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ABSTRACT

This article presents a cloud computing adoption framework (CCAF) security suitable for business
clouds. CCAF multilayered security is based on the development and integration of three major security
technologies: firewall, identity management, and encryption based on the development of enterprise
file sync and share technologies. This article presents the vision, related works, and views on security
framework. Core technologies have been explained in detail, and experiments were designed to
demonstrate the robustness of the CCAF multilayered security. In penetration testing, CCAF multilayered
security could detect and block 99.95% viruses and trojans, and could achieve >85% of blocking for 100
h of continuous attack. Detection and blocking took <0.012 s/trojan or virus. A full CCAF multilayered
security protection could block all SQL (structured query language) injection, providing real protection
to data. CCAF multilayered security did not report any false alarm. All F-measures for CCAF test results
were >99.75%. The mechanism of blending of CCAF multilayered security with policy, real services, and
business activities has been illustrated. Research contributions have been justified and CCAF multilayered
security can be beneficial for volume, velocity, and veracity of big data services operated in the cloud.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

and services with up-to-date patches and policies. A risk-based ap-
proach to the development of a security program that recognizes

Security, trust, and privacy always remain challenges for orga-
nizations that adopt cloud computing and big data. Although there
are demands for businesses to move their data to the cloud and
centralize management for data centers, services and applications
are designed to reduce cost and increase operational efficiency.
System design and deployment based on current security practices
should be simultaneously enforced to ensure compliance of all data
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(and funds) appropriate controls will ensure protection of all users
and confidentiality, integrity, and availability of data.

Some researchers have adopted a framework approach that al-
lows organizations to follow guidelines, policies, and standards.
For example, Zhang et al. [1] propose a usage-based security
framework (UBSF), which can consolidate guidelines and policies
with their framework, architecture, and digital certificates. Tak-
abi et al. [2] describe a comprehensive security framework via a
model that explains the method of working with different service
integrators and service providers. Zia and Zomaya [3] present a
wireless sensor network model with algorithms and a software en-
gineering approach. All these frameworks have recommendations
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on guidelines to use. However, there are no details on the actual use
of these proposals and also no clear evidence of adoption of these
proposals to business clouds, whose requirements include ease of
use, adaptability, best practice compliant, and support by large-
scale experiments such as penetration testing to validate robust-
ness of such proposals [4,5]. Indeed, without such a clear “line of
sight” between conception and implementation, such frameworks
are unlikely to achieve operational status.

The cloud computing adoption framework (CCAF) has been de-
veloped to meet the requirements of business clouds and ensure
that all implementations and service deliveries overcome all the
technical challenges. Real-life case studies show how different
cloud computing designs and their development and service deliv-
ery overcome both technical and organizational challenges. In the
first example, CCAF was the framework used to develop cloud stor-
age and bioinformatics solutions for biomedical scientists based
in the United Kingdom at Guy’s Hospital and King’s College Lon-
don [6]. This framework ensured the deliveries of storage services
to back up thousands of terabyte-sized medical data. Bioinformat-
ics services can simulate DNAs, proteins, genes, tumors, and organs
of the human body. The use of this security is limited to authenti-
cation, encryption, and users with authorized access. In the second
example, CCAF is used to provide guidelines for financial model-
ing, so that the best practice and call prices can be computed with
respect to the change of risks. Advanced computational techniques
have been used to calculate risks and market volatility [7]. Security
is limited to password authentication and users with authorized
access and biometrics checks for financial simulations. In the third
example, investigations of hacking methods have been studied and
made as part of prototype requirements. User requirement and lit-
erature review have identified factors for a successful implementa-
tion. All the collected and synthesized data have been instrumental
in the development of CCAF Version 1.1, which emphasizes on the
security policies, recommendations, techniques, and technologies
to be updated in the framework [8]. In the aforementioned exam-
ples, a more comprehensive cloud security solution is required to
ensure robustness and resistance of the services to attack, hack-
ing, and unauthorized attempts to gain access. More experiments
and simulations are required to validate the robustness and ef-
fectiveness of the proposed security framework. This motivates
us to consolidate our CCAF framework by providing a holistic ap-
proach involved with service integration, OpenStack security, and
multilayered security to enhance security for business clouds. An
integrated security framework is proposed for business clouds to
have the multilayered security in place and the large-scale pen-
etration testing and experiments to validate the robustness and
effectiveness of our approach. All these proofs of concepts and
lessons learned are important to big data in the cloud as follows.
First, it ensures that all the cloud services are safe and secure, in-
cluding the incoming and outgoing data of the organizational data
centers hosted on hundreds and thousands of virtual machines
(VMs). Second, it ensures that large amount of data and large data
sets can be processed and analyzed safely in the cloud, which also
explains the necessity of large-scale penetration testing to validate
the framework.

The organization of this article is as follows: Section 2 presents
the literature for security. Section 3 describes our core security
technology for enterprise file sync and share (EFSS), including the
architecture and layered components. Section 4 explains the mul-
tilayered approach with core technologies and results from large-
scale experiments for penetration testing, SQL (structured query
language) injection, and data scanning. Section 5 illustrates top-
ics of discussion, and Section 6 summarizes conclusion and future
work.

2. Literature

The following are the different types of security frameworks
proposed so far. Zhang et al. [1] propose their UBSF for collab-
orative computing systems. They explain their motivation, tech-
niques used, architecture, and conditions for experiments. The
decision on the use of UBSF is made based on subjects, objects,
authorization, obligations, and conditions. With support from lit-
erature and hypotheses, they explain their model’s mechanism of
work in collaborative ways. The usage-based authorization archi-
tecture uses sensors, directory service, policy decision point (PDP),
and usage monitor (UM) to functions. Steps have been described
to justify the effective function of UBSF. In order to assist UBSF,
Zhang et al. [1] include a prototype system architecture. They use
OpenLDAP and OpenSSL to enforce security. They have three types
of digital certificates: user, attribute repository (AR), and resource
provider (RP). They explain the use of these certificates in their
workflow of security processes. They also adopt extensible access
control markup language (XACML) to enforce policy specification,
which aligns with the UBSF approach for security. Ko et al. [9]
investigate trust for cloud computing and propose a TrustCloud
framework that focused on accountability. It has three layers:
(1) system layer that covers all the underlying hardware and plat-
form; (2) data layer that contains the data for the work; and
(3) workflow layer that uses workflow to execute all the services
and requests. In addition, two nonfunctional layers are associ-
ated with these three layers. The first layer is laws and regula-
tions, which ensures all services follow the legal requirements of
the country in which the service was delivered. The second layer
is policies, which are the consolidated service-level agreements
and the best practice approach. This framework is considered as a
conceptual framework focused on the recommendations and best
practice, as they do not include quantitative analyses, computa-
tional demonstrations, and case studies. Pal et al. [ 10] present their
cloud security that has emphasized on the architecture and steps
of interactions between different services. They explain the role of
each major user, their agents, and all the 15 steps involved. They
use unified modeling language (UML) diagram to justify their ap-
proach and architecture to explain the relationship between the
user, provider, proxy server, user agent, and provider agent. They
present two algorithms and experimental results. They validate
their approach using “trust value updation”. However, their as-
sumption is based on the probabilities of 0.8 and 0.2 of having
a trusted and nontrusted user, respectively. There is no evidence
supporting this, and they do not use any reference or survey to
justify their research. This also depends on the sample size, demo-
graphics, and the country in which the research was conducted.
The National Institute of Standards and Technology (NIST) [11]
framework provides a common language for establishing cyber-
security. The core NIST framework provides a set of activities to
identify, protect, detect, respond, and recover without more spe-
cific examples and case studies implementing a full-security solu-
tion. However, our work on CCAF extends to detailed activities and
implementation on security for cloud computing and big data.

All these examples have security framework. However, the
proposals described above do not demonstrate their contributions
to business clouds. In other words, when businesses adopt cloud
computing solution, they should be able to provide architecture,
approaches for their framework, and steps and experiments to
support the robustness and validity of the framework. Our proposal
on CCAF provides details on core technologies in Section 3, and the
theoretical framework mapping of core technologies is shown in
Section 4 with experimental results validating our framework. Key
topics, including security policy, business and security alignment,
framework and core technology integration, relation of the big data
in cloud, and overall contributions with limitation, are discussed
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in Section 5. Finally, research conclusion and future work are
discussed in Section 6.

