
the method highly scalable. The first stage of the proposed
scheme relies on analyzing the training stator current signals.
In this paper, the magnitudes of the stator current frequency
components represent the frequency characteristics of healthy
or faulty motors by theoretical analysis. Both FFT and ICA
methods are applied in this stage in order to extract indepen-
dent components. The resultant independent components and
the obtained frequency signatures are both used to calculate
the features, which are referred to as FFT-ICA features. The
FFT-ICA features were further analyzed to form a feature
knowledge database. In the second stage, for the online mon-
itoring of the stator current data, FFT and ICA were utilized
to calculate the FFT-ICA features, which were normalized
accordingly to build a feature knowledge database. Finally,
the similarity principle is applied to identify the fault type.
The simulation results of broken-rotor-bar and bearing faults
at each inverter frequencies of 20, 25, 37.5, 43.5, 50, and 55 Hz
and under each load level were proven to be highly efficient in
bringing about a diagnosis of the induction motor of the pro-
posed scheme. In addition, the proposed scheme could improve
the efficiency of online detection at each inverter frequency
and under each load level after finishing the offline training.

There are some important issues that are not studied in this
paper. First, this paper investigates motor fault detection by
only focusing on two main faults. Other fault types should also
be investigated, and especially building a feature knowledge
database for motors with more than one fault should be
considered. Second, while the faults can be differentiated
correctly from the healthy motors, the severity of the faults is
not investigated in this paper. Therefore, studies to incorporate
the severity of the faults are needed for future work.
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