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Epileptic Seizure Detection in EEGs Using
Time—Frequency Analysis
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Abstract—The detection of recorded epileptic seizure activity in
EEG segments is crucial for the localization and classification of
epileptic seizures. However, since seizure evolution is typically a
dynamic and nonstationary process and the signals are composed
of multiple frequencies, visual and conventional frequency-based
methods have limited application. In this paper, we demonstrate
the suitability of the time-frequency (¢- f) analysis to classify EEG
segments for epileptic seizures, and we compare several methods
for t-f analysis of EEGs. Short-time Fourier transform and sev-
eral t-f distributions are used to calculate the power spectrum
density (PSD) of each segment. The analysis is performed in three
stages: 1) t-f analysis and calculation of the PSD of each EEG
segment; 2) feature extraction, measuring the signal segment frac-
tional energy on specific ¢-f windows; and 3) classification of the
EEG segment (existence of epileptic seizure or not), using artificial
neural networks. The methods are evaluated using three classifi-
cation problems obtained from a benchmark EEG dataset, and
qualitative and quantitative results are presented.

Index Terms—Artificial neural networks (ANNSs), EEG, epilepsy,
seizure detection, time—frequency (¢- f) analysis.

1. INTRODUCTION

PPROXIMATELY 1% of the world’s population suffers

from epilepsy, a disorder of the normal brain function,
characterized by the existence of abnormal synchronous dis-
charges in large ensembles of neurons in brain structures [1].
These discharges are often referred as “paroxysmal activity”
and appear either during seizures (ictal periods) or between
seizures (interictal periods) [2]. Epileptic seizures are manifes-
tations of epilepsy, which are due to the sudden development
of synchronous neuronal firing in the cerebral cortex and are
recorded using the EEG, which is a measure of brain electrical
activity. Epileptic seizures may occur in the brain locally (par-
tial seizures), which are seen only in a few channels of the EEG
recording, or involving the whole brain (generalized seizures),
which are seen in every channel of the EEG recording [3].
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Clinical neurologists in daily practice commonly examine
short recordings (usually 20-min recordings) of interictal peri-
ods. The most common forms of the interictal periods are the
individual or isolated spikes, the sharp wave, and the spike-and-
wave complex. These are perceived in the majority of patients
with epilepsy. For this reason, interictal event detection plays a
vital role in the diagnosis of epilepsy. However, during an iso-
lated spike, the brain is not in a clinical seizure. A different EEG
pattern is observed during the ictal period consisting of rhyth-
mical waveforms for a wide variety of frequencies, polyspike
activity, low-amplitude desynchronization, as well as spike-and-
wave complexes [3]. Although interictal findings offer evidence
of epilepsy, diagnosis of epilepsy is usually based on observed
epileptic seizures [4].

The interictal indications of epilepsy can be identified using
a short period EEG recording. However, the long-term video-
EEG monitoring is necessary due to the relatively infrequent
nature of epileptic seizures. Usually, the epileptic seizures are
detected either using a patient alarm button or by direct obser-
vation [4]. The development of ambulatory EEG allowed the
characterization of epileptic seizures and seizure-like events at
home [5].

Visual seizure detection has not been proven very efficient.
Efficient automated seizure detection schemes facilitate the di-
agnosis of epilepsy and enhance the management of long-term
EEG recordings. Since the early days of automatic analysis of
epileptic EEG signals, representations based on Fourier trans-
form and parametric methods have been applied [6]. These ap-
proaches are based on earlier observations that the epileptic
seizures give rise to changes in certain frequencies bands, such
as ¢ (0.4—4 Hz), 6 (4-8 Hz), a (8-12 Hz), and 5 (12-30 Hz)
bands. Since the nature of epileptic EEG signals is nonstationary
and multicomponent, these methods are not suitable for the fre-
quency decomposition of these signals. Time—frequency (¢-f)
based methods were shown to outperform conventional methods
of frequency analysis [7].

