
doi: 10.1016/j.procs.2016.05.490 

A Heuristic Algorithm for Multi-Site Computation

Offloading in Mobile Cloud Computing

Nur Idawati Md Enzai1∗and Maolin Tang2†

1 nuridawati.mdenzai@hdr.qut.edu.au
2 m.tang@qut.edu.au

Abstract
Due to limitation of mobile device in terms of battery life and processing power, Mobile Cloud
Computing (MCC) has become an attractive choice to leverage this shortcoming as the mobile
computation could be offloaded to the cloud, which is so-called mobile computation offloading.
Existing research on mobile computation offloading considers offloading a mobile computation
to a single cloud. However, in the real world a computation service could be provided by multiple
clouds and each computation service. Thus, a new and interesting research problem in mobile
computation offloading is how to select a computation service for each of the computation tasks
of a mobile computation such that the computation time of the mobile computation, the energy
consumption of the mobile device and the cost of using the computation services are minimized.
This is so called multi-site computation offloading in mobile cloud computing. In this paper we
formulate the multi-site computation offloading problem, propose a heuristic algorithm for the
multi-site computation offloading problem and evaluate the heuristic algorithm.

Keywords: Computation offloading, mobile cloud computing, scheduling, heuristic algorithm

1 Introduction

Cloud computing provides services to clients in forms of processing and storage without the need
for clients to install hardware on their side. As the number of mobile users increases, the concept
of Mobile Cloud Computing (MCC) emerges. Dinh, Lee, Niyato, and Wang define MCC as the
cloud provisioning of data processing and storage services for mobile users [6]. High processing
speed and powerful memory capacity of mobile device are not essential because clouds can
process all the complicated computing modules. Therefore, mobile device can take advantage
of cloud services to perform large amounts of computation (instructions), which is so called

∗N. I. Md Enzai is with School of Electrical Engineering and Computer Science, Queensland University of
Technology, 2 George Street, Brisbane, Australia and Faculty of Electrical Engineering, Universiti Teknologi
Mara (UiTM), 23000 Dungun Terengganu, Malaysia

†M. Tang is with School of Electrical Engineering and Computer Science, Queensland University of Technol-
ogy, 2 George Street, Brisbane, Australia

Procedia Computer Science

Volume 80, 2016, Pages 1232–1241

ICCS 2016. The International Conference on Computational
Science

1232 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.490&domain=pdf


Computation Offloading. Kumar and Lu prove that computation offloading is beneficial with
computation-intensive tasks [10].

To cloud improve the performance of a mobile computation, the tasks of the computation
could be offloaded to multiple clouds. A main motivation for multi-cloud is the ability to offer
different prices at different performances such as computation time [11]. Moreover, application
designers may aim to achieve different performance objectives (e.g. throughput, reliability,
cost). This can be achieved by utilizing the resources in cloud providers that have different
performance capacities and charged prices. Multi-cloud resource allocation also benefits from
the best combination of computation services from multi-cloud providers [14].

To our knowledge, most computation offloading works only consider one single cloud provider
[4, 5, 8, 9]. Wu and Huang proposed mobile cloud service composition and Heo, Kim, and Suh
distribute task sharing to multiple clouds to reduce delay for online gaming, but both works do
not address scheduling problem [7, 15]. Meanwhile other multi-cloud resource allocation and
scheduling works do not consider mobile device in the problem [3, 2, 13, 14]. Our work also
takes into account multiple objectives instead of dealing with them separately.

Even though multi-site computation offloading has been addressed, only one cloud provider
is considered. Even if multi-cloud is considered, only the assignment or mapping part is covered.
Whereas, in the case of computational tasks workflow, the tasks need to be scheduled as well.
Current multi-cloud offloading works also do not address energy, computation time and price
simultaneously.

We aim to assign the workflow of computational tasks to services provided by clouds or
mobile device as well as schedule them while minimizing overall mobile user requirements namely
energy, completion time and price. From the computational point of view, computational tasks
workflow assignment and scheduling problem is a typical constrained combinatorial optimization
problem. Even though clouds are assumed to always be able to cater the execution of tasks due
to its multi-tenancy features, mobile device on the other hand is assumed to be able to handle
only a particular number of tasks at a time.