3. Core technologies

Prior to the introduction of CCAF, this section uses a concrete
instance of the CCAF to be an example to explain CCAF core tech-
nologies and implementations. In order to meet the requirements
of moving big data in a semipublic business cloud, an enterprise
cloud storage application - the semipublic EFSS service - is chosen
to be the CCAF instance to explain the mechanism of protection of
enormous enterprise files (a kind of unstructured big data) by CCAF
in a business cloud environment.

In order to provide enterprises with the convenient cloud file
sync and share service while taking enterprise concerns, such as se-
curity, compliance, and regulation, into consideration, the service
was been deployed by either on-premise or hybrid cloud model to
target high-value EFSS market [ 12-14]. Existing EFSS systems fo-
cus on system security and manageability, which encrypt data on
transfer and at rest, and also support system audit trail. As part of
the core technologies of the CCAF framework, important EFSS se-
curity issues should be well addressed, particularly for businesses
with critical data services. The following are the EFSS security is-
sues:

(1) Employee Privacy: In order to prevent data leak, enterprise
data are usually encrypted in existing EFSS systems. However,
most existing EFSS systems only use single master key to
encrypt entire data space, which can prevent enterprise data
leaks from outside but not from inside. For example, an
EFSS system administrator (information technology (IT) or
management information system (MIS) in the enterprise) can
spy enterprise-sensitive data by self-granted authority.

(2) Share Link: The share link is widely adopted to share data with
business partners who do not have an EFSS system account.
From enterprise’s perspective, the share link is convenient, but
not secure, as it involves new security loophole that might
be used to leak data to unauthorized domain without leaving
enough audit trail [15]

(3) Cloud File Synchronization: The nature of the cloud file
synchronization is a security loophole to enterprises. It
synchronizes shared and collaborative enterprise data from
a managed EFSS service to employees’ endpoint devices, and
enterprises then have less/no control on the synchronized
enterprise data. The synchronized enterprise data can then be
distributed from the endpoint devices to other unauthorized
domains via e-mail, USB disk, and other communication
interfaces available on the endpoint devices.

Enterprise Directory Integration: In order to enable single

sign-on (SSO) in the enterprise, most existing EFSS systems, via

direct network connection, integrate its authentication with
existing enterprise directory (e.g., active directory (AD) and
lightweight directory authentication protocol (LDAP)). It also
introduces two new security issues. First, the EFSS system can
access employees’ profiles available in enterprise directories.

Second, the EFSS system can log employees’ credential infor-

mation during authentication, as their usernames and pass-

words pass through the EFSS system to enterprise directory to
conduct the actual authentication. Both cases provide EFSS sys-
tem with chances to obtain authorized information.

=

An integrated security approach, which integrates several key
components to form a scalable secure EFSS system to address
the enterprises’ concerns by leveraging the on-premise OpenStack
infrastructure [ 16], is introduced in the following sections. EFSS has
been integrated with the CCAF framework as an overarching model
for cloud security in businesses.

Architecture and Design of the Integrated Security Approach

The key components of the secure EFSS system are virtual
appliances that can be provisioned and run on the OpenStack
compute service, Nova, and the data (e.g., metadata in database and
uploaded enterprise files in user storage space) generated by these
components are stored in the OpenStack storage services: Cinder
and Swift for block storage and object storage, respectively, where
the OpenStack storage services are managed by the storage system
controlled by the enterprise. The separation of the compute and
storage makes the Secure EFSS system is scalable and more secure
than existing EFSS systems.

All key components/virtual appliances, including load balancer,
firewall, virtual file system (VFS) service, directory service, log
service, message queue (MQ) service, and database service, are
provisioned from an integrated image stored in the OpenStack
VM image management service, Glance, to form the secure EFSS
system as shown in Fig. 1. The VFS service of the proposed secure
EFSS system provides clients with a representational state transfer
(REST) application programming interfaces (API) set to manipulate
a directory structure and files of a VFS. The back end of the
VES is the database service, which stores metadata to represent
the directory structure and the nodes’ attributes of the directory
structure. Enterprise files uploaded by clients are leaf nodes of
the directory structure, and they have a node attribute to indicate
encrypted objects in the Swift. Because no data are stored in the
VEFS service, it can dynamically provision more VFS VMs to fulfill
the increasing demand of EFSS system in a scalable and distributed
manner.

The interactions of the REST key components and their benefit
to security and scalability are shown in Fig. 1. The load balancer
is located in the demilitarized zone (DMZ), which dynamically
distributes every request made by the sandbox-based cloud file
sync app to one of the VFS VMs for handling the requests
according to the loads on it for maximizing the overall VFS
service performance. Moreover, a firewall is located between the
load balancer and the VES service to form a secure deployment
scheme, which defends external direct network attacks for internal
services. Once the VFS service receives a request, it first sends the
authentication information of the request to the directory service
to check the identity and authority of the request. Subsequently,
the VFS service handles the request and logs related audit trails
to the log service. During VFS service, the overall service status,
including concurrent serving requests, CPU, and memory usages,
is reported to MQ service, which actively calls OpenStack compute
service API to provision and de-provision VFS VM to handle the
peak and idle situations of the secure EFSS system.

Designs of key components of the proposed integrated security
approach are introduced in the following subsections, which
include user storage space modeling, distinct share link, zero-
knowledge cloud scale file sharing system, sandbox-based cloud
file synchronization, out-of-band authentication, and a NoSQL
adoption consideration.

3.1. User storage space modeling

In order to ensure scalability of the system, metadata generated
by key components, particularly by the VFS service, are stored
in a MongoDB cluster, which is a document-based NoSQL
database that increases scalability by sacrificing the relationship
between documents [17,18]. Furthermore, user accounts are
used as database sharding key to shard the user storage space
to mitigate the MongoDB scalability limitation, which affects
database performance when too many documents are inserted into
adata collection process. Then, every user has a directory structure
formed by metadata stored in his/her own data collection, which
physically isolates the user’s metadata. Therefore, every user’s
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Fig. 1. Secure EFSS system architecture in the OpenStack.

metadata can be protected by owner’s encryption key without
leaking of sensitive metadata when database service is hacked.

3.2. Distinct share link

Sharing of cloud files between an enterprise and external
business partners can be easily performed using a share link.
However, it is insecure as web crawlers can simply download it by
scanning e-mails and social network accounts [19]. This problem
can be overcome by a distinct share link that secures sharing of
cloud files and builds a secure sharing relationship between two
user storage spaces, which are isolated data collections sharded
from the user storage space [20].

The distinct share link is an additional layer associated with per-
missions, identities, and access conditions. It encapsulates a share
link, decreases diffusibility of the share link, adds traceability as
well as controllability to the share link, and then sends it to recip-
ients with attached identities. A recipient trying to gain access to
a distinct share link has to input his/her identities for access con-
dition check. After passing all checks, the distinct share link layer
prepares an ephemeral representation to access the share link.
Because every distinct share link access requires identity (trace-
ability) that is controlled by permissions and access conditions
(controllability), its diffusibility and convenience are decreased.

In order to overcome this problem, a recipient-defined identity
function is introduced, which allows the recipient to define
own identity (e.g., password and secret code) for each received
distinct share link. Hence, the recipient can define easy-to-
remember identities to received distinct share links. It also resolves
the problem of share link identity management, that is, share
links with different identities (e.g., passwords) are too much
information to be remembered by a single recipient.

In addition to the aforementioned benefits, the distinct share
link further supports sandbox feature for creating a collaborative
workspace with external business partners, where every individual
has own permission, and any inappropriate action (e.g., delete
all files) can be performed only in a specific shared folder, but
not in the entire personal user storage space. It is worth noting
that with cloud storage, any performed inappropriate action can

be undone, for example, previous cloud file version and deleted
shared files can be recovered from file change history and recycle
bin, respectively.

The distinct share link is also used to implement the internal
cloud file sharing in the proposed secure EFSS by building a secure
sharing relationship between two isolated user storage spaces
(data collections). Fig. 2 depicts the mechanism of building the
internal cloud file sharing by distinct share link. The top-left part
of the figure presents two internal cloud file sharing relationships:
(1) users A and C receive an object shared from user B and (2) user
B receives an object shared from user C. The callout box shown
in the top-right part of the figure further explains the sharing
relationships associated with the object (ID: WXYZ) in the former
sharing relationship. It shows that three distinct share links are
used to share the object (ID: WXYZ) with the recipients: user A,
user B, and an e-mail address. Moreover, all the three distinct
share links can be parsed into three parts: (1) the service endpoint
(e.g., https://distinct.url/); (2) the UID part for identifying user
storage space, that is, location of the data collection; and (3) the SID
part for identifying the metadata (table in Fig. 2), which contains
information about the sharing relationship in the located data
collection. After retrieving the metadata, the “ObjectID” can be
used to refer to either a shared object or share link point to a shared
object.