In this paper, we address the use of ¢- f analysis for the deter-
mination of EEG segments, which contains epileptic seizures.
Our approach is based on the ¢-f analysis of each EEG seg-
ment in order to obtain the power spectrum density (PSD) and
extract features from it, which correspond to the fractional en-
ergy of windows defined on the ¢-f plane. Then, the features
are fed into an artificial neural network (ANN) that classifies
the segment as epileptic or not. Features that depict the dis-
tribution of the signal’s energy over the t-f plane have not
been previously applied in epileptic seizure detection. The se-
lection of the t-f distribution (TFD) in the first step is cru-
cial for the efficiency of the proposed approach. We report on
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short-time Fourier transform (STFT) and 12 different TFDs in
three common classification problems.

II. RELATED WORK

Automatic analysis of EEG recordings in the diagnosis of
epilepsy started in the early 1970s. Today, computer-based anal-
ysis addresses two major problems: 1) interictal event detection
(or spike detection) and 2) epileptic seizure analysis [4]. Many
algorithms for spike detection have been proposed, includ-
ing mimetic- and rule-based approaches [8], frequency-domain
methods [9], wavelet transforms [10], ANNs [11]-[13], inde-
pendent component analysis [14], support vector machines [15],
data mining [2], template matching [16], and topographic classi-
fication [16]-[18]. On the other hand, epileptic seizure analysis
refers collectively to methods for: 1) epileptic seizure detection;
2) epileptic seizure prediction; and 3) automatic focus channel
identification [3], [4].

Conventional temporal and frequency analysis measures have
been used for the detection of epileptic seizures in EEG record-
ings [19]-[26]. Many works focus on the quantitative char-
acterization of the underlying nonlinear systems based on
some evidence of a deterministic value of the EEG dynam-
ics [27], [28]. Complexity measures of the underlying EEG
dynamics, such as correlation dimension [29], Lyapunov expo-
nents [26], [30], [31], and Kolmogorov entropy [32], have been
proposed. These measures can then be combined with a classi-
fier [19], [21], [24]-[26], [30], [33] to identify the occurrence
of seizures.

For seizure detection, ¢- f methods have also been used [34].
Schiff and coworkers considered a multiresolution analysis of
the EEG [35] and pulse amplitude models (PAMs) [36]. Both ex-
amined electrocorticogram (ECoG) recordings and found qual-
itative seizure-related changes; however, no specific detection
algorithm was posed. Williams et al. employed reduced inter-
ference (RI) distribution for seizure analysis [37]. They noted
the presence of preseizure chirps, but did not present specific
detection results. Other works reported chirp identification us-
ing scalograms and spectrograms [38], and a matched filter
approach [39]. Zaveri et al. examined 30-s epochs of data with
RI distributions and suggested the instantaneous frequency as
a detection feature [40]. Other approaches based on wavelets
have also been reported (e.g., [41]).

III. METHODS

A. Time—Frequency Analysis

STFT and various TFDs are used for the ¢-f analysis [42],
[43]. For STFT, the signal 2:(u) is prewindowed around a time
instant ¢, and the Fourier transform is calculated for each time
instant ¢
+o00

STFT(t, f) = / (P -t Tar (1)

where h(t) is a short time window. STFT suffers from tradeoff
between its window length and its frequency resolution. The
TFDs used in our study belong to the Cohen’s class of distribu-

TABLE I
TIME-FREQUENCY DISTRIBUTIONS

Distribution Kernel (g(v,1))
1 Margenau-Hill (MH) cos(zvr)
2 Wigner-Ville (WV) 1
3 Rihaczek (RIH) e
Pseudo Margenau-Hill it o .
4 (PMH) h(z)e™" (h(r): window function)
5 Pseudo(l\)V\;JgVn;: r-Ville h(z) (h(r): window function)
6 Born-Jordan (BJ) sin(zvr)/ (707)
2N 2M
|1+ [iJ [LJ
7 Butterworth (BUT) Y 71
(V.M,v,7, >0)
8 Choi-Williams (CW) gt (o : scaling factor)
2
sin L“Zv / (m))
9 Generalized rectangular |1|

(GRECT) (0’: scaling factor; )

a : dissemmetry ratio

, [ neye e an
10 Reduced interference (RI) -
(A(): hamming window )

