
ORIGINAL ARTICLE

Building a security reference architecture for cloud systems

Eduardo B. Fernandez • Raul Monge •

Keiko Hashizume

Received: 30 June 2014 / Accepted: 17 December 2014

� Springer-Verlag London 2015

Abstract Reference architectures (RAs) are useful tools

to understand and build complex systems, and many cloud

providers and software product vendors have developed

versions of them. RAs describe at an abstract level (no

implementation details) the main features of their cloud

systems. Security is a fundamental concern in clouds and

several cloud vendors provide security reference architec-

tures (SRAs) to describe the security features of their ser-

vices. A SRA is an abstract architecture describing a

conceptual model of security for a cloud system and pro-

vides a way to specify security requirements for a wide

range of concrete architectures. We propose here a method

to build a SRA for clouds defined using UML models and

patterns, which goes beyond existing models in providing a

global view and a more precise description. We present a

metamodel as well as security and misuse patterns for this

purpose. We validate our approach by showing that it can

describe more precisely existing models and that it has a

variety of uses. We describe in detail one of these uses, a

way of evaluating the security level of a SRA.

Keywords Security reference architecture � Security

patterns � Reference architecture � Security requirements �

Secure software development � Cloud computing � IaaS

security

1 Introduction

Cloud computing systems involve a variety of devices con-

nected to them, may require different deployment models,

and provide a variety of services, all of which result in a

highly complex system and create many security concerns.

Many of the cloud security issues are also true for any kind of

distributed system that uses web applications; however,

cloud architectures bring new attacks [1, 2] and the result of a

successful attack could be catastrophic because an attacker

may compromise data from many users. Clouds may store

large amounts of sensitive information, and there is a clear

attraction for all kinds of attackers, from criminal groups

looking for lucre to terrorists looking for disruption.

Cloud systems are very complex, and to study their

security, we need to start from their global architectures. A

reference architecture (RA) is an abstract architecture that

describes functionality without getting into implementation

details [3, 4]. RAs have become useful tools to understand

and build complex systems, and many cloud providers and

software product vendors have developed versions of them,

e.g. [5–7]. A security reference architecture (SRA) is an

RA where security mechanisms have been added in

appropriate places to provide some degree of security [8].

Until now, however, outside of vendors, very few SRAs

have appeared [8–10]. Almost all of them are either partial,

have specific objectives, or use rather imprecise and ad hoc

models, where implementation details are mixed with

architectural aspects. We propose here an approach for

building SRAs using patterns described by UML models,

which we consider the first attempt to define a precise and

E. B. Fernandez (&) � K. Hashizume

Department of Computer and Electrical Engineering and

Computer Science, Florida Atlantic University, Boca Raton, FL,

USA

e-mail: ed@cse.fau.edu

K. Hashizume

e-mail: akhp1@yahoo.com

R. Monge

Departament of Informatics, Universidad Técnica Federico

Santa Marı́a, Valparaiso, Chile

e-mail: rmonge@inf.utfsm.cl

123

Requirements Eng

DOI 10.1007/s00766-014-0218-7



semiformal security cloud computing architecture for the

complete cloud environment. We show that SRAs are

useful to apply security to cloud systems, to evaluate their

level of security, to define Service Level Agreements

(SLAs), and for a variety of other purposes.

We developed a cloud reference architecture [11, 12],

which we use as starting point for our SRA, and we enu-

merate its threats for which we find countermeasures in the

form of security patterns. A security pattern encapsulates a

defense to a threat in a concise and reusable way, and we

have built a catalog of them as well as a methodology for

their use [13]. By checking whether threats can be stopped

or mitigated in the SRA, we can evaluate its level of

security. We have done a systematic enumeration of cloud

threats [2] and have started building a catalog of cloud

misuse patterns [14]. A misuse pattern describes how an

attack is performed to lead to a misuse; with a complete

catalog of misuse patterns, we can apply them systemati-

cally and use the RA to find where we should add corre-

sponding security patterns to stop them.

Our architecture is semi-concrete, classical, and multi-

organization according to the classification of [15] (see

Sect. 2), which is oriented to structural aspects; other

architectures, e.g. TCI [16], emphasize functional aspects

and are complementary. Our way of representing such SRA

is semiformal, relying on an object-oriented approach using

patterns that include UML models. UML models can be

complemented with formal descriptions such as OCL [17],

and we can make this architecture more formal if needed.

We believe that a semiformal approach is the only practical

approach given the complexity of the system we are con-

sidering; of course, parts of the architecture can be formally

modeled. Purely formal methods are difficult for most

practitioners [18]. Our approach is in tune with the idea that

security needs a global and holistic approach [19, 20]. We

have not strived for completeness; a SRA is a very large

system, the NIST SRA [8] takes more than a hundred pages,

but many of its functions are variations or repetitions of

some idea and there is no need to show every case; we only

want to show an approach for building such an architecture,

demonstrate its value, and build some of its parts to illus-

trate our ideas. Since our architecture is built out of patterns,

we show a security pattern and a misuse pattern to illustrate

the approach. The most critical functions of security are in

the IaaS level, and we concentrate on this level, but we

show its relationship to the upper levels (PaaS and SaaS).

Identity management aspects are left out since they are used

also for other functions [21]. Other complementary aspects

have been presented as patterns [13].

Our contributions include the following:

• A systematic approach to build SRAs for clouds which

uses patterns and that produces architectures which are

more abstract1 and precise than the SRAs in the current

literature. The SRA specifies security requirements for

a range of cloud systems, starting from an abstract

model.

• New patterns to add to the few existing security

patterns for clouds and a list of other possible patterns.

• A new misuse pattern to add to the only three cloud

misuse patterns published until now, as well as a list of

possible misuse patterns for clouds.

• A metamodel to relate together the concepts of SRAs,

which helps to unify concepts.

• A list of other possible uses of SRAs, which is a way to

validate them and to justify the effort in building them.

• A way to enumerate threats to evaluate the security of

cloud systems, which expands our own approach [22]

and can have more general application.

Section 2 describes background and summarizes our pre-

vious work on this topic. Section 3 discusses related work

describing several industrial and academic SRAs. Section 4

describes our approach for securing RAs and a metamodel

to relate the concepts we use. Section 5 enumerates

stakeholders (roles) and some use cases found in clouds.

Section 6 considers how to enumerate threats and how to

defend against them using security patterns. Section 7 talks

about misuse patterns and shows a misuse pattern for

malicious VM migration. Section 8 presents a partial view

of the resulting SRA. Section 9 presents a security pattern

for a virtual machine (VM) image repository and a model

for security administration. Section 10 discusses validation

aspects and provides a list of possible uses, which include

how to evaluate the degree of security of a SRA and shows

that it subsumes previous models. We end with conclusions

in Sect. 11.

2 Background and our previous work

As indicated, we use patterns as building blocks for our

SRA. A pattern is a solution to a recurrent software

problem in a given context. This solution resolves a set of

forces that constrain and define guidelines for it, e.g. ‘‘the

solution must be transparent to the users’’. The solution is

usually expressed using UML class, sequence, state, and

activity diagrams (although we usually do not need all

these models). OCL constraints can add formality if nee-

ded. A set of consequences indicate how well the forces

were satisfied by the solution as well as the possible neg-

ative aspects of the solution. An implementation section

provides hints on how to use the pattern in an application,

indicating what steps are needed and possible realizations.

1 with no implementation details.

Requirements Eng

123



A section on related patterns indicates other ones that

complement the pattern or that provide alternative solu-

tions. A pattern embodies the knowledge and experience of

software developers and can be reused in new applications.

Patterns are also good for communication between

designers and to evaluate and reengineer existing systems

[13]. A security pattern describes a mechanism or proce-

dure to defend against an attack. Abstract Security Patterns

(ASPs) describe conceptual security mechanisms that

realize one or more security policies able to handle a threat

or comply with a security-related regulation or institutional

policy [23]. For building conceptual models (i.e., imple-

mentation independent), we developed a type of pattern

called Semantic Analysis Pattern (SAP), which implements

a small set of coherent use cases [24]. A misuse pattern

describes how a misuse is performed from the point of

view of the attacker. It defines the environment where the

attack is performed, countermeasures to stop it, and pro-

vides forensic information in order to trace the attack once

it happens [25, 26]. Enterprise patterns refer to problems at

the enterprise level, including middleware and database

aspects [27].