An example of MCC application scenario is when a mobile user travels to foreign country
and lost his or her way. As Global Positioning System (GPS) alone may not be enough, the
user may capture short video or images and send them to the cloud to be processed to obtain
information of the whereabouts. This involves high processing power to extract features and
match with large repository [16]. The processed data will give the user some information on
his or her location. The user may also want to make use of social media for example automatic
blogging as addressed in [12] and translation services as provided by [1]. However, a mobile
user is constrained in terms of mobile device battery life, timing and monetary budget. Instead
of relying to a single cloud provider, a mobile user may include more cloud providers with more
services and varying capacities to choose from.

Since this is our preliminary research on the problem, we propose a heuristic algorithm to
further improve the quality of solutions. Different from the existing multi-site computation
offloading algorithm, this new heuristic algorithm also schedules the computational tasks at
cloud providers and mobile device as well as addresses three criteria namely energy consumption
of mobile device, tasks completion time and charged price at the same time.

The remainder of the paper is organized as follows. First of all, we formulate the research
problem in Section 2. After that, we present our heuristic algorithm and evaluation results
in Section 3 and Section 4, respectively. This research is finally concluded and future work is
discussed in Section 5.

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1233



2 Problem Formulation

Our goal is to assign all the computation tasks in the workflow of a mobile computation to
either a cloud that provides the corresponding computation service or the mobile device and
to schedule the computation tasks assigned to the clouds and mobile device such that the
following three objectives are minimized simultaneously: the energy consumption of the mobile
device, the total computation time, and the cloud computing cost incurred by the computation
offloading. Figure 2 is an instance of the workflow of a mobile computation which has 10
computation tasks and the control dependencies between them.

Figure 1: An instance of workflow

2.1 Inputs

1. A computation workflow is represented as a Directed Acyclic Graph (DAG): G = (V,E)
where V = {v1, v2, ..., vm} is a set of computation tasks, e =< vi, vj >∈ E if computation
task vi must have finished before computation task vj can start, where 1 ≤ i, j ≤ m.
A computation task vi is described as a 2-tuple, 〈datai, insti〉 where datai is the data
size to be processed by the computation task in megabytes and insti is the number of
instructions in the computation task in millions.

2. All available services for each of the computation tasks,
SV C = (svc11, svc12, ..., svc1k1

), (svc21, svc22, ..., svc2k2
), ..., (svcm1, svcm2, ..., svcmkm

)
where svcij represents the jth service of computation task vi and ki is the total number
of services of computation task vi.

3. A set of computation service providers for each computation task: P = {p0, p1, ..., pj , ..., pn}
where p0 represents the mobile device and {p1, ..., pj , ..., pn} represent the cloud providers.

4. All provided services by each provider
SV C = (svc01, svc02, ..., svc0k0

), (svc11, svc12, ..., svc1k1
), ..., (svcn1, svcn2, ..., svcnkn

), where
svcij represents the jth service of provider pi and ki is the total number of services of
provider pi.

5. Mobile device is connected to each cloud service provider through wireless link connection.
Mobile device also acts as a coordinator for communication between cloud services. A set
of links between mobile device and cloud services are represented as L = {l1, ..., lj , ..., ln}
where 1 ≤ j ≤ n and n represents number of cloud services.

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1234



2.2 Output

An assignment and scheduling plan X of computation tasks V such that the objective function
Obj(X) is maximal. Let X denote an assignment and scheduling plan for computation tasks
V as shown in Eq. 1 below:

X = ((M1, S1), (M2, S2), ..., (Mn, Sn)) (1)

where Mi represents the selected service for computation task vi and Si represents the starting
time of Mi.

Equation 2 gives the definition of the objective function value for X.

Obj(X) =

3∑
k=1

(
Qmax

k −Qk(X)

Qmax
k −Qmin

k

)
∗ wk (2)

where Qk(X) is the value of X for criterion k, Qmax
k and Qmin

k represent the possible
maximal and minimal values of criterion k respectively and wk is the weight for criterion k,
where 1 ≤ k ≤ 3 and w1 + w2 + w3 = 1.

2.3 Constraint

Workflow scheduling is subject to the control dependency constraint as in Equation 3 below:

FT (vi) ≤ ST (vj) (3)

where FT (vi) is the finish time of computation task vi, ST (vj) is the start time of computation
task vj , and < vi, vj >∈ V .

2.4 Criteria Values

There are two types of cost value for each criterion (energy, finishing time and price), namely
computation and communication. Computation corresponds to nodes in the workflow and
communication corresponds to edges in the workflow. Computation cost also includes offloading
cost if a computation task is assigned to a cloud service.