Smoothed pseudo

T Wigner-Ville (SPWV)

G (u) h(7) (h(r): window function)
h(r)sin (ﬂ'UT) / (m)r)
12 Zhao-Atlas-Marks (ZAM) (h(r): window function)

tions. Unlike the STFT ¢- f representation, the Cohen’s class of
t- f representations is quadratic

pie) = [ [ [ e ego,na (u . ;T)

X X <u + ;7‘) e 2T Qududr 2)

where ¢ is the time, f is the frequency, (t) is the signal, z*(¢) is
its complex conjugate, and g (v, 7) is an arbitrary function called
kernel, which is different for each TFD. Table I presents the
TFDs, which are used in our study along with the corresponding
kernels. The most common TFDs that belong to the Cohen’s
class have been employed.

A major problem inherit with quadratic TFDs is cross-terms
(interference), which is the result of the quadratic nature of
transformation. Cross-terms can make the interpretation of the
t- f representation difficult. Windowing or smoothing the TFD
distribution reduces the influence of the cross-terms.

Some of the TFDs employ a frequency and/or a time smooth-
ing window: Margenau—Hill (MH), Wigner—Ville (WV), and
Rihaczek (RIH) distributions do not employ smoothing win-
dows, pseudo-MH (PMH) and pseudo-WV (PWV) employ fre-
quency smoothing windows, while all other employ both fre-
quency and time smoothing windows.

All time and/or frequency smoothing windows were set as
Hamming 64-point length windows.
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Fig. 1. PSDs calculated for all EEG segments (top figures) using STFT and
the TFDs of Table 1.

Using ¢- f analysis, the PSD of the signal is calculated, which
represents the distribution of the energy of the signal over the ¢- f
plane. In Fig. 1, the first line of figures presents EEG segments,
while all other lines of figures present PSDs generated using
STFT (second line of figures) and all TFDs (all other lines of
figures).

B. Time—Frequency-Based Feature Extraction

The PSD that is calculated in the previous stage (2) is used
to extract several features. A grid is used based on a partition
both in the time and the frequency axis. In the time domain,
three equal-sized windows were selected while in the frequency
domain, the employed partition divided the frequency domain in
five subbands; Fig. 2 presents a sample PSD with the analogous
grid used for feature extraction.

The frequency subbands, which were defined based on med-
ical knowledge on EEG, are 0-2.5 Hz, 2.5-5.5, 5.5-10.5, 10.5-
21.5, and 21.5-43.5 Hz; specific features are expected to be
found in certain frequency bands for the EEG segments in-
cluded in the dataset. The size of the time windows was defined
using expert neurologist knowledge, and it is within the range
of windows selected in other works [33]. Each feature f (4, j)
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Fig. 2. Time windows and frequency subbands used for feature extraction.

is calculated as
f(@}j):// PSD, (t,w) dwdt 3)
t,’ wj

where PSD,, is the PSD of the signal = calculated using one
of the aforementioned methods, ¢; is the 7th time window, and
wj is the jth frequency band. The integral in (3) is computed
as f(i,4) = > per, Dowew, PSDa (t,w), since PSD, (¢,w) is
discrete. Each feature represents the fractional energy of the
signal in a specific frequency band and time window; thus,
the feature set depicts the distribution of the signal’s energy
over the ¢-f plane. It is expected that the feature set carries
sufficient information related to the nonstationary properties
of the signal. The total energy of the signal is included as an
additional feature. Therefore, each feature set is a 16-element
vector (3 x 5 4 1). Principal component analysis (PCA), using
1% threshold, was employed to reduce the dimension of the
feature set [44] resulting in three to four features in all cases.

C. Classification Using ANNs

The calculated features are fed into a feedforward ANN. The
architecture of the ANN is IV inputs (/N is the size of the feature
vector), one hidden layer with 5 x N neurons, and K outputs
(K is the number of the classes), each of them being a real
number in the interval [0, 1]. The units in the hidden layer are
sigmoid units with hyperbolic tangent as activation function,
while the outputs are linear. Each network is trained using a
standard backpropagation algorithm [45]. The architecture of
the ANNs was defined heuristically, i.e., experiments related to
the number of neurons in the hidden layer were conducted in
order to determine the architecture with the best performance
[46].