A reference architecture is a standardized, generic

architecture, valid for a particular domain that does not

contain implementation details [3, 4]. An RA provides a

template-like solution that can be instantiated into a con-

crete software architecture by adding implementation-ori-

ented aspects. There is no consensus about what an RA

should contain; Avgeriou [3] describes an example and

indicates what should be included in one, typically a class

diagram and a set of use cases with their roles, but other

authors include other aspects [28, 29]. Our work on

Semantic Analysis Patterns [24], was a step toward build-

ing RAs out of patterns, an idea also used later in [29, 30]

There are also several RAs for cloud computing, some of

them are abstract, while others focus on specific areas or

products [29, 31], and we survey later some of them which

are often paired with corresponding SRAs.

As indicated, we use UML for describing the SRA.

UML is a semiformal language whose syntax is formally

defined using a metamodel [32]. It is widely used, many

tools support its use, it is an industry standard, and it is

familiar to a wide segment of practitioners. It can also be

complemented with formal methods, and its standard

defines an associated formal language, OCL [17]. Being a

graphic language, it is highly intuitive and has a direct

correspondence to code. There exists an extensive literature

on design and security patterns, and the majority of them

describe their solutions using UML.

Purely formal methods, while more precise and sup-

porting formal proofs of properties, are much harder to use

by practitioners, and none of their languages is prevalent,

much less a standard. UML has limitations as an

architectural language, and more specialized languages

exist [33]. Again, none of these languages is a standard and

for describing structural aspects UML appeared acceptable.

In our work, we do not discard the use of formal and/or

architectural languages for the applications of SRA

described in Sect. 10; we just think UML is convenient.

We developed a systematic way of enumerating threats

by analyzing each activity in each use case of a system and

considering how it could be attacked [22]. This approach

finds all the high-level threats as goals of the attacker and

can be expanded at the lower architectural levels with

threat catalogs, e.g. [34]. However, we do not need to

predict all possible attacks; we can make the system able to

preserve its critical assets, even if parts of the system have

been compromised. This is the ‘‘submarine’’ approach,

where if one compartment is flooded, critical functions can

be protected. In order to use this idea, we need to define

clear interfaces between units and validate their

interactions.

In order to understand cloud security better, we per-

formed a systematic review of their security issues, where

we collected the main cloud threats and vulnerabilities

found in the literature [2]. In that analysis, we presented a

categorization of security issues focused in each service

model (SaaS, PaaS, and IaaS), and we identified which

service model can be affected by specific threats. Also, we

described the relationship between these threats and vul-

nerabilities and provided possible countermeasures (secu-

rity patterns) for each identified threat. For the preparation

of this paper, we also looked at other analyses of cloud

security issues [16, 35–37]. In particular, Kalloniatis et al.

[38] was useful to provide a conceptual framework.

We described three specific cloud threats in the form of

misuse patterns [14]: Resource Usage Monitoring Infer-

ence, Malicious Virtual Machine Creation, and Malicious

Virtual Machine Migration. The Resource Usage Moni-

toring Inference misuse pattern describes how an attacker

by colocating his virtual machine in the same server as the

victim can infer some information. The Malicious Virtual

Machine Creation misuse pattern depicts how an attacker

can create a virtual machine image (VMI) which contains

malicious code in order to infect other virtual machines

that use this image. Malicious Virtual Machine Migration

describes how a virtual machine can be compromised while

being migrated to another server. We talk more about

misuse patterns in Sect. 7.

We developed an RA that provides a conceptual view of

cloud systems [11, 12]. Since clouds are complex systems,

we presented each service model as a compound pattern2

which describes its requirements, characteristics, main

units, and the relationship between these units. We also

2 A pattern composed of simpler patterns.

Requirements Eng

123



included some use cases that describe common functions

for cloud services in general as well as for each service

model. The model of Fig. 1 is the highest level view of the

architecture, the cloud computing environment, called a

cloud ecosystem in [8], and its main purpose is to provide a

perspective of its components. Each component can be

refined in the same way to define concrete architectures; for

example, the network model can include firewalls or soft-

ware-defined network (SDN) structures [39]. In Sect. 9, we

show a refinement of its administrative structure. We build

on that RA to define our SRA.

We summarize now this RA (Fig. 1). The Portal is the

way to access cloud services. A cloud is composed of cloud

services, infrastructure (cluster), and support services.

Cloud physical resources can be located in different zones

or clusters. A cluster is a collection of nodes that are

located within a close physical proximity. A node is made

up of a set of Hardware units (Servers, Storage and Net-

work), virtual machines (VMs), and a virtual machine

monitor (VMM). A VMM creates and manages virtual

machines and makes direct access to the hardware on

behalf of them. The fundamental cloud service levels are

Software-as-a-Service (SaaS), Platform-as-a-Service

(PaaS), and Infrastructure-as-a-Service (IaaS). The SaaS

provides on-demand Applications, while the PaaS offers

Virtual Environments such as Development, Deployment,

and Testing Environments, which include programming

languages, databases, libraries, and other tools. IaaS pro-

vides virtualized resources such as servers and storage that

can be assigned to virtual machines. Support services are

needed to provision the creation, implementation, and

management of cloud services which we call collectively a

Cloud Management Point, discussed in Sect. 9. Business

Support Services provide centralized management of cloud

resources, including metering, billing, reporting, and

account administration. Operational Support Services are

responsible for monitoring, provisioning, and other man-

agement functions such as configuration, upgrading, and

installation of the system. Non-Functional Services include

security, privacy, availability, reliability, interoperability,

and possibly other quality factors.

3 Related work

A number of SRAs have appeared, most of them from

cloud vendors; we discuss them below. Some papers pro-

pose architectures for specific defenses against one type (or

a few types) of attack. Chonka et al. [35] describe a

mechanism to detect and filter DoS attacks against clouds.

Prolexias products also defend against DoS [40], and a

survey of IDS techniques for clouds is given in [41]. Juels

Fig. 1 Class diagram for a cloud computing environment

Requirements Eng

123



and Oprea [42] include an authentication structure, an

auditing approach, and an availability mechanism and

focus on the integrity of the data stored in the cloud. Data

risks in the cloud are discussed in [1]. EMA [43] empha-

sizes the need to protect the administrative functions.

Although they are useful works, their scopes are too narrow

to define SRAs. Some ontologies have also been proposed,

e.g., [44, 45], but they mostly define terms used in cloud

computing, to be used in cloud selection and recommender

systems. Others discuss general security issues in clouds

[36, 38].

Other papers consider secure architectures oriented to

some specific objectives. Lombardi and Di Pietro [46] start

by analyzing the origin of attacks and propose a secure

architecture3 for IaaS. Their approach assumes a Trusted

Computing Base that provides trusted VMs. They define

the requirements for a monitoring system that watches for

modifications to the kernel data and code. Their architec-

ture includes logging and periodic checksums of execut-

able files and libraries as well as analysis of performance

overhead, and they tested it using some known attacks.

Campbell and his group are building middleware for

assured clouds [9]; their system handles security and reli-

ability through a set of agents. Neither paper uses a global

architectural model of the system to define these functions.

Ruth Breu’s group proposed an RA for the security services

of the SaaS level [10]. They use enterprise patterns but no

security patterns. Their SRA is basically a deployment

model. They do not try to relate SaaS security to IaaS

security, which may result in redundant mechanisms and

services. A theoretical model of a few specific cloud

platforms uses a Petri net model with a simplified archi-

tecture and no security [47].

A few security architectures consider security functional

aspects, as opposed to ours which addresses structural

aspects [16, 48]. The best known of these is the Trusted

Cloud Initiative (TCI), which was proposed by the Cloud

Security Alliance (CSA) [16], and presents a set of func-

tional layers: presentation, application, information, and

infrastructure. These approaches are complementary to our

SRA’s approach.