The aforementioned external and internal sharing cases have
similar distinct share link creation and access processes. The key
difference between the two cases is the identity delivery process.
In external sharing, the identity is first defined by the distinct share
link creator, subsequently it is delivered by oral or identity itself
(e.g., e-mail), and finally it might be redefined by the recipient.
The internal sharing automatically performs similar processes by
system with the following steps: (1) generates random keys as
identities in the sharing source, (2) encrypts generated identities
by arecipient’s public key, and (3) delivers the encrypted identities
from the sharing source to the sharing destination for further use.

3.3. Zero-knowledge cloud scale file sharing system

All cloud files are stream-encrypted by different random
symmetric keys and stored in the Swift object storage when
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The shared object ID (ObjectID) can be then used to refer to a real record in user B space metadata.

Fig. 2. Example of a distinct share link.

uploading to the proposed secure EFSS system. A zero-knowledge
cloud scale file sharing system is introduced herein, which
leverages introduced stacks, including user storage space modeling
technique and distinct share link. This system also introduces a
new key cascading model [21,22], which manages the random
symmetric keys crossing loosely coupled domains and further
protects cloud files from internal/external unauthorized access
attempts.

In order to develop a zero-knowledge cloud scale file sharing

system, the following key enterprise security concerns and
scalability and manageability issues of the modern cloud system
are considered:

(1) Zero-knowledge System: Zero-knowledge means that the

system knows nothing about the information provided by
users, which can be contents of cloud files, metadata of user
storage spaces, and encryption keys, including passwords
that protect cloud files and user storage spaces. Finally, yet
importantly, the system must apply to the entire life cycle of
data. Therefore, the zero-knowledge cloud scale file sharing
system is formed by stacking multiple distinct domains with
own services, and each of the distinct domain serves as
an additional complementary security layer to its preceding
domain. As shown in Figs. 3 and 4, these domains represent
stacking relationships of personal cloud file and shard cloud file
situations, respectively. In Fig. 3, the lowest OpenStack domain
only provides cloud file storage capability; subsequently, the
succeeding VFS service domain servers cloud file metadata
management functions and add additional stream cloud file
and metadata encryption capabilities. Finally, the topmost
directory service domain incorporates the user domain to
protect the encryption keys used in cloud file and metadata
protections. It is worth noting in the aforementioned stacking
relationship that the user domain is not in cyberspace, rather
it is in the user’s brain, that is, only the user knows his/her
own password, thereby rendering an added advantage to the
zero-knowledge system. Similarly, Fig. 4 further establishes a
sibling stacking relationship with Fig. 3 to isolate the users’
personal VFS service domains (see distinct personal databases
of User1 and User2 in Fig. 4). This further makes the zero-
knowledge system work in a multitenant cloud environment.

As the sibling stacking relationship is a one-way relationship,
users are needless to worry about their cloud files when
another user’s storage space was conquered, that is, a lower
layer cannot use existing information to derive upper-layer
information. Finally, this system also guarantees users have no
knowledge about each other.

(2) Security Compliance: In addition to data encryption, enter-

prise security compliance must also be capable of password
history management. For example, when an employee opts to
change his/her password every quarter, the new password can-
not be similar to any passwords used in the previous three
quarters. The zero-knowledge cloud scale file sharing system
abstracts a directory service domain to fulfill the requirement
of password history management (Figs. 3 and 4). For every
password change, the directory service domain will automat-
ically adjust its internal relationship to maintain consistency
with the stacking relationship without affecting the lower do-
mains. In other words, the zero-knowledge cloud scale file
sharing system is also a security compliance friendly system.

(3) Atomic Objects and Systems: Considering the complex cloud

environment, making all objects atomic is a good idea. In
the zero-knowledge cloud scale file sharing system, every
service in the domains and every encrypted cloud file is an
atomic unit, which can be managed (e.g., create, update, and
delete) regardless of their dependencies with other atomic
units. In order to achieve atomicity, the data are separated
from computation logic. As mentioned earlier, metadata of a
user are aggregated to form a personal database, and because
of choosing MongoDB, the personal database is physically a
set of manageable files stored in block storage. Furthermore,
cloud files are themselves atomic and can be directly stored
in object storage. However, managing an encrypted cloud file
as an atomic unit is difficult, as the encryption key of the
cloud file has to be managed as well. Therefore, in order to
achieve atomicity, it encrypts the encryption key of the cloud
file, combines the encrypted encryption key and the encrypted
cloud file to form a manageable encrypted object to replace
the original plaintext cloud file, and allows the encryption key
of the encrypted cloud file to be managed by the VFS service
domain. As shown in the dotted-line block in Figs. 3 and 4,
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Fig. 3. Personal file encryption key management concept.

the encrypted cloud file (File) and its encryption key (File_Key)
are combined as an encrypted object stored in the OpenStack
Swift object storage. The encrypted object thus becomes an
atomic unit, which can be migrated, backed up, and managed
in a cloud manner. The remaining parts are computation logics
that can be categorized by domains (e.g., Directory Service
and VFS service domains have their own computation logics).
Different types of computation logics can be implemented
in VMs or container images that can be managed by the
OpenStack Glance image service as atomic units and hosted on
the OpenStack Nova cloud computing environment.

(4) API Integration: All domains in the zero-knowledge cloud
scale file sharing system are integrated by REST API, which pro-
vides flexible services in domains by developing and growing
themselves. With such an integration, every domain need to fo-
cus only on satisfying contracts and/or service level agreement
(SLA) with other domains (e.g., maintaining 99.99% service
availability or guaranteeing API calling 300 times per minute).
In addition to interdomain integration, the VFS service domain
also uses REST API to implement the integration of distinct user
storage spaces. Particularly, it uses distinct share link to se-
curely share cloud files from one user storage space to that of
the other user (see the dotted-line arrow in Fig. 4). It forms a
loosely coupled sharing relationship, which is particularly suit-
able for sharing cloud files.

Detailed designs and implementation of the zero-knowledge
cloud scale file sharing system will be discussed below. The
core technology that integrates all the aforementioned key
considerations is a key cascading model. Figs. 3 and 4 are used as
examples to assist the follow-up explanations.

Fig. 3 is the key management concept of the personal storage
space, where the solid-line arrows indicate encryption/decryption
directions, which are shown by the following two examples. In
the first example (a symmetric key case), “Secret” pointing to
“Pri_User1_Key” has two meanings: (1) the “Pri_User1_Key” is
encrypted by the (hashed) “Secret” and (2) the “Pri_User1_Key”
is capable of being decrypted by the (hashed) “Secret”. In this
example, the “Pri_User1_Key” is the private key of User1 and
the “Secret” could be any information managed by the directory
service. It is important to note that keys in the key cascading model
could point to the “Secret”, which is hashed before being used
to encrypt other keys. In another example (an asymmetric key
case), the “Pri_User1_Key” pointing to the “Obj_Key” has only one
meaning, that is, the “Obj_Key” is capable of being decrypted by the

Directory Service Domain User Domain
Directory Service
Scrypt Userl_Pwd in Userl’s mind.
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(Protected by hashed User1_Pwd)

VFS Service Domain

Pri_User1_Key
(Encrypted by hashed Secret)

User1’s Personal Database /
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Fig. 4. Shared file encryption key management concept.

“Pri_User1_Key”, because the “Obj_Key” is originally encrypted by
the public key of User1. Fig. 4 is the key management concept of
the shared storage space, where the solid- and dotted-line arrows
have the same definition with the solid-line arrows in Fig. 3.