Four other classification schemes, naive Bayes classifier, deci-
sion trees, k-nearest-neighbors (k-NNs) and logistic regression
were also tested [47].

1) Naive Bayes classifier is based on Bayes theory and as-
sumes that the effect of an attribute value on a given class
is independent of the values of the other attributes. This
assumption is called class conditional independence.

2) k-NN classifier is based on learning by analogy. Given an
unknown sample, it searches the pattern space neighbors
that are the closest to the unknown sample. Closeness
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is defined in terms of distance. The unknown sample is
assigned the most common class among its neighbors.

3) Decision trees find explicit and understandable rules-like
relationships among the input and output variables using
search heuristics. Search heuristics use recursive partition-
ing algorithms to split the original data into finer subsets.
The algorithm has to find the optimum number of splits
and determine where to partition the data to maximize the
information gain. The fewer the splits, the more explain-
able the output as there are fewer rules to understand.
Decision trees are built of nodes, branches, and leaves
that indicate the variables, conditions, and outcomes, re-
spectively. The most predictive variable is placed at the
top node of the tree. Specifically, the C4.5 decision tree
induction algorithm was employed.

4) Logistic regression can be considered a special case of
linear regression models. However, the binary response
variable violates normality assumptions of the general re-
gression models. A logistic regression model specifies that
an appropriate function of the fitted probability of the event
is a linear function of the observed values of the available
explanatory variable.

IV. RESULTS

The dataset described in [48] is used for training and evalua-
tion of our approach. The dataset includes five subsets (denoted
as Z, O, N, F, and S) each containing 100 single-channel EEG
segments of 23.6 s duration. Sets Z and O have been acquired
from surface EEG recordings of five healthy volunteers, with
eyes open and closed, respectively. Signals in subsets F and
N have been measured in seizure-free intervals, from five pa-
tients in the epileptogenic zone (F) and from the hippocampal
formation of the opposite hemisphere of the brain (N). Sub-
set S contains seizure activity, selected from all recording sites
exhibiting ictal activity. Sets Z and O have been recorded ex-
tracranially, using standard electrode positioning (according to
the international 10-20 system [49]), whereas sets N, F, and
S have been recorded intracranially. More specifically, depth
electrodes are implanted symmetrically into the hippocampal
formation. EEG segments of subsets N and F were taken from
all contacts of the relevant depth electrode [48]. In addition, strip
electrodes are implanted onto the lateral and basal regions (mid-
dle and bottom) of the neocortex. EEG segments of the subsets S
were taken from contacts of all electrodes (depth and strip). All
EEG signals were recorded with the same 128-channel ampli-
fier system using an average common reference. The data were
digitized at 173.61 samples per second using 12 bit resolution,
and they have the spectral bandwidth of the acquisition system,
which varies from 0.5 to 85 Hz. Typical EEG segments (one
from each category of the dataset) are shown in Fig. 1 (first row
of figures).

In our analysis, we use the previously described dataset to
create three different classification problems to evaluate our
method.

1) In the first problem, two classes are examined: normal

and seizure. The normal class includes only the Z-type

EEG segments while the seizure class includes the S type.
Thus, the dataset used for the first classification problem
consists of 200 EEG segments.

2) The second classification problem includes three classes:
normal, seizure-free, and seizure. The normal class in-
cludes the Z-type EEG segments; the seizure-free class
includes the F-type EEG segments and the seizure class
includes the S type. In the dataset of the second classifi-
cation problem, 300 EEG segments are included.

3) In the third problem, all five classes are used, including
all EEG segments from the previously described dataset
(thus 500 EEG segments).

These different problems are examined since the medical
interest is different for each one of them and are also the most
widely used in the literature (one or more of them is employed
in [19]-[26], [28], [30], and [32]). Therefore, we have selected
them for the evaluation to be able to compare our approach with
other proposed approaches.