Several SRAs come from industry:

• IBMs reference architecture includes business support

services (accounting, billing), a SLA model, customer

management, operator support services, virtualization

management, monitoring, event management, and

image lifecycle management [6, 49]. Its version 3.0

has also a section on security [50]. They use LDAP-

based authentication, role-based access control

(RBAC), encryption, and other mechanisms as well as

following the OAuth standard [51]. All this is described

in an informal way using lists and block diagrams.

• Microsoft uses role-based access control (RBAC)

applying a need-to-know policy to access resources,

as well as multifactor authentication, and logging/

auditing functions [7]. Interesting features include

protection of network DNSs using ACLs and secure

lifecycle development for applications. They apply a

defense-in-depth strategy and perform penetration test-

ing. They also mention the use of code patterns and

tool-based validation.

• Okuhara et al. [52] describe Fujitsu’s security archi-

tecture which emphasizes the logical separation of

computational environments, source code reviews,

authentication, and identity management (using WS-

Federation). They also bring up the need for transpar-

ency from cloud providers, the use of a security

dashboard for visualization of security functions, and

the need to separate logging and monitoring functions.

• Amazon describes in [53] the security aspects of their

web services which include their cloud services. They

comply with the Payment Card Industry (PCI) Data

Security Standard (DSS) [54], and control configuration

management as well as standard authentication and

authorization functions. The paper also describes the

security of their virtual private clouds, of their

MapReduce database, and the handling of their firewall

protection. Their security features are presented as a

list, and no architecture relating them is given.

• VMware describe their SRA in terms of their hardware

units with a few details of their functional aspects and

its mapping to the PCI architecture [55].

• Oracle describes their SRA in [56]. They have three

versions of it, oriented to data security, fraud detection,

and compliance. These architectures are mapped to

their products.

• Cisco has a SRA called SAFE [57]. They claim to

apply principles like defense in depth, modular design,

and best practices; but they do not offer much detail of

their SRA, although they claim to have more detailed

descriptions.

• Juniper Metafabric architecture [58] emphasizes net-

work aspects based on SDN.

• Trend Micro provides a centralized management inter-

face for physical, cloud, and virtual end point security

tools, while integrating the policies for end point

security into their SecureCloud offering [59]. Their

SRA is used to integrate their security mechanisms.

• Other companies have published reference architec-

tures—e.g., Eucalyptus [60], Hewlett Packard [5]—but

in them security is barely mentioned. Some patterns for

cloud computing—including a few security patterns—

3 A secure architecture is a specific architecture with some security

properties, while a SRA is a generic model representing the security

features of any architecture.

Requirements Eng

123



are assembled in the form of a SRA in [61], but they do

not provide much detail.

Two SRAs come from standards organizations:

• A complete and specialized SRA is the PCI-compliant

cloud reference architecture, which defines a basic

framework for building clouds that are compliant with

the PCI DSS standard [54]. This SRA defines a cloud

architecture using products such as VMware, Cisco,

Trend Micro, and HyTrust. It shows how the security

controls obtained through these products can meet the

PCI DSS requirements. This architecture consists of

four fundamental layers: The cloud application layer

represents the external interface for user access to cloud

services. The business orchestration layer consists of

the configuration of the cloud entities and the gover-

nance policies for controlling the cloud deployment.

The service orchestration layer coordinates services,

and the infrastructure layer defines the platforms to be

used. This architecture attempts to provide security

requirements that cloud providers should follow in

order to meet the PCI DSS standards using specific

products. However, this standard is not based on threat

analysis and uses specific products of the companies of

the authors of the architecture.

• The most comprehensive work on a cloud SRA comes

from NIST, which has published a report that describes

in great detail the aspects of such an architecture [8]. It

also describes the functions of the Broker, the Auditor,

and the Communications provider that we consider part

of the cloud computing environment. This architecture

is more general than those of vendors and also more

abstract. However, its model is not very precise and

uses only block diagrams. They do not consider threats

either.

The SRAs from commercial sources emphasize the use of

their own products and are not general or formal enough to

be used for research or even to select a specific architec-

ture; Muller and van der Laar emphasize that RAs should

not be system or product-line specific; the NIST SRA is

more abstract, but still imprecise [30]. In all of these

architectures, the lack of more precise or rigorous models

is a clear weakness. They typically use block diagrams

which show the involved components, but not the way they

associate with each other; for example, the fact that an

association between components is one to many is not

shown in the models.

It is not clear in those models where the security

mechanisms should be attached to specific functional units;

saying that authentication is used in the system is not

enough. Because they do not use patterns, it is difficult to

see commonalities between subsystems; every subsystem is

an ad hoc unit. Some academic papers are more rigorous,

but they only focus on specific mechanisms and lack a

global view. Except for [46], none of these SRAs considers

threats (at least not explicitly), to determine what security

mechanisms should be included. Our work attempts to

improve this situation, and it subsumes all these models in

that all their specific architectures can be produced as

specializations of the SRA.

The closest work to our paper we have found also uses

patterns, but their objectives are different: They are

establishing a cloud-specific security management system

[62]. The functions of such a system include determining

assets, consideration of regulations, policy definition, and

privacy. Their model is oriented to fulfill the ISO 27000

security regulations.

4 Securing a cloud reference architecture

We show now how to build a SRA and present a meta-

model to relate the concepts we use. Subsequent sections

provide details of the steps. Remember that our objective is

to show how to produce a SRA, not to present a complete

one.

4.1 Procedure to define needed security services

We show a set of steps to find out what security services we

need and where to insert them in the functional architec-

ture. It is not a methodology to build secure applications as

the ones surveyed in [63]. The steps, described in Fig. 2,

include the following:

• We start from typical cloud use cases and their

associated roles. Lists of cloud use cases and roles

are shown in [28, 64] (see Sect. 5).

• We analyze each use case looking for vulnerabilities

and threats as in [22]. This implies checking each

activity in the activity diagram of each use case to see

how it can be attacked. This approach results in a

systematic enumeration of threats. We use the list of

threats from [2] to confirm these threats and to find

possible further vulnerabilities and threats (see Sect. 6).

• These threats are then expressed in the form of misuse

patterns. We developed some misuse patterns for cloud

computing in [14], and we consider more of them here

(see Sect. 7).

• We apply policies to handle the threats, and we identify

security patterns to realize the policies. There are some

defenses that come from best practices and others that

handle specific threats. There are also regulatory

policies which are realized as security patterns. We

use an example of cloud administration (see Sect. 9).

Requirements Eng

123



• We refine sections of the architecture and secure them

in similar fashion to get to the final model (see Sect. 8).

The justification of these steps is based on the fact that use

cases define all possible interactions with the system if we

leave out the possibility that the attacker can have physical

access to the cloud. If we analyze each activity in each use

case, we can identify all threats for which we can later find

defenses. We show in the next sections all the steps above

in more details, but first, we present a metamodel to relate

our concepts.

4.2 A metamodel for securing clouds

Figure 3 relates our security concepts to each other. Threats

take advantage of vulnerabilities that can exist in any cloud

service level. A vulnerability is a flaw in the system

implementation or in its configuration and use. A SRA is

not concerned with vulnerabilities, but with the use of them

in its concrete instances by attackers to reach their goals

(threats). Threats come from analysis of use cases (Sect.

6.1) or from published threat lists [2, 34]. Each use case

has a set of roles that describe the participants in the use

case. We can stop a threat by removing the corresponding

vulnerability or by controlling its propagation (by remov-

ing other vulnerabilities) through the use of a Security

Pattern. The security pattern to use can be selected from

the countermeasures defined in the misuse pattern which

describes the threat (see Sect. 7). As indicated, we can also

select security patterns to apply from the list of threats, but

it is more economic to select only the security patterns

needed to stop the identified misuses. In other words, there

could be a threat that may not lead to any significant

misuse, and we do not need to prevent it. Security patterns

can also be selected from some methodology based on

patterns [63], even if those methodologies are oriented to

build specific types of applications. Threats that lead to

misuses are the goals of the attacker and are performed

through low-level threats in the threat list or directly

through a use case operation.

Some threats apply to all service levels. For example,

buffer overflow is a language problem and allows escala-

tion of privilege by the attacker operating at any level.