As shown in Fig. 3, the key cascading relationship of the
personal storage space crosses four distinct domains, starting from
the user domain, passes through the directory service and VFS
service domains, and ends in the OpenStack domain. Starting at
the tail of the key cascading relationship, in order to obtain the
plaintext “File”, the random symmetric key, “File_Key” is required
to decrypt the encrypted “File”. The “File_Key” can be further
decrypted by another random symmetric key “Obj_Key”, which is
encrypted by User1’s public key in the VFS service domain. In order
to prevent the “File_Key” from exposing risk during sharing or
changing ownership, User1’s public key does not directly encrypt
the “File_Key”, but rather encrypts the “Obj_Key”, which protects
the “File_Key"”. Thus, User1’s public key can protect the “File_Key"
indirectly, and the plaintext “File_Key” will be required only when
trying to gain access to the “File”. This property can be used to
combine the encrypted “File_Key” and the encrypted “File” to form
an encrypted object (atomic unit) to be stored in the Swift object
storage, which is also beneficial for object migration, replication,
and management.

Reconsidering the key cascading relationship, User1’s private
key, “Pri_User1_Key"” is the entry of the VFS service domain, which
is formed by metadata stored in the user’s personal data collection.
As the entire VFS service domain may be conquered, another key,
which is not available in the VFS service domain, must be chosen
to protect “Pri_User1_Key”. Because of the nature of authentication
and authorization always take place before accessing the VFS
service domain, the implementation chooses the “Secret” in the
directory service domain to protect “Pri_User1_Key.” The best
practice of choosing suitable information from the directory
service domain to be the “Secret” is to choose the information
whose changing frequency conforms to enterprise compliances,
because “Pri_User1_Key” has to be reencrypted together with the
changing of the “Secret”. Finally, User1’s password is used to
protect the “Secret”. In the key cascading model, User1’s password
is the only information not available in the cyberspace, as the hash
of the password has already qualified to be used to protect the
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The key managementalgorithm for sharing a personal file:

STEP 1.Obtain Obj_Key:
/I The User_Pwd is the user’s password.
Secret&User_Pwd (encrypted Secret),
// The Pri_User_Key is the user’s private key.
Pri_User_Key€Secret (encrypted Pri_User_Key);
Obj_Key < Pri_User_Key (encrypted Obj_Key);

STEP 2.Obtain Share_Key:
IF Share_Key for the share does not exist THEN
// Generate a new Share Key.
Share_Key<Share Key Gen();

STEP 3.Encrypt Obj_Key by Share_Key:
encryptedObj_Key < Share_Key (Obj_Key);,
store the encrypted Obj_Key into personal database to replace the
encrypted Obj_Key in SETP 1;

STEP 4.Encrypt Share_Key by Public Key:
// The Pub_User_Key is the user public key.
encryptedShare_Key < Pub_User_Key (Share_Key);
SWITCH (identity)
CASE ‘owner’:
store the encrypted Share_Key into personal database with
the encrypted Obj_Key as the share entry;
CASE ‘recipient”:
store the encrypted Share_Key into personal database as the
share entry;
END

Fig. 5. Key management algorithm for sharing a personal file.

“Secret”. However, in our implementation, the password is hashed
by the Scrypt [23], which generates different hash values every
time, demanding us to choose another suitable “Secret” that is
associated with the password.

In contrast to the key management concept of the personal
storage space, the key management concept of the shared storage
space, as shown in Fig. 4, adds another key cascading relationship
between sharing individuals’ private keys and object key of the
shared object. In order to add another key cascading relationship
among sharing individuals’ data collections, a symmetric key
“Share_Key” is inserted between the individuals’ private keys
(e.g., “Pri_User1_Key” and User2's private key) and the “Obj_Key".
As shown by the dotted-line arrow in Fig. 4, User2 is can use the
“Share_Key” as part of the identity through the distinct share link
to gain access to User1’s shared objects (e.g., “File™).

In order to represent the aforementioned explanations for-
mally, the key management algorithms used for sharing a personal
file and stopping a sharing process are described in Figs. 5 and 6,
respectively.

3.4. Sandbox-based cloud file synchronization

The EFSS service is a convenient way of collaboration in an en-
terprise. However, most IT and MIS do not prefer to provide EFSS
service because of the fact that, once a cloud file is shared and
synchronized with an employee’s client device, it is no longer un-
der the control of the enterprise. In order to provide an integrated
secure EFSS approach, a Sandbox-based Cloud File Sync App is
proposed [24,25]. In contrast to the traditional cloud file synchro-
nization tool, the sandbox-based cloud file sync app creates a man-
aged sandbox in the operating system’s (O/S) file and a local sync
folder inside the sandbox, and then synchronizes the cloud file be-
tween the local sync folder and user storage space in the secure
EFSS system. As only authorized file system operations can be per-
formed in the sandbox, the O/S and applications executed on top
of the O/S are unable to read or update the sandbox. This property
makes the sandbox-based cloud file sync app capable of actively

The key managementalgorithm for stopping a share:

STEP 1.0Obtain Obj_Key:
SecretéUser_Pwd (encrypted Secrer);
Pri_User_Key€Secret (encrypted Pri_User_Key);
Share_Key < Pri_User_Key (encrypted Share_Key);
Obj_Key<Share_Key (encrypted Obj_Key);

STEP 2.EncryptObj_Key by Pub_User_Key:
encryptedObj_Key < Pub_User_Key (Obj_Key);,
store the encrypted Obj_Key into personal database to replace
the encrypted Obj_Key in SETP 1;

STEP 3.Remove Share_Key:

remove corresponding Share_Key from owner’s personal

database;

/*

Note that recipients’Share_Key are going to be removed
asynchronously when trying to access the missing share
entry.

*/

Fig. 6. Key management algorithm for stopping a sharing process.

preventing cloud files in an employee’s client device from leaking.
The dotted-line area in Fig. 7 is the enterprise domain, which is ex-
tended from the original secure EFSS system to every employee’s
client device.

The core of the sandbox-based cloud file sync app is the 1/O
monitoring and filtering module, which is a file system filter as
shown in Fig. 7. These refer to isolated object list and 1/O filtering
rules to monitor and filter file system operations trying to apply
to files and folders in the sandbox. A list of file and folder paths is
available in the isolated object list to form the sandbox isolated file
system portion of the file system. Moreover, this list is dynamically
updated whenever the object sync logic synchronizes files and
folders between the local sync folder and secure EFSS system. In
order to make the sandbox-based cloud file sync app an enterprise
compliance facilitating tool, the I/O filtering rules provide the IT
and MIS of an enterprise the capability to update its I/O filtering
rules, thereby controlling the local synchronized files through
controls made by the secure EFSS system.

3.5. Out-of-band authentication

As mentioned earlier, directly integrating EFSS system with
enterprise directory to enable SSO is insecure as sensitive
information may be accessed or logged by the EFSS system. In order
to overcome this problem, an out-of-band authentication method
is introduced as part of the integrated security approach, whose
sequence diagram is shown in Fig. 8. In order to achieve security,
the individuals involved in the authentication process are deployed
in four different networks: (1) the client can gain access to the
service from either Internet or Intranet; (2) the service is deployed
in either DMZ or the enterprise’s private local area network (LAN)
based on the purpose of the service; (3) the directory service has to
be deployed in DMZ to handle authentication requests from both
Internet and Intranet; and (4) behind the firewall, the Enterprise
Directory (e.g., AD or LDAP) is protected in the LAN. The security
deployment allows the directory service to act as a directory proxy
to receive and then bypass the authentication requests to the
enterprise directory for actual authentication. In order to make
such a model work, the source of the directory service has to
be examined and verified by the enterprise to gain trust. Once
the directory service passes the trustworthiness verification, the
service is the only untrustworthy factor in the authentication
model, that is, the proposed VES service is untrustworthy.

In order to gain access to the service, the client has to verify
its credential (e.g., username and password) with the enterprise
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directory. However, with the secure deployment as shown in Fig. 8,

the client has to authenticate the credential with the directory
service. After passing the check, the directory service will prepare

a directory ticket (dir_ticket) to the client for further exchange of

a service ticket (serv_ticket) with the service. Then, the client can (2
gain access to the service by the service ticket, and the service

will be provided to the client based on the authority information
provided by the directory service. To conclude, the proposed out-
of-band authentication method has the following advantages:

(1) Security: Login information (username and password) only
pass through managed trustworthy services (e.g., directory
service and enterprise directory). Furthermore, the enterprise
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e m T

to verify dir_ticket with
Service Identify

u

Return verification
result (succeeded) &
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Prepare serv_ticket with
authority for the succeeded
verification

Verify dir_ticket and
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Fig. 8. Sequence diagram of out-of-band authentication.