The three classification problems, described before, are used
to evaluate the proposed method. STFT and all 12 TFDs were
tested for each classification problem. These result to a total of
39 different test cases. In order to avoid overfitting phenomena,
cross validation was employed. Thus, for each test case, evalua-
tion was performed using a holdout (with 50% split), ten-times
random subsampling technique. Thus, for each case, ten ANNs
were trained and tested; using half of the data for training (ran-
domly selected) and the remaining for testing, ten confusion
matrices were thus obtained. The size of the confusion matrix
depends on the classification problem: 2 x 2 for the first classi-
fication problem, 3 x 3 for the second, and 5 x 5 for the third.
For each of them, results for each class i are presented in terms
of sensitivity (Sens; ) and selectivity(Sel;)

# of patterns of class ¢ classified in class ¢
Sens; = - - 4)
total # of patterns in class ¢

Sel. — # of patterns of class ¢ classified in class 7

®)

total # of patterns classified in class ¢

The results obtained in terms of sensitivity and selectivity
(shown in Table II), for each classification problem and ¢-f
analysis method, are calculated as the average value of the re-
spective results obtained for each of the ten confusion matrices.
STFT presents high Sens and Sel results for the first two prob-
lems (99.8% for both average Sens and Sel for all categories in
the first classification problem, and 91.8% and 92.0% average
Sens and Sel for all categories, respectively, in the second classi-
fication problem), while there is a reduction in the classification
accuracy in the third classification problem, providing 65.3%
average Sens and 66.2% average Sel for all categories. The
MH and RIH TFDs, which do not include smoothing windows,
present similar results in all classification problems, being much
lower than the respective TFDs including time and/or frequency
smoothing windows. The WV distribution presents results sim-
ilar to more complex TFDs, without using smoothing windows.
The best results for the first classification problem are obtained
using the RI and smooth PWV (SPWYV) distributions (100% for
both average Sens and Sel), for the second using RI (100% for
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TABLE II
OBTAINED SENSITIVITY (SENS) AND SELECTIVITY (SEL) RESULTS (IN PERCENT) FOR STFT AND VARIOUS TFDS FOR THE THREE CLASSIFICATION PROBLEMS

Classification Problems

1 2 3
Classes Classes Classes
Distribution (%)
Z S average Z N S average Z (6] N F S average
STFT Sens 99.8  99.8 99.8 940 942 872 918 662 60.0 526 838 640 653
Sel 99.8  99.8 99.8 872 99.0 899 92.0 579 604 574 957 59.8  66.2
MH Sens 716 676 69.6 688 90.0 656 748 59.6 206 702 856 370 54.6
Sel 68.9 704 69.6 654 972 642 756 394 404 636 909 39.8 5438
WV Sens 984 942 963 956 93.8 934 943 67.2 81 872 898 922 835
Sel 944 983 964 96 93.1 938 943 76 72.5  86.7 93 904 837
RIH Sens 86.8 60.6 73.7 912 926 548 795 734 108 710 894 452 58.0
Sel 68.8 82.1 754 665 979 804 81.6 402 419 71.7 933 466 587
PMH Sens 942 960 95.1 95.0 100 98.0 977 568 86.0 860 100 924 842
Sel 959 943 95.1 979 100 952 977 77.0 70.8 939 99.8 81.8 847
PWV Sens 98.0 100  99.0 98.0 100 99.8 993 67.6 774 894 99.8 98.0 86.4
Sel 100 98.0 99.0 99.8 100 98.0 993 768 727 978 99.0 864 86.6
BI Sens 964 99.8 98.1 97.6 100 994 99.0 708 832 904 100 974 884
Sel 99.8  96.5 982 994 100 97.6  99.0 843 763 958 99.8 86.7 88.6
BUT Sens 98.0 100  99.0 98.0 100 100 99.3 720 786 878 998 97.6 872
Sel 100 98.0 99.0 100 100 98.0 99.3 798 759 976 98.6 849 813
cw Sens 964 100 982 96.0 100 986 98.2 63.0 72.8 888 100 992 8438
Sel 100 96.5 983 98.6 100 96.1 98.2 71.0 717 987 100 829 8438
GRECT Sens 962 100 98.1 964 100 100 98.8 762 77.6 93.0 99.8 972 88.8
Sel 100 963 98.2 100 100  96.5 988 794 795 977 98.6 884  88.7
RI Sens 100 100 100 100 100 100 100 704 852 920 998 976 89.0
Sel 100 100 100 100 100 100 100 832 82,6 973 994 833 89.1
SPWV Sens 100 100 100 95.0 100 100 983 66.2 8.0 920 998 100 83.0
Sel 100 100 100 100 100 952 984 802 772 100 100 83.8 88.2
ZAM Sens 99.8 974 98.6 100 100 99.6 999 69.8 748 930 100 98.0 87.1
Sel 975 99.8 98.6 99.6 100 100 999 743 741 100 100 875 872