Other threats are specific to the level; for example, a

financial application can be attacked by taking advantage

of lack of proper authentication in remote access to

accounts. If the threat takes advantage of a flaw in an

application, it may compromise the security of that appli-

cation. If the threat affects the IaaS level, it affects all the

cloud computations; and if it happens at the PaaS level, it

can affect all the applications developed or deployed in the

cloud.

5 Stakeholders and use cases

As indicated, use cases define all the interactions of users

with a system. If we enumerate use cases and look at all their

activities (steps of the use case), we can find all the places

where an attacker can compromise the system. Determina-

tion of threats is based on postulating the possible ways in

which an attacker could get some gain. We look first at the

stakeholders and then at the use cases of a cloud system.

Fig. 2 Securing a cloud

reference architecture

Requirements Eng

123



5.1 Stakeholders (actors)

We need to look at the actors (defined by their roles) which

participate in the operation of a cloud system. We identify

here the stakeholders involved in the use and operation of

the cloud, which include the following:

• Service Consumer (SC), or customer—this can be an

individual or an institution, collectively denoted as

Party,4 including different roles such as end user,

developer, IT manager, and others. They can use

services at any level.

• Service Provider (SP)—it is a company or institution

providing a set of cloud services, a complete level of

services (e.g., PaaS), or a specific set of services

(possibly through a cloud broker).

• Cloud Administrator—a person or group of people in

charge of cloud management. One of them is the

Security Administrator. There may be also a Resource

Administrator, a Virtualization Administrator, and

others [49].

• Cluster Administrator—clusters correspond to geo-

graphic zones and each zone may have a local

administrator.

• Cloud Auditor—person who inspects compliance with

regulations or standards.

• Service Broker (or cloud broker)—trusted parties that

combine services from different SPs and enforce

regulations and practices [8, 66].

• Cloud Builder—the team who sets up the operations of

the SP [67].

• Cloud Application Builder—those who build applica-

tions to execute in the SP or use services from the SP.

There are others, all of which correspond to roles or actors

in some use cases. Sets of stakeholders, developers using

PaaS, are given in [49, 68]. These roles participate in one

or more use cases, which define their interactions with the

cloud system. We show in the next section some uses cases

for security administration. Similarly, we should develop

sets of use cases for virtual machine management and other

functions.

5.2 Use cases for security administration

Security administration is a fundamental function of the

SP. We need a complete and usable structure to let

administrators define an effective security structure. This

structure should be part of a more encompassing service

management unit. A typical realization is in the form of a

Policy Management Point (PMP), a type of security dash-

board for security administrators to analyze the security

status of the system and where administrators can define

access rules [52, 69].

We show here some use cases for the functions of the

security administrator. We also need to add security

Fig. 3 Metamodel of the

concepts used to secure clouds

4 Party is also a pattern [65].

Requirements Eng

123



functions to every use case for the cloud customers; e.g.,

most use cases require at least login, which usually implies

authentication and in order to access resources users need

authorization and logging.

Without loss of generality, we assume role-based access

control (RBAC) as authorization model. In RBAC, a user is

assigned to roles, and rights are assigned to a role [70].

There are some security functions that can be applied to all

cloud models as well as other types of systems. This is just

an illustrative list; it is necessary to define a structured

governance function from which security functions and

policies can be derived.

• Login Provides entrance to a portal for users to access

cloud services (usually an ‘‘include’’ use case).

• Create user A user can be a single individual or an

institution (collection of users), described as a Party

pattern.

• Delete user Once a Service Provider employee leaves

the company or a customer closes his account, the

account that corresponds to him is erased.

• Create role A role defines a task that a person performs

in his job. Examples of roles were shown in Sect. 5.1.

Rights are assigned to roles.

• Delete role A role can be deleted if there are no users

associated to it or it is not considered useful.

• Assign rights to a role Rights define the functions that a

role can perform in the system. For instance, a cluster

administrator can migrate virtual machines within his

jurisdiction.

• Assign roles to a user Users must be given roles before

interacting with the system.

• Set up security options Security administrators define

what cryptographic measures will be implemented

across all cloud layers. They also set up the authori-

zation model and the authentication methods.

Once we know the roles involved and the way they interact

with the cloud, we can find the threats to the system.

6 Identifying and controlling threats

In order to define the required defenses, we first identify

threats to this system and then consider how to control

them. We apply here our threat enumeration and control

approach [22].

6.1 Identifying threats

Some authors, e.g., [71], define security mechanisms based

on security attributes derived from institution policies or

previous security analysis. General measures result in

excess of security mechanisms, which is costly and reduces

performance. Security mechanisms should be added to the

system in order to control specific threats. We can enu-

merate threats systematically by considering each activity

in each use case and analyzing its possible threats.5 The

approach considers all the activities where attacks can

occur. For illustration, we use an example of a VMI

Repository, which stores VM images for use by service

consumers and which is part of the administrative functions

of the cloud. We apply to each action in this repository the

STRIDE attacks [73]; e.g., read a VMI (confidentiality

attack), or tamper with a VMI (integrity attack). We leave

out of the list Escalation attacks because they are not

attackers’ goals, they are just means to their goals. The

specific types of attacks may not be exhaustive, and we

complement them with the analysis of security threats in

[2], which lists cloud threats described in the literature,

including the OWASP list [34]. We do not show all the

identified threats, e.g., DoS, because they would make the

diagram hard to read, we use a table as in [22].

Figure 4 describes an activity diagram that corresponds

to a sequence of use cases: Create VMI and Publish VMI.

For example, when a consumer creates a VMI, she can

inject in it malicious code (see Sect. 7). Table 1 summa-

rizes an analysis of each action in the activity diagram

according to the security attributes which may be com-

promised, the source of the threat, and the assets that can be

compromised. The affected security attributes are confi-

dentiality (CO), integrity (IN), availability (AV), and

accountability (AC). The source of the threat can be an

authorized insider (AIn), an unauthorized insider (UIn), or

an outsider (Out). A1–A4 represent the normal flows, the

rest are malicious flows of information. Tij denotes the jth

threat in Activity Ai.

6.2 Cloud defenses

We have developed a variety of security patterns for all the

architectural levels of a system, including some for mid-

dleware distribution concerns [13]. Several of these apply

directly to clouds, but others may need to be adapted for

cloud environments. We also need new patterns. In this

section, we provide a list of some security patterns for clouds

and provide some examples, which can be used as general

guidance. We use again the VMI Repository as example.

After we have identified threats by analyzing the

activities of use cases, we can find security patterns that

mitigate or stop these threats. We can now evaluate whe-

ther these security patterns (defenses) cover the threats. For

instance, as shown in Table 2, we can apply existing

security patterns to mitigate or stop some of the threats

identified in Table 1. The Authenticator and Authorizer

5 Note that this is more precise than using misuse cases [72].

Requirements Eng

123



patterns [13] can stop T11, T31, T33, and T41, because

now only authenticated and authorized users can publish a

VMI. The Filter component mitigates threat T41.6 Any

authorized user can store his VMI in the public repository,

but it will be scanned to remove any malicious code before

being stored, although this action does not guarantee that

malware will be eradicated. The Secure Channel mitigates

T21 and T22, which provides integrity and confidentiality

while the VMI is being transmitted. These patterns will

Fig. 4 Activity diagram for use cases ‘‘Create VMI’’ and ‘‘Publish VMI’’

Table 1 Misuse activities analysis

Actor Action Misuse activity

ID Security attr. CO/

IN/AV/AC

Source AIn/

UIn/Out

Description Attacker Asset

Cloud

consumer

A1: Create

VMI

T11 IN Out Insert malicious code in the image Malicious

consumer

VMI

Cloud

consumer

A2: Send

VMI

T21 CO Out VMI may be read and copied while

being transmitted

Extern VMI

T22 IN Out VMI may be modified while in

transit

Extern VMI

T23 AC Out Disavows sending a VMI Malicious

Consumer

VMI

IaaS

administrator

A3:

Receive

VMI

T31 CO AIn/UIn Collects sensitive information from

VMI

Malicious admin VMI

T32 AV AIn Disavows receiving a VMI Malicious admin VMI

T33 IN UIn/AIn Insert malicious code in the image Malicious admin VMI

IaaS

administrator

A4: Store

VMI

T41 IN UIn/AIn Store poisoned VMI Malicious admin or

consumer

VMI

6 As there is no pattern for this function, we can consider it a ‘‘best

practice’’.