1. Computation Cost for a computation task vi at a service svcxy.

Offloading time OTixy is formulated as follows:

OTixy =
datai
bwsxy

(4)

where bwsxy is the bandwidth to send from mobile device to svcxy.
Therefore, computation time CTixy is formulated as follows:

CTixy =
insti

speedxy
+OTixy (5)

where speedxy is the processing speed of svcxy.

Offloading energy OEixy is formulated as follows:

OEixy = OTixy ∗ powers (6)

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1235



where powers represents power consumed by mobile device to send to cloud service
Therefore, computation energy CEixy is formulated as follows:

CEixy = powerxy ∗ CTixy +OEixy (7)

where powerxy = 0, if 1 ≤ x ≤ n with n number of providers or powerj = 10, if x = 0
because we are concerned with power consumption of mobile device only. Processing
power of svcxy is represented by powerxy.
Offloading price OPixy is charged by the receiving side of cloud service and is formulated
as follows:

OPixy =
datai
bwsxy

∗ pricexy (8)

Computation Price CPixy is formulated as follows:

CPixy = CPixy ∗ pricexy +OPixy (9)

if x = 0, pricexy = 0, therefore CPixy = 0

2. Communication cost is incurred when there exists an edge e between computation task vi
which is assigned to service svcx1y and computation task vj which is assigned to service
svcx2y where x1 �= x2 which means that they are assigned to different providers. The
computation task vi precedes computation task vj .

if x1 = 0 and 1 ≤ x2 ≤ n, Transmission Time TTij is formulated as follows:

TTij =
datai
bwsx2y

(10)

Therefore, Transmission Energy TEij is formulated as follows:

TEij = TTij ∗ powers (11)

Meanwhile, Transmission Price TPij is formulated as follows:

TPij = TTij ∗ pricex2 (12)

where pricexy is the price charged by svcxy

If x2 = 0 and 1 ≤ x1 ≤ n, Transmission Time TTij is formulated as follows:

TTij =
datai
bwrx1y

(13)

Therefore, Transmission Energy TEij is formulated as follows:

TEij = TTij ∗ powerr (14)

Meanwhile, Transmission Price TPij is formulated as follows: Meanwhile, Transmission
Price TPij is formulated as follows:

TPij = TTij ∗ pricex1
(15)

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1236



If 1 ≤ x1 ≤ n and 1 ≤ x2 ≤ n, Transmission time TTij is formulated as follows:

TTij =
datai
bwrx1y

+
datai
bwsx2y

(16)

Therefore, Transmission Energy TEij is formulated as follows:

TEij = (
datai
bwrx1y

) ∗ powerr + (
datai
bwsx2y

) ∗ powers (17)

Meanwhile, Transmission Price TPij is formulated as follows:

TPij = (
datai
bwrx1y

) ∗ pricex1 + (
datai
bwsx2y

) ∗ pricex2 (18)

3. Total Cost for an allocation or scheduling plan, X for n number of computational tasks of a
workflow G is derived from total cost for nodes (computation) and edges (communication):

Latest Finish Time, LFT (X) is formulated as follows:

LFT (X) = max
i∈vexit

(Fi) (19)

where vexit refers to exit computation tasks in the workflow G and Fi is the finishing time
of an exit task vi.

Energy consumed by mobile device, Energy(X) is formulated as follows:

Energy(X) =
∑

vi∈V,svcxy∈SV C

CEixy +
∑

vi∈V,vj∈V

TEij (20)

Price charged on the mobile device user, Price(X) is formulated as follows:

Price(X) =
∑

vi∈V,svcxy∈SV C

CPixy +
∑

vi∈V,vj∈V

TPij (21)

3 Algorithm Description

For the above formulated problem, a greedy hill climbing is developed, as presented in Al-
gorithm 1. The algorithm is a hill-climbing one. It begins with an initial assignment of all
computational tasks in a workflow at mobile device shown in Steps 1-2. All the tasks are sched-
uled at mobile device using critical path analysis. The objective function value for the initial

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1237



solution is calculated as in Equation 2.