both average Sens and Sel) and ZAM (99.9% for both average
Sens and Sel), while in the case of the third classification prob-
lem, using the RI distribution (89% average Sens and 89.1%
average Sel) and generalized rectangular (GRECT) (88.8% av-
erage Sens and 88.7% average Sel).

In addition, the classification accuracy (Acc) defined as

# of correctly classified patterns

Acc = (6)

total # of patterns

was calculated for the three classification problems and all em-
ployed t-f analysis methods. Again, the final Acc, for each
classification problem and ¢- f analysis method, is calculated as
the average of the obtained Acc for each one of the ten confusion
matrices. The Acc results along with the respective standard de-
viation are presented in Table III. The number of features that
are employed, after the application of PCA, is also presented
in Table III. In addition, for each classification problem, over-
all results have been derived, i.e., for STFT and all TFDs, the
minimum and maximum accuracies are calculated as well as the
average accuracy and the standard deviation.

V. DISCUSSION

The use of different methods for ¢- f analysis (STFT and sev-
eral TFDs) is examined in the detection of epileptic seizures in
EEG recordings. Our approach is based on the ¢-f analysis of
the EEG segments, extraction of several features from the PSD
of the signal, and classification of the EEG segments using an

ANN. The use of various TFDs is evaluated using three differ-
ent classification problems. The comparison of several different
techniques for ¢- f analysis addresses the problem of identifying
the most appropriate technique to deal with the nonstationarity
arising in the EEG signals. To our knowledge, there is no study
in the literature either related to t-f analysis and feature ex-
traction, reflecting the energy distribution over the ¢- f plane, or
trying to identify the most appropriate ¢-f analysis technique,
for epileptic seizure detection.

The obtained results indicate high classification ability in
epileptic seizure detection. For the first and second classifica-
tion problems, almost all TFDs present excellent classification
accuracy results (95%—-100%), except MH and RIH distribu-
tions; both of them do not employ smoothing windows, and
thus, the cross-terms introduced reduce the quality of the ob-
tained features, and subsequently, the classification accuracy.
Concerning the third classification problem, the results for clas-
sification accuracy vary from 54.6% to 89%, again with the
TFDs that employ smoothing windows presenting the best re-
sults (84.8%—-89%). STFT also presented excellent results for
the first classification problem (99.8%) and very good results for
the second (91.8%), but it had a reduction in the third (65.3%),
while WV distribution presents satisfactory results for all three
classification problems. TFDs employing both time and fre-
quency smoothing windows indicate the highest performance:
98.8%, 99%, and 87.6% average accuracy for the three classi-
fication problems, respectively. A comparison of the obtained
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TABLE III
OBTAINED ACCURACY (IN PERCENT) (STANDARD DEVIATION)/NUMBER OF FEATURES (AFTER PCA APPLICATION) FOR STFT AND VARIOUS TFDS FOR THE THREE
CLASSIFICATION PROBLEMS