Requirements Eng

123



become components of the Secure VMI Repository pattern

as well as of the SRA. In general, there are several sys-

tematic methodologies to use patterns to stop threats [31].

Moreover, since web services are commonly used in

clouds, we can apply security web services standards to

secure cloud environments by using concrete versions of

the patterns used in Table 2. We have developed some

patterns for security web services standards such as WS-

Security, XML Encryption, and XML Signature, most of

which are surveyed in [74, 75] and described in [13].

7 Misuse patterns for SRAs

7.1 Applying misuse patterns

Misuse patterns start from the goals of the attacker and

describe the ways the attacker accomplishes her goals in a

specific architecture [25, 26]. A misuse pattern describes

the sequence of messages that the attacker sends to dif-

ferent components of the architecture in order to reach her

goals. The involved components are some of the compo-

nents of the RA (or from refinements of some component),

which act as guidelines to locate the actions of the pattern.

The misuse pattern also indicates in which units we can

collect evidence of an attack; again the units of the RA are

used as guidelines. This implies the following:

• Misuse patterns cannot be used at the requirements

stage because at that moment the architecture is not yet

defined, we need an RA as a guideline.

• There may be several variations of the misuse pattern

that correspond to the different ways that an attacker

can accomplish her objectives.

• We can use the misuse patterns to evaluate the security

of the final model, as shown in Sect. 10.2.

For illustration purposes, we show a misuse pattern in the

next section (Sect. 7.2). This work can be extended by

completing the catalog of misuse patterns to include those

threats identified in [14]:

• Covert channels in clouds covert channels allow inter-

VM communication bypassing the security rules of the

hypervisor.

• Virtual machine escape it describes how to exploit the

hypervisor in order to take control of the underlying

platform.

• Virtual machine hopping it describes how a virtual

machine can access other virtual machines, for exam-

ple, by exploiting the hypervisor.

• Sniffing virtual networks it describes how a virtual

machine can listen to the virtual network traffic in order

to get confidential information.

• Spoofing virtual networks it describes how a malicious

virtual machine can intercept information in the virtual

network with the purpose of altering its routing function.

7.2 Malicious virtual machine migration process

(misuse pattern)

7.2.1 Intent

The attacker tries to provoke leakage of sensitive infor-

mation or modify the VM content while it is in transit.

7.2.2 Context

Cloud environments rely on virtualization. The virtual

machine monitor (VMM) provides the foundation for vir-

tualization management. One important use of a VMM is

the migration of a VM from one VMM to another for

reasons of availability, hardware maintenance, fault toler-

ance, and load balancing [76].

7.2.3 Problem

To perform some types of misuse, it is necessary to be able

to monitor and intercept the transfer of a VM from one

server to another.

The attack can be performed by taking advantage of the

following vulnerabilities:

Table 2 Threat List versus defenses

ID Threats Defenses

T11 The cloud consumer is malicious and inserts malicious code into the VMI Authenticator–Authorizer

T21 An external attacker listens to the network to obtain information about the VMI Secure Channel

T22 VMI may be modified while in transit Secure Channel

T23 Disavows sending a VMI Security Logger/Auditor

T31 The IaaS administrator is malicious and collects information within the VMI Authenticator–Authorizer

T32 The IaaS disavows receiving a VMI Security Logger/Auditor

T33 Insert malicious code in the image Authenticator–Authorizer

T41 The IaaS administrator stores a malicious VMI Authenticator, authorizer, filter

Requirements Eng

123



• The migration process involves transferring the VM

content across a network that can be insecure such as

the Internet.

• The VM may be transferred in clear text. Thus, its

information can be captured or modified by an attacker.

• The VMM module that handles migration operations

can be compromised and the VM directed to the

attackers’ node.

• A VM can be transferred to a compromised host where

its contents can be accessed by the attacker.

• The content of the transferred VM may have malicious

code and compromise the receiving node.

7.2.4 Solution

When a VM is transferred from one server to another, an

attacker can monitor the network and obtain some confi-

dential information or manipulate the VM content while it

is in transit. Also, the attacker can intercept the VM

transference and modify some sensitive information or

inject malicious code into the transferred VM (Man-in-the-

Middle attack). Finally, the attacker can compromise the

VMM and gain full control of the migration process.

Structure

Figure 5 shows a class diagram for VM Migration

Process. A Party can be either a User or an Institution (set

of users). A Party can have several Accounts. A Party

makes requests to the Cloud Controller via a Portal. A

cloud is composed of clusters, where each cluster com-

prises a set of nodes. A node is a collection of Hardware

(Servers, Network, and Storage), a VMM, and a set of VMs.

A VMM creates and manages VMs. A VM is a software

implementation of a machine that executes programs. Its

kernel operations are performed by calls to the VMM.

VMMs assign instances of the virtual machine to a physical

server, which includes other hardware resources. The

VMM manages the migration process of a VM from one

server (VMM) to another.

Dynamics

UC1: Man-in-the-middle attack during VM migration

process (Fig. 6)

Summary: An attacker listens to the network during a

migration process to obtain some confidential data.

Actor: Attacker, Cloud Manager.

Precondition: The attacker has impersonated both the

source and the destination VMM

Description: The use case considers following actions.

(a) The attacker starts monitoring the network traffic.

(b) The Cloud Manager requests to migrate a VM from

one VMM to another one. The request will be

forwarded from Cloud Controller to Cluster

Controller, and then to the Node Controller, and

finally the VMM will perform the migration process.

(c) The source VMM requests VM migration to the

destination VMM.

(d) The source VMM starts transferring the VM to the

destination VMM.

(e) The attacker captures the traffic being transmitted.

(f) The attacker modifies or injects malicious software

to the VM.

(g) The destination VMM receives the VM and starts the

new VM.

Postcondition: The attacker captured and modified the VM,

which can lead to future attacks.

UC2: DoS by migrating many VMs to a victim VMM

(Fig. 7)

Summary: A large number of VMs are transferred from

a compromised VMM (VMMc) to the victim (VMMd).

Actor: Attacker.

Precondition: The source VMM has been compromised

and the attacker has gained control of the migration

module.

Description: The use case considers following actions.

(a) The attacker requests to migrate a list of VMs to the

victim VMM. The request will be forwarded from a

Cloud Controller to a Cluster Controller, then to the

Node Controller, and finally the VMM will perform

the migration process.

(b) The compromised VMM requests VM migration to

the victim VMM (VMMd).

(c) The destination VMM accepts the request.

(d) The compromised VMM starts transferring several

VMs.

(e) The victim VMM receives the VMs and starts the

new VMs.

Postcondition: The attacker has overwhelmed the victim

machine by migrating a large number of VMs to the des-

tination machine.

7.2.5 Consequences

Some benefits of the misuse pattern are the following:

• The attacker can intercept the VM and obtain some

confidential information, or he can modify the content

of the VM while it is crossing the network.

• After the attacker compromises a VMM, he may send a

large number of VMs to a victims’ machine, causing

disruptions or denial of service.

• A compromised VMM can transfer the victims’ VM

to the attackers’ machine, gaining full control of the

VM.

Requirements Eng

123



• A transferred VM may contain malicious code that can

infect other VMs that are under the control of the target

VMM.

Possible sources of failure include the following:

• When the attacker eavesdrops on the communication

channel, he may not get all the necessary data.

• Some defenses described in the next section can stop

this attack.

7.2.6 Countermeasures

Insecure VM Migration can be stopped by the following

countermeasures:

Fig. 5 Class diagram for

malicious VM migration

process

Fig. 6 Sequence diagram for the use case ‘‘man-in-the-middle attack during VM migration process’’

Requirements Eng

123



• Santos et al. [77] proposes a Trusted Cloud Computing

Platform (TCCP) that provides confidential execution

of guest virtual machines. It provides secure VM launch

and migration operations.

• Zhang et al. [78] proposes a secure migration system

that provides VM live migration capabilities under the

condition that a VMM-protected system is present and

active.