—

directory is not associated with any untrustworthy service
(e.g., VFS service), which prevents sensitive information stored
in the directory service from being accessed by untrustworthy
services.
Flexibility: The proposed secure deployment is suitable for
private and hybrid cloud services. Besides, proprietary require-
ments of the services can be implemented in the directory ser-
vice as an extension to the existing enterprise directory. For
instance, in order to support additional authentication pro-
tocol such as OpenlID, the OpenID extension modules can be
implemented in the directory service without affecting the en-
terprise directory.
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(3) SSO: The directory service can provide multiple services
simultaneously, among which the client could have SSO
feature by the proposed out-of-band authentication method.

3.6. NoSQL adoption

NoSQL plays an important role in our security framework. Busi-
ness clouds must be robust enough and resistant to unauthorized
attacks, such as SQL injection, a commonly used technique to hack
database-driven websites. NoSQL is less vulnerable to SQL injec-
tion and other types of hacking. In order to test its robustness,
the performances of a NoSQL database, MongoDB, and MySQL are
compared under the penetration testing environments, which will
be described in the next section. MongoDB is a document-store
database, where data are stored in documents rather than rows and
columns. JavaScript object notation (JSON) generally stores data,
and JavaScript is the language to query data. The following are the
advantages of MongoDB: (1) Developers can modify the schema
dynamically without causing downtime. In other words, less time
can be spent on preparing data for the database and more effort
can be spent on making the data work; (2) MongoDB can provide
high scalability and allow thousands of transactions to scale up and
down easily.

4. Multilayered security

This section describes the multilayered security approach for
the CCAF security framework. Our work on software security
engineering [7] has motivated the development of a complete
framework for cloud security, which is known as CCAF [26].
The CCAF consists of a systematic process for building security
and supporting cloud application development life cycle, right
from requirements, design, implementation, and testing. The work
described in Section 3 has been successfully integrated as the CCAF
multilayered security, which has a three-layer implementation
model for cloud security as shown in Fig. 1. This model can be
applied to both private and public cloud delivery models. The cloud
security layers are:

e Access control and firewall (L1), which supports password
protection, access control mechanism, and firewall protection;

e Intrusion detection system (IDS) and intrusion prevention
system (IPS) (L2), whose aim is to detect attack, intrusion,
and penetration, and also provide up-to-date technologies to
prevent attacks, such as denial of services (DoS), antispoofing,
port scanning, known vulnerabilities, pattern-based attacks,
parameter tampering, cross-site scripting, SQL injection, and
cookie poisoning. Identity management ensures that only
authorized users can gain access to confidential data.

e Encryption/decryption control layer (L3), which supports
encryption and decryption of files and messages, including
security controls. This feature monitors the system and
provides early warning once the fine-grained entity starts to
behave abnormally. It also provides end-to-end continuous
assurance, which includes investigation and remediation after
an abnormality is detected.

Each layer works with a recursive relationship to pass on security
control to each other for extra validity and verification of security
techniques that are implemented. This can reduce infections
by trojans, viruses, worms, and unsolicited hacking, and deny
service attacks. Each layer has its own protection, and is in
charge of one or multiple functions in the protection, preventive
measurement, and quarantine action presented in Fig. 9. The left-
hand side of the figure shows the three layers of CCAF security
and functionality. Layer 1 (L1) can prevent unauthorized access
to synchronized resources and link resources, spoofing, DoS, and

port scanning. Layer 2 (L2) can prevent and counter actions for
suspicious activities, known vulnerabilities, pattern-based attacks,
cross-site scripting, SQL injection, and cookie poisoning. Layer
3 (L3) offers three types of encryption and decryption services:
message, file, and full. The right-hand side of the figure explains
the relationship between core technologies described in Section 3
and CCAF security. L1 includes sandbox-based synchronization,
distinct share link for external share, directory service, and firewall.
L2 includes log service, out-of-band authentication with enterprise
security, database service, and isolated user storage space for
modeling. L3 includes distinct share link for internal share and
zero-knowledge system. Once a cloud file access request passed
all the three security layers, it reaches the managed OpenStack
Swift object storage, and then obtains the requested cloud file. The
mechanism of each preventive action of the CCAF security (LHS)
matching its corresponding system design (RHS) is illustrated in
Fig. 9.

With regard to the technical descriptions in Section 3, the
out-of-band authentication belongs to the second layer, because
it includes an SSO, directory service, enterprise directory, and
OpenID. The authentication on the OpenID double-checks the
identity of the users. Upon successful verification, the SSO is
activated, and then all data and services can undertake encryption
as the third layer. The first layer of security is provided by a
login feature to a network and IP-based firewall protocols to
ensure security. Access control is achieved by generating a list of
users and providing them with different types of user privilege
according to their roles. With regard to the system design, our
multilayered approach consists of the following three items, and
the full connections mapping between each CCAF security layer
and core technologies used by the system design can further refer
to Table 1:

e Layer 1: Password protection, network, and IP-based firewall
and access control

e Layer 2: Out-of-band authentication and OpenID serving for
identity management

e Layer 3: Encryption and decryption to ensure that only
authenticated files are archived through encryption. Gaining
access to any file will require the algorithms presented in Figs. 5
and 6 to be followed.

Table 1 shows the detailed maps between the CCAF security layers
and their corresponding core technologies described in Section 3.
L1 includes access control, password protection, and firewall to
minimize data leakage, unauthorized access, insecure deployment
for internal users, and careless sharing of resources with external
users. L2 includes detection and prevention of intrusion, and
then supports management to detect suspicious activities, report
vulnerabilities, strengthen identity management, adopt NoSQL
databases, and isolate the user storage modeling. L3 offers file and
message encryption and decryption to ensure that all data and
passwords are safe and well protected.

4.1. Penetration testing

Penetration testing is commonly used in ethical hacking to
validate the robustness of the proposed security prototype and test
any vulnerability. The weakest points and vulnerabilities can be
detected by the end of the penetrating testing. Several tools and
techniques, such as Metasploits, were used to improve penetration
testing, and upon successful penetration, known 2012 viruses
and trojans were used to test the robustness of the multilayered
security. All tests were conducted in the VMs. Comparisons
with single-layered McAfee antivirus software were performed to
detect any performance issue, such as the number of viruses and
trojans blocked and the percentage of blockage. The following data
were recorded during the experiment:
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Table 1
Mapping between CCAF security layers and corresponding core technologies.

Multilayered CCAF Core technology

Layer  Capability Component/mechanism Targeting security use cases

L1 Access control Sandbox-based Synchronization Prevent data leakage to unauthorized domain by limiting file system access at
endpoint devices.

L1 Password Distinct share link for external Shared resources are only available to external users who passed password

share authentication.

L1 Access control Only authorized domains can be applied to shared resources.

L1 Password Directory service Antispoofing by only allowing registered user to login into system.

L1 Access control Only individual internal services grant own authorized domains.

L1 Firewall Firewall Support secure deployment to defend external direct network attacks (such as
DoS and port scanning) for internal services.

L2 Intrusion detection Log service As a part of intrusion detection system, log service provides audit trail capability
to log every activity and event occurred in the system for further investigation. It
is useful to detect suspicious activities, such as known vulnerabilities and/or
conducting pattern-based attacks.

L2 Identity management Out-of-band authentication Incorporate with directory service and enterprise directory to support the identity
management capability, particularly the single sign-on service with all internal
services. The cross-site scripting and parameter tamping were ended here.

L2 Intrusion prevention Database service The adoption of the NoSQL database (MongoDB) provides sort of intrusion
prevention capability. Results of an SQL injection testing of the MongoDB will be
provided and discussed in the following sections.

L2 Intrusion prevention Isolated user storage space Once one of the personal user storage spaces was conquered (by such like the

modeling Cookie Poisoning), the isolated user storage space modeling still guarantees other
users’ data privacy, as all user storage spaces were modeled in own physically
separated MongoDB data collections.

L3 Message encryption/decryption Distinct share link for internal Messages for accessing internal distinct share link were encrypted by the

share recipient’s public key before sending, which also prevents network packet
inspecting from internal Malware on conquered services.

