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a b s t r a c t 

Different modalities have been proved to carry various information. This paper aims to study how the 

multiple face regions/channels and multiple models (e.g., hand-crafted and unsupervised learning meth- 

ods) answer to the face recognition problem. Hand crafted and deep feature learning techniques have 

been proposed and applied to estimate discriminative features in object recognition problems. In our 

Multi-Channel Multi-Model feature learning (McMmFL) system, we propose a new autoencoder (AE) op- 

timization that integrates the alternating direction method of multipliers (ADMM). One of the advantages 

of our AE is dividing the energy formulation into several sub-units that can be used to paralyze/distribute 

the optimization tasks. Furthermore, the proposed method uses the advantage of K-means clustering and 

histogram of gradients (HOG) to boost the recognition rates. McMmFL outperforms the best results re- 

ported on the literature on three benchmark facial data sets that include AR, Yale, and PubFig83 with 

95.04%, 98.97%, 95.85% rates, respectively. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

Ideally, object and face identification has four procedures - 

feature learning, feature extraction using labeled data, supervised 

training, and testing. Representative and discriminative features 

are desired to be learned and extracted from the object of inter- 

ests. To boost the identification rate and to accelerate the learning 

process, many hand-crafted and unsupervised learning techniques 

have been developed that we will review a few of them below. 

Since global representation methods, such as Eigenface [1] and 

Fisherface [2] , fail to capture high-order statistics, local feature 

extraction techniques have been proposed such as local binary 

pattern (LBP) [3] , scale-invariant feature transform (SIFT) [4] , 

histograms of oriented gradients (HOG) [5] , rotation-and scale- 

invariant, line-based color-aware descriptor (RSILC) [6] , and corre- 

lation based features [7] . Although those techniques have proved 

that they are capable of obtaining good classification accuracy in 

limited scenarios, they are incapable of extracting the non-linear 

features. 

Deep learning methods are designed to learn hierarchical rep- 

resentations in deep architectures for classification [8] . Traditional 

unsupervised models such as sparse Restricted Boltzmann Machine 

(RBM) [9] , and sparse auto-encoder [10] have shown improved re- 

sults in many classification tasks. Hierarchical model for sparse 
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representation learning was proposed to build high level features 

[11] . Greedy layer wise pre-training [12,13] approach in deep learn- 

ing [8] became very popular for deep hierarchical frameworks. 

Multi-layer of stacked sparse auto-encoder (SAE) [11,13,14] , sparse 

deep belief net (DBN), and convolutional deep belief net (CDBN) 

[15] are few frameworks for learning sparse representation. 

Several methods have been proposed in the literature that com- 

bines multiple modalities to enhance the face recognition perfor- 

mance. Ngiam et al. [16] proposed a multimodel learning tech- 

nique that combines the features of the visual and audio infor- 

mation. Srivastava et al. [17] proposed a generative model of data 

that consists of multiple and diverse input modalities. They used a 

Deep Boltzmann Machines (DBM) to handle multimedia data fea- 

ture learning such as image database with tags. Their model gener- 

ates a fused representation from multiple data modalities. Shekhar 

et al. [18] proposed a multimedia or multi-biometric identifica- 

tion method that combines the information from different biomet- 

ric modalities. Nilsback et al. [19] made a representative analy- 

sis on combining hand-crafted features (e.g., HOG, SIFT, and Hue- 

saturation-value) on flower classification. Huang et al. [20] pro- 

posed an idea that combines features from their deep learning 

system and hand-crafted techniques. The combination of multiple 

modalities slightly increased the face verification accuracy. 

In this paper, we combine features extracted from multiple 

regions that are processed with multiple models such as hand- 

crafted and unsupervised feature learning methods. The main con- 

tributions are summarized as follows: 
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Fig. 1. Architecture of the proposed Multi-Channel Multi-Model feature learning 

(McMmFL) system. 

• We propose a new AE optimization and draw upon the idea 

from the alternating direction method of multipliers (ADMM) 

formulation [21] . Our proposed encoder-decoder module effi- 

ciently extracts sparse representation of facial regions. One of 

the most important advantages of the ADMM-based optimiza- 

tion is the ability to divide the energy formulation into several 

units that can be used to paralyze/distribute the optimization 

tasks. 
• The multi-channel learning procedure extracts representations 

that capture intra-region changes more precisely. Additionally, 

the unsupervised learning methods obtain specialized bases for 

corresponding regions. Instead of estimating a single centroid 

of a face region, feature learning for multi-region increases the 

detailed representation that learns more representative infor- 

mation as we assess this point in our experiments. 
• Finally, fusing various features from multiple techniques en- 

ables us to achieve promising results. 