• The connection between the source and the destination

VMMs should be authenticated and encrypted during

the migration process.

• Isolate VM migration traffic to prevent eavesdropping

attacks.

• Danev et al. [79] proposes a virtualization of TPM

(Trusted Platform Module) that secures the VM

migration process by protecting private information

and detecting malicious software.

• Protect the VMIs such that a compromised node cannot

produce poisoned VMs. This defense is described by

the security pattern Secure VMI Repository (See Sect.

9.1).

7.2.7 Forensics

Where can we find evidence of this attack?

• The provider can keep logs of the VMs that are

transferred from one machine to another. Also, it can

store information about the source and destination

VMMs. Finally, we can also add detection of malicious

software and failure to check correctly information

integrity.

7.2.8 Related patterns

• Secure VMI Repository (See Sect. 9.1)

8 Secure reference architecture

As indicated earlier, the identified threats can be neutral-

ized by applying appropriate security patterns. As an

example, Table 2 in Sect. 6.2 shows how each threat in

Table 1 can be controlled by a corresponding security

pattern. Once security patterns are selected, we apply them

into the RA in order to stop or mitigate threats. Security

mechanisms are added to the basic RA, including

Authenticator, Authorizer, Security Logger/Auditor and

others that mitigate specific threats. To avoid impostors, we

can use the Authenticator so that every action with the

cloud is authenticated. The Security Logger/Auditor is used

to log all activities that can be used for auditing at a later

time. For authorization, we use role-based access control

(RBAC), or a similar model, so only authorized users can

perform some actions to assets. To avoid storing infected

VMI, they are scanned and filtered before storing them in

the VMI Repository.

Fig. 7 Sequence diagram for the use case ‘‘migrate many VMs to a victim VMM

Requirements Eng

123



Figure 8 shows the class diagram of the resulting secure

IaaS architecture pattern, which is the most important

level of the SRA. In this model, the package Authenticator

is an instance of the Authenticator pattern [13] and enables

the Cloud Controller to authenticate Cloud Consumers/

Administrators. Instances of the Security Logger/Auditor

pattern are used to keep track of any access to cloud

resources such as VMs, VMMs, and VMIs. The Reference

Monitor enforces authorization rights defined by the

RBAC instances [13]. The Filter scans created virtual

machines in order to remove malicious code. At this

moment, we have secured the VMI administration which

is part of the cloud. We continue in the same way to

secure the rest. For example, the Authorizer controls

access to the Cloud, Cluster, and Node Controllers; the

Security Logger/Auditor logs the security-related activities

of the VMM, and so on.

At the SaaS level the responsibility for security is in the

hands of the corresponding SP; that is, if I run a travel

agency in this level, I need to provide for my clients:

authentication, authorization, encryption, etc. These secu-

rity services must be supported at the IaaS level, including

security administration (see Sect. 9.2). It is most conve-

nient and more unified to base these services on the IaaS

services, and we will not show here a model for PaaS

security functions; for example, a SP in the SaaS level can

map its authorization model into the IaaS authorization

model. Another possibility is to use a specialized RA for

this level [10], which can then be mapped to the IaaS level

to avoid unnecessary redundancy. The same situation

Fig. 8 Class diagram of the secure IaaS pattern

Requirements Eng

123



occurs at the PaaS level, where the corresponding SP must

provide control of the components at this level. Again,

these functions should be based on those of the IaaS level.

Putting together the models for the three levels, described

as patterns, we would have a complete SRA, where its units

can be refined as needed. We do not show the models for

the PaaS and SaaS levels for simplicity, their unsecured

models can be found in [11].

The rest of the architecture is built similarly. Figure 9

shows the complete secure IaaS architecture pattern. In this

model, the subsystem Authenticator is an instance of the

Authenticator pattern and allows the Cloud Controller to

authenticate Cloud Consumers/Administrators, or other

components of the architecture that could be important.

Log indicates instances of the logging pattern, and it is

used to keep track of any access to a cloud resource such as

VM, VMM, and VM image repository. The Reference

Monitor reinforces authorization rights defined by the

RBAC instances. The Filter scans all virtual machines in

order to remove malicious code.

9 Security patterns applied to cloud security

administration

After analyzing threats, we considered possible security

patterns to handle them. We show now how we can build

secure units of the SRA by adding security patterns. Spe-

cifically, we show the development of a secure adminis-

tration unit, starting from a pattern for a Secure VMI

Repository. We have produced a security pattern to

describe the functions of this model [80] and we partially

showed it here as illustration.7 Note that this pattern and all

Fig. 9 Complete secure IaaS pattern

7 It lacks sections Example, Implementation, Known Uses, Conse-

quences, and Related Patterns.

Requirements Eng

123



patterns are not plug-ins, but are used by instantiation and

where we can tailor them according to the application

needs. We describe both security and misuse patterns using

the pattern template of [81].

9.1 Secure virtual machine image repository (security

pattern)

9.1.1 Intent

Avoid the poisoning of VM images (VMIs) during their

creation and the leaking of sensitive information acciden-

tally left in the VMI by enforcing access control and fil-

tering in the image repository.

9.1.2 Context

Cloud computing providers publish VMIs in order to let

consumers (clients) instantiate VMs. In some cloud sys-

tems consumers are also allowed to store VMIs for public

use.

9.1.3 Problem

VMIs are necessary for creating VMs, but an attacker may

place in the VMI repository images with malware that

could infect virtual machines that are created using the

poisoned images.

The following forces will affect the solution:

• Clean Images A VMI could contain malware and we

need to provide the consumers with clean images

before they use them. An infected VM could misuse

customer data or attack other VMs.

• Data leakage prevention Users may accidentally leave

sensitive data in the VMI and we need to prevent that

leakage.

• Repository access Having an open repository is some-

times convenient, but it may allow malicious actions.

We need some form of access control for images.

• Overhead The security controls should not significantly

affect the performance of the system or the users will be

hindered in their work.

• Records The use of a VMI is important for security,

billing, and statistics. We should record this activity.

9.1.4 Solution

Provide a mechanism to control access to VMIs in order to

prevent attackers from placing or producing poisoned

images. Before placing a new image or using an existing

image clean it by scanning and filtering. Keep a log of the

repository use.

Structure Figure 10 shows a class model for the secure

VM images repository system. The virtual machine image

repository holds a set of VMIs that can be used to

instantiate virtual machines. The Reference Monitor uses a

Filter that scans all VM images before being published or

retrieved. The Authenticator is an instance of the Authen-

ticator Pattern that allows the Reference Monitor to

authenticate the users that access the repository, who can

publish or retrieve images if the Authorizer authorizes

them. The Reference Monitor pattern enforces the autho-

rization rights defined in the Authorizer. The Security

Logger/Auditor keeps track of accesses to the repository.

9.2 Security administration model

Figure 10 includes the classes of the Secure VMI Reposi-

tory pattern as an extension to two units of the cloud RA

that implement some use cases of the cloud. In this way we

can secure all units of the RA.

Some more security patterns for this purpose would be

the following:

• Secure migration process it provides protection for live

and offline migration.

• Secure hypervisor reinforces the security of the hyper-

visor to avoid some attacks.

• Secure virtual network it secures the communication

among virtual machines.

• Virtualized Trusted Platform it provides a framework to

determine whether the environment is secure before

launching a virtual machine.

• Web application scanner/filter it scans web applications

in order to identify security vulnerabilities and sensitive

data.

• Cloud data protection it protects sensitive data while it

is processed, stored or transferred (encryption, digital

signature, fragmentation-redundancy-scattering, homo-

morphic encryption).

• Secure DNS where Access Control Lists (ACLs) are

used to protect the DNS [7].

• Security Group Firewall it divides the firewall in

customer groups that have similar filtering require-

ments [82].

• Cloud-based Web Application Firewall (CWAF)it con-

trols access to web applications communicating through

HTTP according to authorization rules with the objective

of stopping XSS, SQL injection, and similar attacks [82].