Classification problems

Distribution 1 2 3
Short time Fourier transform 99.8 (0.42)/4 91.8 (1)/4 6532 (0.89)/4
Margenau-Hill 69.6 (1.78)/3 748 (2.13)/3 546 (091)/3
Wigner-Ville 963 (0.82)/3 943  (0.29)/3 82,6 (1.07)/3
Rihaczek 737 (1.64)/3 79.53  (1.04)/3 5796 (0.51)/3
Pseudo Margenau-Hill 95.1 (0.32)/4 97.67 (0.35)/4 8424 (0.57)/4
Pseudo Wigner-Ville 99 (0.37)/3 99.27 (0.21)/3 86.44 (0.55)/3
Born-Jordan 98.1 (0.32)/3 99 (0.35)/3 8836 (0.3)/3
Butterworth 99  (0.33)/3 99.33  (0.27)/3 87.16 (0.67)/3
Choi-Williams 98.2 (0.63)/3 98.2 (045)/3 84.76  (0.58)/3
Generalized rectangular 98.1 (0.32)/3 98.8 (0.28)/3 88.76  (0.69)/3
Reduced interference 100 (0)/3 100 (0)/3 89 (0.54)/3
Smoothed pseudo Wigner-Ville 100 (0)/3 98.33  (0.65)/3 88 (0.27)/3
Zhao-Atlas-Marks 98.6 (0.7)/3 99.87 (0.28)/3 87.12  (0.7)/3
Maximum 100 100 89
Minimum 69.6 74.8 54.6
Average 94.27 94.68 80.33
Standard deviation 10.17 8.17 12.34
W Problem 1 ¥ Problem 2 ® Problem 3 TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY (IN PERCENT) OBTAINED BY
lg;) B E il FIVE CLASSIFIERS USING THE SET OF FEATURES OBTAINED BY THE RI
90 - l l B ) s _ DISTRIBUTION
T 85
:2’- ’7‘2 1 a B : 2 ] Classification Problems
§ 70 1 f Classifiers 1 2 3
< 2(5, jL B B B R B H B B Naive Bayes classifier 88.9 79.47 68.96
55 4 . - i - . 5-NN 92.8 83.8 75.88
50 + . Decision tree (C4.5) 94 85.53 74.08
: L < 3 & \ Logistic regression . . 44
Time-frequency distribution
Fig. 3. Accuracy results for STFT and the TFDs shown in Table I for the three In Fig. 1, the obtained PSDs for five EEG segments are pre-

classification problems.

accuracy results for all classification problems and ¢- f analysis
methods is presented in Fig. 3. Statistical analysis (two-tailed
t-test) was performed between the accuracy obtained from the
STFT and the accuracy obtained using the reduced interference
(RID) for all classification problems. The results indicated a
statistical significant difference for the second and third classi-
fication problems but not for the first one.

We have compared the results obtained using ANNs with the
results obtained by four widely used classification techniques:
naive Bayes classifier, decision trees, k-NNs, and logistic re-
gression. Decision trees were implemented using the C4.5 algo-
rithm. Postpruning was employed using the pessimistic error-
rate-based method (subtree replacement). The confidence fac-
tor for pruning was set to 0.25 and the minimum number of
instances in a leaf was 2. The k-NN classifier was implemented
with £ = 5 (5-NN). Table IV presents the average accuracy of
the ten runs for the features obtained using the RI distribution
for all five classifiers. The use of ANNs produces the best re-
sults; however, it should be mentioned that ANNs present the
highest computational complexity and training time while the
5-NN classifier presents the highest evaluation time.

sented. PSDs obtained from the MH and RIH distributions do
not accurately reflect the rhythm changes in the respective signal
segments. Especially in the segment belonging to the S category,
main frequency changes are vaguely depicted. The same applies
to PSDs obtained from the STFT. In WV distribution, the PSD
of the S segment has several components corresponding to fre-
quency changes while PSDs obtained from the TFDs employing
time and/or frequency smoothing windows more clearly reflect
these frequency changes. Especially for TFD employing both
time and frequency smoothing windows, the obtained PSDs are
quite similar. However, the presence of cross-terms is obvious
in several cases, such as in PMH and PWYV distributions (sixth
and seventh lines of figures in Fig. 1). Thus, the selection of the
appropriate TFD is crucial for the improvement of our approach
and this depends on the classification problem under discussion.
However, TFDs that employ smoothing windows tend to gen-
erate feature sets that are able to discriminate among the EEG
categories more accurately.