The paper is organized as follows: Section 2 introduces the 

proposed method in details. The experimental setup and results 

are explained and discussed in Section 3 . Finally, we conclude in 

Section 4 . 

2. Methods 

Our system, as shown in Fig. 1 , first extracts essential sub- 

regions from images, and applies preprocessing and normalization 

steps, followed by running the hand-crafted and unsupervised fea- 

ture learning methods. After the system learns the bases, the fea- 

tures are extracted from the testing data. In this section, we will 

describe feature learning methods that we propose and employ. 

2.1. The proposed autoencoder (AE) 

We introduce a new encoder-decoder system for unsupervised 

feature learning. While learning, for given n data samples in R m 

represented by matrix X = [ x 1 , . . . , x n ] ∈ R m ×n , we want to learn a 

dictionary W d = [ w d 1 
, . . . , w d k 

] ∈ R m ×k , sparse representation code 

vectors Z = [ z 1 , . . . , z n ] ∈ R k ×n , and latent weight matrix W c , so 

that each input sample x j can be approximated by W d z j . A non- 

linear encoding function f ( x ; W c ) has been used to map X → 

Z , where W c = [ w c 1 , . . . , w c k 
] T ∈ R k ×m . The decoder module recon- 

structs the input sample approximately by X ≈ W d Z . This leads to 

the following optimization problem over W d , Z and W c : 

arg min 

W d , Z , W d 

1 

2 

‖ X − W d Z ‖ 

2 
F + λ‖ Z ‖ 1 + 

α

2 

‖ Z − f (X ; W c ) ‖ 

2 
F , (1) 

subject to : ‖ w d i 
‖ 

2 
2 ≤ 1 for i = 1 , . . . , k, 

where λ > 0 is a parameter that controls the sparsity of the code 

vectors (features) and α is a penalty parameter. We consider ‖ . ‖ F 
and ‖ . ‖ 1 to represent Frobenius norm and element-wise L 1 -norm 

respectively. In our experiment, we use sigmoid activation func- 

tion, f (X ; W c ) = (1 + exp −( W c X ) ) −1 , and set α equals to 1. One can 

use different nonlinear activation functions, such as, hyperbolic 

tangent function and rectifier linear unit. 

To solve Eq. (1) , we propose to use the ADMM form [21] , which 

is used for the convex optimization, to solve the general L 1 regu- 

larized loss optimization, and the stochastic gradient descent. Z is 

estimated using the ADMM optimization, and W d and W c are es- 

timated using the stochastic gradient descent. In the ADMM form, 

the problem can be written as: 

minimize : f (Z ) + g(Y ) , (2) 

subject to : Z − Y = 0 , (3) 

where 

f (Z ) = 

1 

2 

‖ X − W d Z ‖ 

2 
F + 

α

2 

‖ Z − f (X ; W c ) ‖ 

2 
F , (4) 

g(Y ) = λ‖ Z ‖ 1 . (5) 

The augmented Lagrangian will be 

L (X , W d , W c , Z , Y ) = f (Z ) + g(Y ) + 

ρ

2 

‖ Z − Y 

k + U 

k ‖ 

2 
F . (6) 

Then, the ADMM solution becomes 

Z 

k +1 = 

1 

2 

‖ X − W d Z ‖ 

2 
F + (0 . 5) ‖ Z − f (X ; W c ) ‖ 

2 
F 

+ 

ρ

2 

‖ Z − Y 

k + U 

k ‖ 

2 
F , (7) 

Y 

k +1 = λ‖ Y ‖ 1 + 

ρ

2 

‖ Z − Y 

k + U 

k ‖ 

2 
F , (8) 

U 

k +1 = U 

k + Z 

k +1 − Y 

k +1 . (9) 

From here, Z 

k +1 and Y 

k +1 are estimated using the gradient descent 

and soft-thresholding [21] , respectively. In the same iteration loop, 

we, then, estimate and update W d , W c using stochastic gradient 

descent method. 