10 Validation of the SRA

RAs are abstract models and cannot be evaluated with

respect to security or performance through experimentation

Requirements Eng

123



or testing. An RA is similar to a pattern, and it has a similar

use; it is a paradigm to guide implementation of new sys-

tems or evaluation of existing systems as well as other uses

described in Sect. 10.1. Their evaluation must be based on

how well they represent the relevant concepts of the sys-

tems they describe, how well they handle potential threats,

how complete they are, how precise they are, how they can

be applied to the design or evaluation of systems, and how

useful they are for other relevant functions. Their final

validation comes from practitioners who can find them

useful and convenient to build concrete architectures.

In particular, we indicated that our models are ‘‘more

precise’’ than those in the literature. All of these models are

given in words accompanied by block diagrams. A UML

representation in general and patterns in particular are more

precise in the sense that UML syntax is well defined, ste-

reotypes and profiles can add some semantics, OCL can

add formalization, and patterns have well-defined tem-

plates, with specific information. Our approach is clearly

more precise.

To show its completeness, a SRA should be able to

represent all the security features in commercial SRAs. We

have compared our SRA with the one proposed by NIST,

and we have applied it to check if the industrial SRAs

described earlier included features that we do not have. We

found that our model could represent all the security fea-

tures shown in the published models. In fact, none of the

industrial models had all the security aspects of our SRA.

Furthermore, their SRAs included implementation aspects

and all of them were shown in block diagrams with

undefined semantics. In other words, we can say that our

SRA is more complete and precise than all the published

models.

Another type of validation refers to the usefulness of the

SRA, which is shown in the next section by enumerating

some of the practical uses of a model like ours. One of

those uses is developed in detail in Sect. 10.2.

10.1 Uses of cloud SRAs

Building a complete SRA that includes all use cases,

components, and roles is lengthy and expensive. To justify

this work, we need to find a good number of uses of value

for the development or use of cloud systems. We show

below such a list. This list can be considered a partial

validation of our model, and it could be a way to validate

any SRA, not just ours. We show one of these uses in

detail, but most of them are future work and are part of our

contribution. Section 10.2 shows details of one of them.

This list indicates possible advantages of having a SRA;

however, there are also some threats to the practical value

of the SRA: To get from a SRA to a practical concrete

security architecture takes a good amount of work, time,

and expertise. The applications of SRAs in the list need to

be developed in detail to be proven useful; we have done

this for a few of them, but for the rest it may turn out that

they are not really useful or convenient to use. There is no

absolute measure of completeness, so it is difficult to know

if we left out some important aspect; for example, use cases

are open-ended and threat enumeration may not include all

possible threats.

A way to understand and decompose a complex system

such as a secure cloud As such SRAs are good tools for

teaching cloud security concepts and train personnel. They

are more effective than textual descriptions or imprecise

block diagrams.

Fig. 10 Secure VMI repository

system

Requirements Eng

123



A guide to orchestrate a secure cloud ecosystem The

complete cloud environment needs the coordination of

brokers, carriers, users, and several other stakeholders. The

SRA is the reference point to align all these functions [8].

Refinements or remodeling of cloud systems We can

describe more specific units or reconfigure them. MyCloud

[83] describes a reconfigured VMM to improve its security;

they did not use a SRA, but it is clear that it would have

helped.

A holistic security view Several authors, e.g., [19, 20],

emphasize the need to develop secure systems in a holistic

way. Systems built piecemeal omit important interactions

that may result in vulnerabilities. A SRA provides such a

holistic view by indicating the places where security

mechanisms can be attached and their effect in the func-

tional parts of the architecture. As such a SRA can be

useful for creating secure cloud development methodolo-

gies [63]. We can expand Fig. 9 by indicating all the points

where threats are neutralized with corresponding security

patterns. Holistic views are very important to combine

quality factors such as safety or reliability with security

[84].

A way to unify cloud terminology Different vendors have

different ways to describe their security services and pro-

ducts. A SRA can be used as a framework to unify terms

and descriptions. This is useful for selecting cloud pro-

viders. Some ontologies for this purpose exist, e.g., [44,

45], but they don’t relate the terms to a RA, much less to a

SRA.

A basis for concrete SRAs SRAs oriented to specific

technologies or products can be derived from our abstract

SRA. A new vendor of clouds systems can use a SRA to

define its product. A SRA built using patterns can lead to

specialized versions by changing adding, removing, or

changing some patterns.

Evaluation of the security of a cloud As shown in Sect.

10.2 we can evaluate the security of a cloud we are

building. If we are considering renting some SP services,

we can use a SRA to evaluate its security by verifying that

the SP includes the corresponding mechanisms.

Selection of cloud providers based on security require-

ments Mouratidis et al. [67] discusses an approach to select

secure clouds, the use of a SRA would make their selection

easier.

Compliance with standards and regulations An RA can

be used to support security standards and regulations,

which can be described as policies which in turn can be

implemented as patterns and made part of the SRA. It helps

architects or designers to identify what components of the

cloud system are associated with the standard and can be

used to comply with the specific rules of the standard.

Applications derived from the SRA will automatically

comply with the standards or regulations. Relating specific

regulations to specific security mechanisms can be used to

demonstrate compliance. Cloud standards, such as OVF

[85], are easier to apply in a SRA.

Security Service Level Agreement (SSLA) An RA can

provide a framework for defining the requirement of the

provider with respect to the requirements of the consumer;

the SRA can define the security mechanisms that the SP

has or could have and the customer can then select them for

the corresponding SSLA. In particular, a SSLA can include

several levels and the SRA makes clear where the services

belong. SSLAs require monitoring to assure that the SP

fulfilled its contact; the SRA is useful to define where

monitoring for this purpose is needed. We can build a

SSLA which must be matched by the provider security

mechanisms. The consumer can use the SRA to clarify her

needs about security and to negotiate with the SP the

quality of service required.

Reference for monitoring functions Monitoring requires

mechanisms to obtain information about the system status.

A SRA provides guidelines about the places where security

events should be collected in order to fulfill SLAs

requirements, for system administration, and for compli-

ance. It may provide a guide for distribution of monitoring

functions to make them more resistant to attacks [86].

There is already a commercial monitoring system which

claims to be model driven [87].

Service certification Critical applications require the use

of certified services. Even in non-critical applications,

certification increases the trust of the consumer; for

example, AWS and Microsoft claim ISO certification.

Certification approaches may use ontologies or other for-

mal models to describe certificates as well as monitoring

requirements. A SRA can be used to guide the certification

process. A cloud provider can show that his services can

handle the corresponding threats which can increase cus-

tomer trust.

Cloud setup The SRA provides a deployment template

for IT teams to assist them in setting up a secure cloud [60].

The SRA provides the scope of resources they need and the

recommended deployment model for specific use cases. It

also provides design choices for the IaaS solution, includ-

ing the physical resources required and a deployment

topology.

Security administration The SRA can be used as a

guideline to define the functions that are needed for

administration. For example, when using RBAC, roles and

rights can be defined with respect to the components of the

SRA (See Sect. 9 for a discussion).

Reference for analyzing attacks to administrative,

security, and monitoring services These functions are

common targets because of their importance and require

careful analysis of threats [86]. The SRA, by showing

explicitly those services allows enumerating their use cases

Requirements Eng

123



and the threats against each activity in them, as we did in

Sect. 6.

Forensics Because of distribution and virtualization,

forensics is particularly hard in clouds. A SRA provides a

framework where we can define what specific evidence can

be collected after an attack and where we can collect it. We

can also use the SRA to define specific points in the

architecture where we can add special mechanisms to

collect forensics.

Analysis of trust Trust can be evaluated using chains of

trust where a component trusts another which in turn trusts

another, and so on. Chains of trust can be used to define

SLAs [77, 88]. The SRA provides a structure to assemble

chains of trust.

Cloud Broker Cloud brokers are considered part of the

SRA in some models [8]. In this case, we need to model

them in the same way and include their security functions.

Brokers are needed when consumers want access to mul-

tiple clouds or to specialized services not available in any

SP. They use patterns such as Adapters and Enterprise

Service Bus. We have written a secure version of the ESB

that can be used in their architecture or in a lower view of a

cloud [13].

Integration of a variety of devices The new trend toward

Bring Your Own Device (BYOD) requires including

mobile devices, sensors, and embedded systems as part of

the cloud architecture. We can define where each device

interacts with the cloud and the security controls they need

for this interaction.