1 Initialize a solution X;
2 Assign G to mobile device, p0;
3 Schedule G;
4 Calculate STs and FTs based on Equations 22, 23and 24;
5 Calculate LFT (X) based on Equation 19;
6 Calculate Energy(X) based on Equation 20;
7 Calculate Price(X) based on Equation 21;
8 Calculate Obj(X) based on Equation 2;
9 forall the vi ∈ V do

10 Ni = NEIGHBOUR(vi);
11 Generate new assignment for vi from Ni;
12 Reschedule G;
13 Recalculate STs and FTs;
14 Recalculate LFT (X);
15 Recalculate Energy(X);
16 Recalculate Price(X);
17 Recalculate Obj(X ′);
18 Select Ni such that Obj(X ′) is maximum;

19 end
20 if Obj(X ′) > Obj(X) then
21 Accept the solution changes;
22 X = X ′;
23 goto step 8

24 else
25 Stop search
26 end

Algorithm 1: Algorithm 1: Heuristic Algorithm

Formulation of start time, ST for computation task is as follows:

ST (ventry) = 0 (22)

ST (vi) = max
vp∈pred(vi)

(FT (vp)) (23)

Formulation of finish time, FT for computation task is as follows:

FT (vi) = maxvc∈succ(vi)
(TTvivc) + ST (vi) + CTixy (24)

where CTixy is the computation time of vi at svcxy where pred(vi) = parent of computation
task, vi and succ(vi) = child of computation task vi.

4 Evaluation

This section evaluates the performance of the heuristic algorithm (HA). In order to evaluate
the quality of the solutions generated by the HA, we also developed and implemented another
algorithm using Exhaustive Search (ES). It was guaranteed that the ES always generated an op-
timal solution. However, the computation of the ES increased exponentially when the problem
size increased.

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1238



4.1 Experimental Environment

Both the HA and the ES were implemented using C++ programming language. All the ex-
periments were conducted in a desktop computer with a 3.4 GHz Intel 4 Core(s) and an 8 GB
RAM.

4.2 Experimental Design

The computation time and quality of the results produced by the HA depend on the size of
the problem, which is dependent on two parameters. 1) The number of computational tasks
in the workflow. 2) The number of available services for each of the computational task. To
construct the test problem, a 10 tasks workflow was used (see Figure 2) as the building block.
10 workflows of 15 tasks were generated randomly. The values of attributes of workflow tasks
and cloud services are as shown in Table 1:

Attributes Range

Processing speed of cloud service 10,000 - 70,000 Million
Instructions Per Second (MIPS)

Bandwidth between mobile device 10 - 20 MBps
and cloud service
Output data size of computational task 10 - 20 MB

Table 1: Range of values of attributes

For mobile device, no price is charged, the Wi-Fi transmission power is 2.3 W and the
processing speed is fixed to 2000 MIPS.

4.3 Experimental Results

We randomly generated 10 test problems, each of which had 10 tasks and each of the compu-
tation tasks had 15 computation service providers. In order to test the quality of the solutions
generated by the HA, we also designed and implemented an optimal algorithm which uses
exhaustive search.

The HA and optimal algorithm were used to solve a number of randomly generated test
problems with 10 computational tasks. The computation times and the solutions are shown in
Table 2, where CT stands for Computation Time in seconds and LFT stands for Latest Finish
Time in seconds.

However, when we increase the number of services to 10 services, there are 1010 combinations
which could lead to very large computation time to generate all possible combinations and find
the best solution from among them. Therefore, we limit the computation time to one hour
which is equal to 3600 seconds and find the best solution within that amount of computation
time. The results are shown in Table 5. As can be seen from Table 5, Exhaustive Search
could find similar or better solution than Heuristic Algorithm for four out of ten workflows.
Meanwhile Table 6 shows that Exhaustive Search method could find better solution than HA
for one workflow only out of ten workflows. This may indicate that though Exhaustive Search
is capable to obtain better solution quality than our HA, but it takes very large computation
time especially when the problem size increases, in this case up to 15 services. On the other
hand, our HA could find good results less than one second. If the problem size is increased
further, Exhaustive Search may not be able to obtain better quality solutions than our HA for
all 10 randomly generated workflows within one hour.