W d ← W d − η1 ∇ W d 
J(θ ) , (10) 

W c ← W c − η2 ∇ W c 
J(θ ) , (11) 

where gradient calculations are given by ∇ D J ( θ) and ∇ W 

J ( θ) with 

respect to D and W correspondingly. 

2.2. K-Means and hand-crafted features 

The K-means clustering method obtains specialized bases for 

the corresponding region of data. Coates et al. [22] proved that the 

K-means method can achieve comparative or better results than 

other possible unsupervised learning methods. The algorithm takes 

the dataset X and outputs a function f : R n → R k that maps an in- 

put vector x to a new feature vector of k features. We follow to 

minimize the following equation: 

f a (x ) = max { 0 , μ(q ) − q a } , (12) 
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where q a = ‖ x − C 

(a ) ‖ 2 and μ( q ) is the mean of the elements of q . 

Refer to [22] for more description of this method. 

In our system, one of the most powerful hand-crafted feature 

descriptors is employed to boost the rates. We believe that in ad- 

dition to original gray-level information, image gradient will also 

contribute to the multi-model object feature learning and classifi- 

cation. The traditional HOG features are estimated on gradient in- 

formation of images. We refer to this method hereafter as HOG- 

grad . In our experiments, the HOG and HOGgrad features were ob- 

tained every 8 pixels on each image view; and the dimension of 

each HOG descriptor for an image view is 128. 

2.3. Feature extraction 

In the unsupervised learning process, we calculate new bases 

for each method (i.e., K-means and our AE). In the testing stage, 

the new projected data is calculated using the correlation informa- 

tion between the labeled data and estimated bases. 

Let X i be any image region and C i and W d i 
are the corre- 

sponding bases using the K-means and our AE methods, respec- 

tively. The features of labeled data corresponding to image re- 

gions are calculated as Y i = X i C 

t 
i 

(for K-means features) and A i = 

X i W d i 
t (for AE features). Then, the extracted features are com- 

bined together one by one to get the multi-model representation 

as Y = [ Y 1 ; Y 2 ; . . . ; Y M 

] and A = [ A 1 ; A 2 ; . . . ; A M 

] , where M equals 

to the number of image region (and sometimes multimedia data 

such as speech). HOG and HOGgrad features can be represented 

as H = [ H 1 ; H 2 ; . . . ; H M 

] and G = [ G 1 ; G 2 ; . . . ; G M 

] . Finally, the fea- 

ture vector that represents a whole image is represented as V = 

[ Y ; A ; H ; G ] . In our experiment, each method estimates 128 feature 

units for each image region. 

3. Experiments and results 

In our experiments, we assess the performance of our pro- 

posed method on three data sets: AR [23] , Yale [2] , and wild Pub- 

Fig83 [24] data. All images in our experiments are locally normal- 

ized to have the Gaussian distribution and whitened as in [22] . In 

the unsupervised learning part, we train the entire labeled training 

set of images before the classification step. One of the most impor- 

tant detail is the feature normalization procedure. To be more spe- 

cific, while each channel-feature and each model-feature are nor- 

malized using L 2 -norm individually, we observe improved results. 

We use the linear support vector machine (SVM) for the classifica- 

tion. 

3.1. Evaluation on AR face database 

The aligned AR database [23] contains 100 subjects (50 men 

and 50 women), with 14 different images per subject which totals 

to 1,400 images (excluding the occluded images) taken in two ses- 

sions. There are facial expression (neural, smile, anger, scream) and 

illumination challenges. We segment four essential facial regions 

with sizes of 39 × 51 (left eye and right eye), 30 × 60 (mouth), 

and 45 × 42 (nose). We conduct 10 runs for train-test procedure 

to get the average recognition rate for each partition. 

Table 1 presents the detailed experimental results and com- 

parison between our system and some of representative methods. 

We follow the same framework [22,26] for each method to ob- 

tain a fair comparison. We achieved 81.35% and 94.42% recognition 

accuracy using 2 and 5 training images per subject, respectively. 

The best results were obtained using the features of K-means, 

HOG, HOG (Gradient), and the proposed AE. The closest rates were 

achieved by Wang et al. [28] that are 75.5% (using 2 training and 

180 feature units), 94.71% (using 7 training images per subject and 

Table 1 

Comparison of face recognition rates on AR database 

with some of the representative methods and individ- 

ual feature learning methods that we use/propose in 

this paper. In the table T represents ‘Train’. 