In this study, high-frequency components (over 43.5 Hz) were
not measured. The accuracy achieved for all TFDs for the epilep-
tic seizure detection is more than satisfactory and its automated
nature also makes it suitable to be used in real clinical condi-
tions. Besides the feasibility of a real-time implementation of
the proposed approach, diagnosis can be made more accurate
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TABLE V
COMPARISON OF CLASSIFICATION ACCURACY (IN PERCENT) OBTAINED BY OUR APPROACH FOR THE DETECTION OF EPILEPTIC SEIZURES COMPARED TO THE
CLASSIFICATION ACCURACIES (IN PERCENT) OBTAINED BY OTHER RESEARCHERS

Authors Method Dataset Accuracy
Nigam et al. [20] Nonlinear pre-processing filter-Diagnostic neural network Z,8 97.2
Srinivasan et al. [19] Time & frequency domain features-Recurrent neural network Z,S 99.6
Kannathal et al. [32] Entropy measures-Adaptive neuro-fuzzy inference system Z,S 92.22
Kannathal et al. [28] Chaotic measures-Surrogate data analysis Z,S ~90
Polat et al. [21] Fast Fourier transform-Decision tree Z,S 98.72
Subasi [23] Discrete wavelet transform-Mixture of expert model Z,S 95
This work Time frequency analysis-Artificial neural network Z,S 100
Giiler et al. [30] Lyapunov exponents-Recurrent neural network Z,F, S 96,79
Sadati et al. [24] Discrete wavelet transform—Adaptive neural fuzzy network Z,F, S 85,9
This work Time frequency analysis-Artificial neural network ZF,S 100
Giiler et al. [25] Wavelet transform-Adaptive neuro-fuzzy inference system Z,0,N,F, S 98.68
Giiler et al. [26] Wavelet transform, Lyapunov exponents-Support vector machine Z,0,N,F, S 99.28
Ubeyli et al. [22] Eigenvector methods—Modified of Mixture of expert model Z,0,N,F, S 98.60
This work Time frequency analysis-Artificial neural network Z,0,N,F, S 89

by increasing the number of parameters. A system that may be
developed as a result of this study may provide feedback to the
experts for the classification of the EEG signals quickly and
accurately.

Table V presents a comparison between our approach and
other methods proposed in the literature. Only methods that are
evaluated using the same dataset are included. The results pre-
sented in this paper are the ones obtained using the RI TFD. For
the two-class problem, the results obtained from the evaluation
of our method are the best presented for this dataset. The dif-
ference between our results and all other results proposed in the
literature varies from 0.4% to 10%. Concerning the three-class
problem, the results obtained from our approach are again the
best presented for this dataset, indicating an improvement from
3.21% to 14.1% from other approaches proposed in the liter-
ature. However, in the third classification problem, our results
are not satisfactory, being almost 89%. This is mainly due to
the high misclassification rates between sets Z and O. It should
be mentioned that this does not have a major impact on the
study, since both these sets are obtained from healthy individ-
uals (with eyes open and closed, respectively). Still, the results
demonstrate a limitation of the proposed methodology, since
the obtained sets of features do not carry sufficient information
to correctly classify these sets. The best reported result for this
dataset is 99.28% [31].

VI. CONCLUSION

We presented a comparison of using STFT and other 12 well-
known TFDs to access the nonstationary properties of the EEG
signal with respect to epileptic seizure detection. We utilized
an approach based on ¢-f analysis and extraction of features
reflecting the distribution of the signal’s energy over the ¢-f
plane. Both of these aspects have not been employed for epilep-
tic seizure detection, while the results obtained using a publicly
available dataset demonstrate the added value of the proposed
approach. Future work will focus on the employment of high-
frequency components, such as gamma activity (30-60 Hz), and
their importance concerning epileptic seizure detection. Also,
alternative techniques (such as autoregressive models) and t— f

partitions for feature extraction must be examined. Finally, an
extension of the proposed method in order to automatically
detect epileptic seizures in long-term EEG recordings, and sub-
sequently, classify them into different epileptic categories will
be of high clinical value.
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