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1239



Test Heuristic Algorithm Exhaustive Search
Index CT Obj(X) Price LFT Energy Obj(X) Price LFT Energy
1 0.049 0.971586 1.3287 10 40.5879 0.881012 1.8346 21 184.1550
2 0.042 0.963549 1.7680 8 55.4040 0.771434 0.8347 38 361.9988
3 0.063 0.980348 1.0765 8 42.0900 0.767645 0.8347 40 361.9988
4 0.050 0.975632 1.3287 8 40.9048 0.96318 0.9563 10 38.9690
5 0.053 0.977055 1.0765 9 42.0900 0.764327 0.8347 41 361.9988
6 0.056 0.977747 1.0765 7 41.8248 0.766674 0.8347 39 361.9988
7 0.048 0.973391 1.0765 7 41.5079 0.763215 0.8347 39 361.9988
8 0.063 0.970706 2.0825 7 38.5090 0.76881 0.8347 39 361.9988
9 0.069 0.967394 2.0825 11 38.5090 0.761059 0.8347 43 361.9988
10 0.058 0.974327 1.0765 9 42.0900 0.762212 0.8347 41 361.9988

Table 2: Comparison results and computation time of HA and Exhaustive Search of 10 tasks
and 15 services test problem

Figure 2: Effect of number of services

5 Conclusion and Future Work

This paper has formulated a new mobile computation offloading problem, namely, multi-site
computation offloading in mobile cloud computing, and transformed the new computation of-
floading problem into a multi-objective combinatorial optimization problem. The combinato-
rial optimization problem has three objectives: (1) to minimize the energy consumption of the
mobile device; (2) to minimize the computation time; (3) to minimize the total cost of the
computation incurred by cloud computing. The multi-objective optimization problem has been
transformed into a weighted single-objective optimization problem and a heuristic algorithm
has been proposed for solving the weighted single-objective optimization problem. The pro-
posed heuristic algorithm has been evaluated by experiments and the experimental results have
shown that the heuristic algorithm can produce good quality solutions in a reasonable time for
those test problems.

This is the first attempt on the multi-size computation offloading problem in mobile cloud
computing. In the future we shall study the scalability of the heuristic algorithm. We shall also

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1240



design a genetic algorithm for the problem.

References

[1] One hour translation: translation services. [online], January 2016. https://www.

onehourtranslation.com/.

[2] Luiz F Bittencourt, Edmundo RM Madeira, and Nelson LS Da Fonseca. Scheduling in hybrid
clouds. Communications Magazine, IEEE, 50(9):42–47, 2012.

[3] Luiz Fernando Bittencourt and Edmundo Roberto Mauro Madeira. Hcoc: a cost optimization
algorithm for workflow scheduling in hybrid clouds. Journal of Internet Services and Applications,
2(3):207–227, 2011.

[4] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proceedings of the sixth conference on
Computer systems, pages 301–314. ACM, 2011.

[5] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ranveer
Chandra, and Paramvir Bahl. Maui: making smartphones last longer with code offload. In
Proceedings of the 8th international conference on Mobile systems, applications, and services, pages
49–62. ACM, 2010.

[6] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud comput-
ing: architecture, applications, and approaches. Wireless communications and mobile computing,
13(18):1587–1611, 2013.

[7] Yoonseok Heo, Taeseop Kim, and Doug Young Suh. Video streaming for multi-cloud game. In
Advances in Multimedia Information Processing–PCM 2015, pages 275–284. Springer, 2015.

[8] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: a computation offload-
ing framework for smartphones. In Mobile Computing, Applications, and Services, pages 59–79.
Springer, 2010.

[9] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading. In INFOCOM,
2012 Proceedings IEEE, pages 945–953. IEEE, 2012.

[10] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can offloading compu-
tation save energy? Computer, (4):51–56, 2010.

[11] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages
1–14. ACM, 2010.

[12] Hongzhi Li and Xian-Sheng Hua. Melog: mobile experience sharing through automatic multimedia
blogging. In Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media computing,
pages 19–24. ACM, 2010.

[13] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-efficient scheduling heuris-
tics for deadline constrained workloads on hybrid clouds. In Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, pages 320–327. IEEE, 2011.

[14] Simon S Woo and Jelena Mirkovic. Optimal application allocation on multiple public clouds.
Computer Networks, 68:138–148, 2014.

[15] Huijun Wu and Dijiang Huang. Mosec: Mobile-cloud service composition. In Mobile Cloud
Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE International Conference
on, pages 177–182. IEEE, 2015.

[16] Zhi Ye, Xin Chen, and Zhu Li. Video based mobile location search with large set of sift points in
cloud. In Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media computing,
pages 25–30. ACM, 2010.

A Heuristic Algorithm for Multi-Site Computation Offloading · · · N. I. Md Enzai and M. Tang

1241