Methods Acc. (%) 

2 Train 5 Train 

PCA [25] 34 .94 56 .13 

NPE [25] 40 .45 61 .12 

LPP [25] 55 .07 71 .58 

ONPP [25] 62 .20 81 .76 

EPP [25] 72 .45 86 .23 

Sparse filtering [26] +SVM 63 .14 84 .56 

Coates et al. [22] 65 .24 85 .56 

McDFR [27] 70 .92 91 .54 

Wang et al. [28] 75 .50 (94 .71) 7 T 

180 d. 540 d. 

K-means 75 .56 89 .40 

HOG 71 .96 89 .67 

HOGgrad 67 .32 86 .60 

AE ( 128 ) 74 .60 90 .13 

AE ( 256 ) 78 .07 91 .33 

AE ( 128 ) + K-means 75 .23 90 .73 

AE ( 256 ) + K-means 78 .40 91 .87 

HOG + HOGgrad 77 .20 91 .33 

K-means + HOG 82 .61 93 .91 

K-means + HOGgrad 83 .06 93 .42 

AE + HOG 82 .38 93 .40 

AE + HOGgrad 80 .76 92 .26 

McMmFL ( 128 ) 81 .35 94 .42 

McMmFL ( 256 ) 82 .12 95 .04 

Table 2 

Classification in AR database on missing infor- 

mation. 

Missing Region Acc. (%) with 5 Train 

Mouth 93 .69 

Nose 94 .06 

Right eye 91 .78 

Left eye 91 .91 

Mouth and nose 93 .00 

Right and left eye 81 .80 

Table 3 

Comparison of face recognition rates on AR database 

with respect to the dimension. 

Methods Acc. (%) with 5 Train 

32 d. 64 d. 128 d. 256 d. 

K-means 86 .93 88 .18 89 .40 89 .75 

Our AE 85 .67 88 .87 90 .13 91 .33 

McMmFL 93 .71 93 .89 94 .42 95 .04 

540 feature units). We also assess the feature dimensions of the K- 

means and AE. Using the 256 units for each method increased the 

recognition accuracy more than 0.6%. 

We assess the response of our method to missing facial re- 

gion/information as shown in Table 2 . Results show that eye re- 

gions contains the most effective, im portant, discriminative in- 

formation. Missing nose and mouth features decreases the rates 

around 1.5%, whereas missing both eyes decreases the original 

rates more than 20%. However, achieving 81.80% should not be un- 

derestimated using just nose and mouth regions in one hundred 

subjects. Shekhar et al. [18] obtained 75.0% recognition accuracy 

on sun-glass occluded database. Naseem et al. [29] achieved only 

26% correct classification rates on subjects that were wearing scarf 

that closes only mouth region. Table 3 shows the results using var- 

ious dimensions. 
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Table 4 

Noise test on AR . 

dim. SNR 

Original 20db 10db 

128 94 .42 93 .72 86 .86 

256 95 .04 94 .83 90 .15 

Table 5 

Learning on multi-region versus whole facial region on AR . 

Region Training 

Input dim. Feat. dim. 2 T 5 T 

Whole Face 8800 1028 68 .12 86 .26 

Multi-region 5679 512 75 .23 90 .73 

Table 6 

Comparison of face recognition rates on Yale 

database (See [31,32] for the abbreviations). 

Methods Recognition rate(%) 

2 T 4 T 8 T 

LocLDA [31] 55 .30 73 .80 - 

PCA [32] 42 .63 52 .86 64 .33 

LPP [32] 57 .19 75 .14 84 .11 

LPDP [32] 56 .74 78 .90 90 .67 

DLPP/MMC [32] 58 .19 78 .14 89 .56 

LDA [32] 45 .19 68 .95 83 .22 

SNPE1 [32] 66 .77 73 .61 79 .33 

DSNPE1 [32] 72 .33 86 .85 96 .00 

McDFR [27] 76 .58 89 .90 97 .78 

K-means 66 .2 82 .7 90 .22 

HOG 73 .18 84 .38 93 .78 

HOGgrad 69 .94 80 .13 89 .34 

AE 68 .87 83 .13 91 .12 

McMmFL 85 .34 93 .87 98 .97 

We also test our system on various signal-to-noise ratio (SNR). 