L3 File encryption/decryption Zero-knowledge system Cloud files were encrypted by different random encryption keys, which were

managed by the zero-knowledge system with no knowledge about decrypting the
cloud files. Only users with correct password (L1) and right identity (L2) in the
zero-knowledge system are able to decrypt the original cloud files (L3).
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e The number of viruses and trojans detected and blocked by each
layer.

e The total numbers of viruses and trojans detected and blocked
by the system.

e The number of viruses and trojans detected but unable to be
blocked and sent to quarantine.

e The number of viruses and trojans that can be destroyed in the
quarantine.

e The number of viruses and trojans that cannot be destroyed in
the quarantine.

Penetration testing was conducted for multilayered CCAF security.
All the trojans and viruses will need to pass the aforementioned
three layers. Each layer can detect and filter suspected malicious
files and then move to the quarantine area awaiting the next action.
With the consolidated defense, all the layers should detect and
trap as many viruses and trojans as possible. The purpose of the
penetration tests is to identify whether that is the case and the
number of true vulnerabilities that the multilayered CCAF security
can detect, which are important for business clouds. Two types of
experiments were conducted. The first experiment was focused on
penetration tests involving injection of 10,000 viruses and trojans
in a single attempt. The second one was focused on continuous
penetration test, such as injecting 10,000 similar viruses and
trojans every 5 h to test the robustness of the CCAF solution.

Fig. 10 shows the number of viruses and trojans detected and
blocked by the multilayered CCAF security. A total of 4650 viruses
and trojans have been detected and blocked by the firewall, and
4444 have been detected and blocked by identity management and
intrusion prevention systems. Finally, 901 viruses and trojans were
detected and filtered by encryption, the last step to identify which
file in disguise can be detected. The remaining five viruses and
trojans were sent to quarantine that they could not be removed
or destroyed.

Results are presented in percentages, rather than the number of
viruses and trojans blocked. The 10,000 similar viruses and trojans
are injected every 5 h to test the mechanism of coping of the data
center with the vulnerabilities. Fig. 11 shows that the percentage
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Fig. 12. Execution time to detect and block viruses and trojans.

of viruses and trojans blocked decreased from 100% to 73% in 100
h. This indicates that CCAF multilayered security can withstand
regular attacks for up to 5 h with >99% blocking and 10 h with >90%
blocking. Performances degraded after 10 h of continuous attack.

The execution times for detecting and blocking viruses
and trojans at each layer were recorded. This information is
important for the organizations that adopt cloud computing, as
the organizations’ systems and services will be prone to damage
if the vulnerabilities are not detected and blocked early. Fig. 12
shows the execution time to detect and block viruses and trojans
in each layer. The firewall layer is the quickest to detect and block
vulnerabilities, whereas the identity layer is the slowest, which
took >200 s to detect and 451 s to block viruses and trojans. This is
because a verification process was required in the identity layer to
ensure that the suspected files are viruses and trojans. As the name
implies, identity layer involves a verification process to ensure that
all files are safe and not in the suspected list. The detected trojans
and viruses were blocked and sent to quarantine area for isolation.
The reason for the lower execution time of the encryption layer was
only the remaining 901 viruses and trojans reach the third layer.

As discussed earlier, 4650, 4444, and 901 viruses and trojans
were detected and blocked by the firewall, identity management,
and encryption, respectively. The number of detects/blocks per
second has to be investigated, which can be calculated by dividing
the total execution time in each layer by the number of trojans
and viruses detected and blocked (Fig. 13). The number of
blocks/detects is the lowest for the firewall due to its design
and emphasis in security, whereas it is almost equal for identity
and encryption. However, reasons behind this are different. The
encryption security used by CCAF and OpenStack could identify
the malicious files in disguised forms. Key technologies are based
on encryption key management as described in Section 3.3.
The malicious files sent to the encryption layer can be further
shared with a VM/sandbox environment for testing, which can be
destroyed after completion of the test.

Antunes and Vieira [27] use four types of tools for penetration
testing and explain the use of precision, recall, and F-measure to
determine the validity of their results.

Precisionis the ratio of accurately detected vulnerabilities to the
number of all detected vulnerabilities:

b
. 1
P (1)

Recall is the ratio of true vulnerabilities detected to the number of
known vulnerabilities:

precision =

tp
recall = o (2)

v
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Table 2
Comparison of CCAF and other single-layered services.
Services Precision Recall F-measure
CCAF 1 0.995 0.9975
VS1 0.455 0.323 0.378
VS2 0.388 0.241 0.297
VS3 1 0.019 0.037
Vs4 0.567 0.241 0.338
where

e True positive (t,) refer to the number of true vulnerabilities
detected.

e False positives (f,) refer to the number of vulnerabilities
detected, but do not exist.

e True vulnerabilities (t, ) refer to the total number of vulnerabil-
ities detected in penetration tests.

F-measure can be presented in terms of precision and recall as
follows:
2 x precision x recall

F-Measure = — . (3)
precision + recall

Better services can generate a high F-measure value [27].
A service with a precision of 0.6 indicates that it can detect
vulnerability with 60%. A recall of 0.7 indicates that 70% of the
known vulnerabilities are detected. F-measure is found to be 0.646
using Eq. (3). A combination of precision, recall, and F-measure
can determine the quality of the security services. We reproduce
the experiments conducted by Antunes and Vieira [27] and then
compare the results of CCAF multilayered security with those
of VS1, VS2, VS3, and VS4 tools due to similarities with CCAF
technologies, except that each security is single-layered. Results
in Table 2 show that the CCAF multilayered security can provide
a much better service as all true vulnerabilities can be detected
with a precision of 1. Because only five out of 10,000 viruses and
Trojans are missed, the recall is 0.995, resulting in an F-measure of
0.9975, which are higher than the test results. CCAF multilayered
security provides better results than other tools and very high
precision, recall, and F-measure values, indicating high robustness
and validity of security (Table 2).

4.2. SQL injections

Two types of databases are used for multilayered security: (1)
a MySQL Server 5.5 that stores database information for users,
customers, items, and text-related information and (2) a NoSQL
database, the 64-bit MongoDB 3.0.4, storing the same information.
The purpose of this ethical hacking is to test robustness of the two
databases. This is useful for business clouds where the enterprise

security framework, such as CCAF, should retain vital information
and prevent unauthorized access or server outage due to attacks.
SQL injections are common in unauthorized attacks and are used
to perform ethical hacking. There are two ways to improve the
performance of SQL injection. First, queries for SQL injection will
also create “infinite” loops, thereby generating the database in an
erroneous status. Second, 10,000 SQL statements were dumped
every second to ensure that SQL injection prevention function is
not rectified on time. Combining both methods brings the system
down or offline by SQL injection. In order to perform SQL injection
more effectively, steps were followed and codes were modified
based on suggestions in Ref. [28]. The following three types of tests
were conducted for MySQL:

e Using SQL injection with a standard McAfee 2014 edition
protection due to the availability of this product.

e Using SQL injection with generic CCAF multilayered security.

e Using SQL injection with full CCAF multilayered security
protection that blocks all ports for MySQL, indicating that each
SQL query will require authorization and verification.

Tests were conducted for the first hour, followed by the
subsequent 24 h. The results of the first-hour test have to be
protected, as the information can be leaked and used to hack
other parts of the system [29]. The reason for the subsequent
24-h testing is that if a database has been compromised and no
remedy has been taken within a reasonable time frame (e.g., 24 h),
it will pose threats to the organizations. The entire testing process
is performed for both MySQL and MongoDB under laboratory
conditions. A rate of 1000 s per simple response indicates that the
database has been compromised.

4.2.1. First-hour tests

Response time of MySQL server was recorded to show the
effect of SQL injection. If no SQL injection was performed, the
normal response time was 0.20 s per simple query. A very high
response time indicates a successful SQL injection. In order to study
the effects of SQL injection, one test was focused on finding the
variation of response time in the first hour. It is the most critical
period to stop SQL injection hacking and prevent any action that
makes services and servers down. It is thus concluded that, if
the proposed model could not withstand the most critical first
hour, it cannot secure data stored in the databases. Fig. 14 shows
MySQL (with McAfee) response time during SQL injection, where
1000 represents infinity. The service could not withstand SQL
injection after 16 min, resulting in the downtime and extremely
slow response to the MySQL server.

Fig. 15 shows that MySQL (with a generic CCAF) response
time increases up to 1 h. However, all response times were
maintained <12.8 s. Although CCAF multilayered security can
minimize the effects of SQL injections, it does not provide full
protection to MySQL server. However, the response time was
delayed to an acceptable extent of 12.8 s, rather than 0.2 s
per simple query. Fig. 16 shows that MySQL (with a full CCAF
protection) response time is constant at 0.2 s. In other words, SQL
injection could not hack MySQL, as security was ensured in all
its ports. For all unauthorized queries, SQL statements would not
be accepted. Hence, full protection could offer better protection
against unauthorized access or malicious attack.

The next test was focused on SQL injection on a NoSQL database,
such as MongoDB, as it could work in the CCAF core technologies
described in Section 3. A setup and SQL injection approach similar
to MySQL was adopted for the up-to-date version of MongoDB
3.0.4, with three scenarios to be tested. The first test was focused
on a MongoDB with McAfee, the second was focused on a MongoDB
with a generic CCAF protection, and the third test was focused
on a MongoDB with a full CCAF protection. Before beginning the
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Fig. 16. MySQL with a full CCAF protection response time during SQL injection.

tests, a simple query similar to MySQL SQL injection was used query that MongoDB could understand. This was similar to the
for MongoDB, which could process SQL queries. However, it could development of the 64-bit Windows O/S in 2005, which used a
take longer, because more time is required to translate it into a portable internal emulator to translate 32-bit applications that can
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Fig. 18. MySQL SQL injection tests with McAfee and generic CCAF protection test.

be executed on a 64-bit O/S. Each simple query would take 0.40 s
with repeated experiments. The experimental results of the three
tests showed that the response time was unchanged, regardless of
the security option (Fig. 17).

However, if hackers gain partial access to MongoDB, hacking
follows a mechanism as illustrated in Ref. [30]. This indicates that
hackers could use social engineering to trick the users believe the
real website. Once the passwords are stolen, the hacker could break
the MongoDB system console to change security settings. This
clearly indicates that MongoDB is vulnerable to security attacks.

4.2.2. Subsequent 24-h tests

This section reports the subsequent 24-h SQL injection tests
following the first-hour test. The first pair of test was conducted
with SQL injections to MySQL without CCAF protection and MySQL
with CCAF protection. Fig. 18 shows MySQL SQL injection tests
for both McAfee and CCAF generic protection, similar to the
experiments of Figs. 14 and 15 for 24 h. Fig. 18 shows that
the response time for CCAF generic protection reaches 1000 s
per simple response at the fourth hour, and remained constant
thereafter. The response time for SQL injection with McAfee
protection was 1000 s per simple response throughout.

Fig. 19 shows MySQL and MongoDB SQL injection tests with
McAfee and three CCAF protection tests, similar to the experiments
of Figs. 16 and 17 for 24 h. MySQL with CCAF protection can
withstand 24 h. Similarly, MongoDB tests with McAfee, generic
CCAF protection, and full CCAF protection can withstand 24 h. It
shows that any organization adopting business clouds should use
MongoDB as the database service. During the migration to NoSQL
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Fig. 19. MySQL and MongoDB SQL injection tests with McAfee and three CCAF
protection tests.

database, the existing MySQL servers should use full protection,
such as CCAF full security, to ensure reliable services.

4.3. Data simulations for CCAF multilayered security

This section describes the mechanism of data management in
the multilayered security. Although tests in Sections 4.1 and 4.2 are
focused on identifying and blocking malicious files, a large amount
of clean and safe data is often transferred through services and
servers (in VMs and/or physical machines). Hence, experiments on
the use case of transferring and handling a large quantity of clean
data are required to be conducted for the following reasons:

o The CCAF multilayered security will not raise false alarm, as it
may cause damage to resources, time, and reputation.

e The CCAF multilayered security will identify the clean and safe
data and have an excellent performance measurement that
allows a large volume of data to be used in the services and
servers.

In order to demonstrate that CCAF multilayered security, system
design, and experiments on both aspects have been undertaken.
The process involved is described as follows: First, the system
design to process data was simulated to ensure that all the
clean and safe data are checked and processed as quick and
efficient as possible. Second, the experiments on using the real
data were tested to verify that no false alarm occurs and a short
execution time is taken to complete all the checking processes.
The CCAF multilayered security was always up-to-date with the
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latest signature to identify the viruses, their sources, behaviors,
and infection mechanisms. However, it should take only seconds
to identify whether each file is malicious. In order to verify this,
real data of between 10 and 50 TB have been used to validate
the capabilities of the CCAF service. Data simulation should be
performed before using the real data for experiments, so that the
organizations that adopt the CCAF service can calculate the time
taken to read all the data and verify that they are not infected with
viruses and trojans.

In order to facilitate simulation for predicting data manage-
ment, business process modeling notation (BPMN) was used under
the CCAF multilayered security. Fig. 20 shows the BPMN model for
analyzing the cloud data security. There are three types of status
for data: data in use, data at rest, and data in motion. Data in use
indicates that data are used for services or users require them for
their work. Data at rest indicates that data are not used for work
and are archived in storage. Data in motion indicates that the data
are either about to change status from “data at rest” to “datain use”
or transferred from one place to another successfully.

All types of data need to satisfy these three conditions at some
point. The process starts with a data status decision (diamond
symbol) that passes the data to any one of the paths of the
cloud storage processes (data at rest, data in use, and data in
change/transition). This, in turn, passes the data to a data security
pool, which is a separate lane with dedicated security processes
(such as data security area and data center update) to study
security controls in place before it ends. This simulation (Fig. 20)
takes only seconds to analyze terabytes of data. In order to support
this further, experiments on simulating 10, 20, 30, 40, and 50 TB of
data with BPMN were conducted, and their execution times were
recorded.

Fig. 21 shows the execution time to simulate 10-50 TB of clean
data. The total time taken was between 1250 and 6742 s, and
the relationship between all data points was found to be linear,
indicating that the larger the data, the more the execution time.

In order to demonstrate whether the CCAF multilayered
security could be subject to false alarm, 10 TB of real data was
used for experiments, which included 2 TB of documents and 8
TB of multimedia data, including graphics, images, and videos. For
the purpose of testing, all documents were zipped up with a size
of 10 GB each, as well as the multimedia. The total numbers of
documents and multimedia files used were 50,000 and 10,000,
respectively. Each multimedia file was large in size (e.g., 8 TB).
All files were checked before the tests by several antivirus tools
several times, which reported there was no malicious file. Methods
described in Section 4.1, such as the use of precision, recall, and
F-measure (Egs. (1)-(3)), were used to measure the robustness
and effectiveness of the results with no false alarm from the CCAF
security. Experiments were performed thrice to obtain the average
values of the false alarm detected.

The results of all three experiments showed that 59,996 files
were reported clean every time. However, four were reported
suspected files, but not affected by viruses and trojans. The reason
was that those multimedia files were altered by forensic tools,
and the altered files behaved differently from ordinary images.
These files were considered as warning, rather than false alarm.
However, if a strict rule was set, the warning was considered as
a partial false alarm, as the service could not fully differentiate
between a working file and an infected file, allowing the user’s own
decision. Hence, two types of results are presented in Table 3. All
the values were 1 for tests including warning and 1, 0.9999, and
0.9999 for tests excluding warning. The performance of CCAF was
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g?tli‘:lg whether false alarm was detected by CCAF multilayered security.
Services Precision Recall F-measure
CCAF (including warning) 1 1 1
CCAF (excluding warning) 1 0.9999 0.9999

excellent that it did not respond to false alarm, as supported by the
experimental results.

5. Discussion

This section presents six topics for discussion. The first one is
the security policy required to deliver the CCAF security framework
to the fullest extent. The second is on aligning businesses
with governance and information security and discussion about
framework approach. The third topic is about integrating the
secure EFSS system for the CCAF multilayered security, and the
forth one is the general discussion about big data in the cloud. Then,
our research contributions will be summed up to demonstrate that
the proposed CCAF multilayered security is a valid and working
recommendation for business clouds, whereby businesses and
institutes should always consider adopting multilayered security
approach to ensure that their data and services are guarded with
up-to-date protection. Finally, limitations of this study and general
approaches from CCAF are discussed.