Table 4 shows the results using images with 20db and 10db SNR 

versus features with 128 and 256 dimensions. We use the same 

data trough all steps, i.e., in unsupervised and supervised learning 

and hand-crafted feature extraction stages. It is observed that the 

more dimensions the features, the more robust the recognition to 

the noise. 

To explore how the multi-region unsupervised learning extracts 

more representative features rather than the learning features from 

the whole facial region. The whole faces are in the sizes of 110 

× 80. Since the dimension is bigger than each facial region, we 

choose to learn 1028 dimensional features. Although the learned 

feature dimension of whole facial region is doubled, the multi- 

region technique using AE and K-means achieves much better 

recognition rates as shown in Table 5 . 

In terms of the execution time, the proposed AE method learns 

128 dimensional features in 334 s whereas the sparse coding 

method [30] extracts the same dimensional features in 2565 s for 

one eye region that is in 39 × 51 size. 

3.2. Face recognition on Yale database 

The Yale database contains 165 images with 15 subjects and 11 

frontal images per subject. Each image has one type of facial ex- 

pressions and configurations. Four essential facial regions are seg- 

mented as 40 × 60 (left eye and right eye), 32 × 46 (mouth), and 

60 × 48 (nose). The analysis of the experimental results on Yale 

database is shown in Table 6 . We compare the recognition accu- 

racy with various number of training images per subject. For ex- 

ample, K-means obtains 90.22% classification rate, whereas our AE 

achieves 91.12% when using 8 training images. In the same situa- 

Fig. 2. Some example images from the aligned PubFig83 database with various 

real-world changes on facial expression, pose, illumination, occlusion, resolution, 

etc. 

Table 7 

Analysis of face recognition rates 

on the PubFig83 database. The unit 

number is 96 for the unsupervised 

learning methods. 

Methods Acc. (%) 

90 Train 

McDFR [27] 90 .14 

Chiachia et al. [33] 92 .28 

McMmFL 95 .87 

tion, HOG and HOGgrad get 93.78% and 89.34%, respectively. Per- 

haps, the less number of training samples for the unsupervised 

learning methods (i.e., K-means and our AE) should be the rea- 

son of the lower classification rates than HOG features. When we 

combine the features from all techniques, the rate is increased 

to 98.97%. The closest rate to our results was achieved by Chen 

et al. [27] that is 97.78%. 

3.3. Face recognition on selected pubfig database 

Unlike the traditional controlled databases, unconstrained 

databases contain unrestricted varieties of expression, pose, 

lighting, occlusion, resolution, etc. We use the PubFig83 

database [33] with 83 subjects and at least 100 images per 

subject. Fig. 2 shows some random images from this data. We 

randomly select 90 images per subject as the training set, and the 

rest of the images are used as the testing set in the supervised 

learning step. The facial regions are in the sizes of 32 × 52 (eyes), 

48 × 76 (mouth), and 60 × 48 (nose). 

We present our recognition results on Table 7 . Chiachia et al. 

[33] and Chen et al. [27] achieved 92.28% and 90.14% recogni- 

tion rates, respectively. Chen et al. used the discriminative features 

learned from the supervised deep neural network. Our system out- 

performs and achieves 95.87% rate. This comparison also shows 

that each region and each model contribute unique and discrim- 

inative features. 

4. Conclusion 

We have presented the analysis on multi-channel multi-model 

feature learning for face recognition. Our experiments verify again 

that learning features from various techniques and regions boost 

the classification rates. Although recent convolutional neural net- 

work (CNN) techniques that have more than 6 convolutional layers 

may be the best candidate to achieve the state-of-the-art results on 

many large scale databases, they have some drawbacks to be used 

in all applications. One is their time consuming training process 
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that can end up days. Our new AE system can be applied to solve 

energy formulations with a time and cost efficient parallelized sys- 

tem that will be our one of future search. The other drawback of 

recent CNNs is that they need high number of samples to avoid 

over-fitting whereas it can be difficult to find many labeled sam- 

ples as in this paper. A remedy for this problem can be the trans- 

ferring the weights of a pre-trained CNN structure. 
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