5.1. CCAF security adoption

The key to successful transformation to cloud computing is
the design flexibility of cloud business capable of customizing
and adding new security policies. Therefore, it is believed that
the adoption of the secure EFSS system - and the security issues
that it attempts to address - occupies a critical organizational
intersection, between the cost of appropriate countermeasures
and the convenience and lower capital cost of operating a
business cloud. Within the cloud environment, there has not
yet been a standardized approach to security planning. Perhaps,
this reflects the shift away from distributed systems to a more
logically centralized architecture, which is the characteristic of
the cloud. However, there is very little discussion of the role
that centralized versus system-specific or issue-specific policies
play in the design of secure cloud environments. The security
policy lies at the core of a cloud security plan, which should be
aiming to reduce risk within budgetary limits, to the extent that
management can accept residual risk after countermeasures have
been implemented. Marketing security policies that are more or
less restrictive could be the basis of competitive advantage. In
cloud computing market, there has not yet been any systematic
approach to security planning and security policy changes that can
be introduced in a systematic manner. According to NIST [11,31], a
cloud security plan should encompass:

e Policies, or the set of decisions that the management has
made to defend the organization against perceived or measured
threats, which can be expressed through standards, guidelines,
or procedures.

e Roles and responsibilities, or the matrix that maps who (or
what) is responsible for which tasks that need to be undertaken
to implement security policy.

e Planning, or the means by which security will be implemented
during each stage of a system'’s life cycle. In the case of cloud
storage, this may relate primarily to data life cycle, which
imposes a set of stricter standards, particularly relating to
privacy.

e Assurance, or determining the extent to which the cloud
environment is actually secured.

e Accreditation, or the process of residual risk acceptance by the
management.

The multilayered security approach for the CCAF security
framework outlined in Section 4 can be mapped from the technical
requirements of a set of organizational needs to minimize risk and
customization of security policies. At present, this mapping is often
ad hoc within cloud environments, relying on the tact knowledge
of operational staff to combine the two. Future research will
focus on the mechanism of formally specifying these requirements
and providing real-time means to achieve assurance against
organizational goals. For example, penetration testing should be
performed at a level and frequency should commensurate with the
value of the data being protected.

5.2. Aligning businesses with governance and information security

A working framework has to align business with governance
and information security, so that all the businesses processes and
services can minimize risk, reduce errors, improve efficiency and
collaboration, and enhance the business opportunities, reputation,
and deliveries of services [32]. For example, cloud computing busi-
ness framework (CCBF) has demonstrated that aligning businesses
with corporate, operational, and research activities can result in
an increase of efficiency, revenue, and customer satisfaction. Some
projects delivered by CCBF demonstrate that the organizations
that adopted cloud computing provide services critical to the busi-
nesses, such as health informatics, business intelligence, and bioin-
formatics as a service. Real-life examples for financial modeling
and risk simulations to investigate the source of financial crisis in
2009 have been demonstrated [33]. Risk analysis and simulations
are parts of enterprise security to help organizations understand
what risks are, how to measure, how to analyze, and how to re-
spond to them based on the results. Lessons learned from CCBF
have been blended with our current CCAF security to fully integrate
multilayered security with governance and information security.
All types of risk and security breaches can be informed and alerted
in real time to allow swift remedies. A board of governance body
can ensure that all the data and services are protected with security
updates. Our proposal of the CCAF security is essential to business
clouds, because CCAF transforms security concepts into real prac-
tice. Examples demonstrated by CCAF can be used by organizations
such as University of Southampton and Leeds Beckett University to
ensure that all data are safe and protected from real threats.

5.3. Integrating the secure EFSS system for the CCAF multilayered
security

The concrete instance and core technologies of CCAF security
presented in Section 3 were based on the secure EFSS system,
which could be deployed to an on-premise OpenStack cloud en-
vironment. One advantage is to offer a dropbox-like service that
could back up and transfer the data. Differing from the existing
EFSS systems, the designs of the secure EFSS system consider enter-
prise security concerns, and it has also addressed the EFSS security
issues identified in this article. To conclude, key contributions of
the proposed integrated security approach are shown as follows:

(1) The firewall friendly secure deployment protects the services
and enterprise data.

(2) The isolated personal storage space protects employees’
privacies as well as increases system scalability.

(3) The distinct share link supports secure sharing with internal
enterprise colleagues and external business partners.
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(4) Personal and shared files are encrypted by different keys,
which are further protected and managed by built-in key
cascading management processes for a secure cloud file
sharing environment.

(5) The sandbox-based cloud file synchronization extends the
enterprise’s domain to employees’ endpoint devices to prevent
data leaks caused by file synchronization.

(6) Finally, the out-of-band authentication method uses proxy-
based authentication to protect the enterprise directory
(e.g., AD or LDAP) and prevent unauthorized logging of
employees’ sensitive data.

5.4. Bigdata in the cloud

This section describes the relevance of CCAF multilayered
security to the special issue: big data in the cloud, a popular
topic in the service computing and scalable computing. All security
solutions and proposals should allow the organization that adopts
cloud computing to offer data security and ensure that all services
are active with optimal protection. OpenStack security has been
integrated into our CCAF multilayered security. The first layer
was focused on the firewall and authentication. The second one
was focused on the identity management, and OpenID played an
important role in ensuring identity management. The third layer
was focused on encryption technologies, as described in Section 3.

A large-scale penetrating test involving 10,000 trojans and
viruses was conducted to ensure that the CCAF multilayered
security handles a sudden surge of malicious files and blocks them
with high accuracy. In addition, it can handle 50 TB of safe and clean
data with execution time <7000 s. All the experiments had been
successfully designed and conducted for big data in the cloud.

5.5. Our research contributions

Initially, a security framework, which can convert theory to
practice and a conceptual framework to an architectural frame-
work, is developed. The core technologies are demonstrated and
the mechanism of their integrated work is explained. Experiments
are conducted to ensure that the proposed design and prototype
are robust enough to withstand penetration testing and SQL injec-
tion.

Then, a CCAF multilayered security is implemented and blended
with core technologies from OpenStack and our existing work.
The outcome of the experiments demonstrates that the proposed
service can detect and block viruses and trojans much better than
existing tools with an F-measure of 0.99. The CCAF multilayered
security has not reported any false alarm, which is supported by
the results of the experiments.

Finally, the CCAF multilayered security offers research contribu-
tion to volume, velocity, and veracity of big data science. It is rele-
vant to volume, as CCAF security can handle 10,000 malicious files.
The CCAF security can read 10-50 TB of clean and safe files eas-
ily. CCAF security is relevant to velocity, as it can detect and block
viruses and trojans in penetration testing and SQL injection ethi-
cal hacking. It can respond quickly to unpredicted events resulting
from a surge of files and attacks. CCAF security offers veracity, as
all experimental results have a high percentage of accuracy, sup-
ported by our analysis and results in penetration testing and SQL
injection. No attack occurs with the NoSQL database protected by
CCAF security.

5.6. Limitations of this research and general approaches from CCAF

The major research limitation is the use of viruses and trojans
for penetration testing, which are the 2013 known vulnerabilities.

The latest versions are unavailable for testing samples. Collabora-
tors who can provide more up-to-date testing will be sought af-
ter for our future work. Other types of penetration testing will be
adopted to ensure a better coverage of testing results. The general
approaches of CCAF show that the multilayered security is always
better and safer than a single security solution for all cloud and big
data services.

6. Conclusions and future work

Design and implementation of an integrated security, CCAF
multi-layered security, was demonstrated in this article. The
motivation and the related literature on the CCAF security
were explained, and the core technologies were described,
which considered enterprise security concerns and addressed
the EFSS security issues. The CCAF security was presented with
the integration of the three-layered security: firewall, identity
management, and encryption. Experiments were designed to
demonstrate CCAF multilayered security as a working framework
for business clouds, whose results show that it can detect and
block 9995 viruses and trojans during penetration test and could
block >85% of attacks for 100 h (Fig. 11). Each of the three layers
could detect and block viruses and trojans between 0.015 and
0.105 per second. The F-measure was 0.9975, which is higher
than that of other services. SQL injection was undertaken for
MySQL and MongoDB. Results of the first-hour and 24-h tests
showed that a full CCAF multilayered security protection could
block and prevent SQL injection for MySQL and MongoDB. All
response times were constant at 0.20 and 0.40 s, rather than 1000
s per simple request. Furthermore, the CCAF multilayered security
did not detect any false alarm. It took <7000 s to read all 50-
TB data in the experiments. CCAF security policy could work with
real-life examples and also align with businesses to protect assets
and data. This study also demonstrated the three major research
contributions and explained how it could offer benefits for volume,
velocity, and veracity of big data service in the cloud. Our future
work is focused on strengthening collaboration with international
partners and developing different proofs of concepts, prototypes,
services, and research consultancy with our partners.
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