SDN Software-Defined Networking (SDN) to reconfigure

services SDN lets applications manipulate the control

software (which is separated from the data) of the network

resources and devices. This approach is very suitable for

clouds, since they have a dynamic environment where

resources, users, and applications change along time. SDN

can reconfigure networks in the presence of attacks [39];

for example, SDN switches can detect suspicious activity

and react to it. SDN fits well with distributed policy

enforcement [89] and can also be used to monitor SLAs

and to assemble services from several clouds. New attacks

are possible and need to be studied. The SRA provides a

framework to define the use of SDN.

Hybrid clouds These are becoming more popular due to

security and privacy issues associated with public clouds.

This RA also provides general information for organiza-

tions wishing to integrate their existing IT processes and

system with cloud infrastructure. Before migrating any

process or system, organizations should refer to the cloud

architecture to plan a strategy for integrating existing

resources with clouds, to understand the inherent issues and

limitations, and to think in terms of moving some processes

and data to the cloud, as well as the security effects of such

a migration.

Multicloud federations Federations of clouds are starting

to appear. In order to integrate them, each cloud must

indicate explicitly which resources it brings to the federa-

tion. To describe their structure and their security mecha-

nisms, SRAs are very convenient as baselines of resources

and to define user rights [90–92].

Framework for security testing We can relate the

activities of the use cases to specific components in the

architecture that may contain data assets. We can test if

these assets receive their correct values when applying

each use case.

Framework for distributing policies in the cloud

Enforcement of a variety of policies can be more effective

by distributing them to relevant local units [89]. A SRA

provides a framework to guide the placement of policies.

Security as a Service There are several proposals for

security as a service, e.g., [93]. The SRA shows clearly

where we would want to buy or hire services of some type,

e.g., cryptographic protection.

Understanding and comparison of research ideas

Interesting security proposals such as those of [9, 46], can

be understood better by seeing which parts of the SRA

would be affected.

10.2 Evaluating the security of a cloud security using

a reference architecture

We can use the SRA to evaluate the degree of security

reached by a cloud built following the SRA as a

guideline. If all the enumerated threats can be controlled,

we can consider the new system secure. However, listing

threats is not enough; we need a way to understand how

an attack happens. We can use misuse patterns to test

the security of the reference architecture. As discussed in

Sect. 7, we have developed some misuse patterns

including Malicious Virtual Machine Creation [14]. This

misuse pattern describes how an attacker may create a

virtual machine image which can contain malicious code

so it can infect other users when they create their virtual

machine. Figure 11 describes how an attacker can pub-

lish a virtual machine image that contains malicious

code.

We can use a sequence diagram to show how the SRA

can stop some threats described in the misuse pattern of

Fig. 11. In this example, we can see if the attacker is not a

valid user; the attack cannot go any further if we add an

authentication pattern in its path. If the attacker is a valid

user (or stole a valid credential), his attempt to publish an

image will be intercepted by the reference monitor which

will check whether he is authorized or not. Even if the

attacker is authorized since he is a valid user and he has

rights to publish an image, his image will be filtered to scan

for malicious code or sensitive data. If the image contains

Requirements Eng

123



malicious code, it will be removed before being stored.

These actions can stop the misuse by providing a defense-

in-depth barrier. Figure 12 shows the steps through the

security-enhanced use case.

We evaluate the security level of the of the reference

architecture by verifying that all misuse cases have been

controlled by some security pattern. If we enumerate all the

threats; for example, using the method of Sect. 6, we just

need to verify that the architecture includes a security

pattern that can neutralize all the threats. If T ¼ ft1. . .ti. . .g
is the set of threats, SP ¼ fsp1. . .spj. . .g is the set of

security patterns, we have: 8ti 2 T ) 9spj 2 SP, where spj

controls ti. When the SRA is instantiated to define a spe-

cific type of cloud, each misuse pattern can be realized

following the specific architecture components, which

means that we may need further security patterns to stop

them. If MP ¼ fmp1. . .mpk. . .g, where api is an attack

pattern8 used by the MP, if 9spj 2 SP : spj stops api, the

misuse case cannot succeed.

10.3 Applying the SRA to describe existing SRAs

As shown in Fig. 9, we can continue building the security

aspects of the SRA by adding security controls (authori-

zation) for access by administrators to the Hardware, Cloud

Controller, the Cluster Controller, the Node Controller, and

the VMM. Figure 9 also shows logging the VMM and the

access to the VMI Repository. The way to deduce the need

for these controllers would be based on a similar analysis to

the one performed to the VMI Repository.

11 Conclusions and future work

We have shown an approach to build a SRA for clouds. We

started by following a methodology similar to that in [95]

to match the application requirements to the cloud security.

In this case, the ‘‘application’’ includes the functional and

administrative operations required to provide secure ser-

vice to users. In order to develop a secure framework, we

first identified threats by analyzing the activities of its use

cases [22]. Identifying cloud threats is not enough; we need

a way to describe how an attack is performed and what

cloud units are compromised. We have developed misuse

patterns that describe from the viewpoint of the attacker

how an attack (misuse of information) is performed. We

have started building a catalog of cloud misuse patterns

[14], which can be used to verify if security patterns have

been placed in the architecture to stop misuses of infor-

mation. For this work, we developed new security and

misuse patterns in order to demonstrate how they mitigate

or stop identified threats and how a misuse happens.

Cloud computing systems are complex systems that

leverage different technologies and can be deployed in

different ways, as well as provide different types of ser-

vices. All this implies that it can be a challenge to under-

stand how to make a cloud secure. In this work, we have

provided the following contributions:

• We showed how to secure an RA by applying a

systematic methodology where we started from a cloud

RA until we obtained a SRA which includes defenses

against all identified threats.

• We introduced a simple metamodel to relate appropri-

ate concepts.

• We have compared our SRA to several published

proposals, and we found ours to be either more

comprehensive, more formal, or more systematic than

all of them.

Fig. 11 Sequence diagram for

the use case ‘‘Publish a

Malicious VM Image’’

8 An attack (threat) pattern describes a specific step leading to a

misuse [94]; e.g., using a stolen credential to have access to a DBMS

where we can perform a misuse by using SQL injection.

Requirements Eng

123



• We developed an approach to evaluate the degree of

security obtained in the SRA.

• We also provided a comprehensive list of situations

where SRAs can be useful, which justifies the effort in

their development.

Possible limitations of our architecture, which can be

improved in future work, include the following:

• As indicated, UML has limitations to describe archi-

tectures and some useful and maybe important aspects

may not be properly described. It may be worthwhile to

recast the architecture using an ADL.

• It is not clear what level of detail is needed to make a

SRA truly useful for practical purposes. Other than the

main structural aspects of the architecture, we included

a portion of the administrative subsystem. For example,

we could similarly add details of the protection needed

for the hypervisor and for data storage. As in all

requirements, too little detail will require more work

for building concrete architectures, but too much detail

will restrict the freedom of the designer of the concrete

architecture. In any case, we intend to develop in detail

a few of these subsystems.

We have produced a good number of security patterns [13],

but we still need to adjust them to be valid for cloud

environments and to develop new security patterns that are

specific for clouds. From [2], we identified some ideas for

security and misuse patterns, which will provide a good

amount of future work. Developing good catalogs for

security and misuse patterns is very important to help

designers, and architects use the SRA in many ways. The

catalog of uses of Sect. 10.1 provides a source of future

work to demonstrate the value of a SRA to fulfill those

functions by developing these applications in detail. Pro-

ducing a concrete architecture using XML web services

and an Enterprise Service Bus [66] is a good demonstration

of the value of our SRA.

Acknowledgements We thank the reviewers for their careful

evaluation and their suggestions that significantly improved the paper.

The work of Eduardo Fernandez was supported by the Chilean agency

CONICYT, under research contract 80120008.

References

1. Clarke R (2013) Data risks in the cloud. J Theor Appl Electron

Commer Res 8(3):59–73. doi:10.4067/S0718-18762013000

300005, ISSN 0718-1876

2. Hashizume K, Rosado DG, Fernández-Medina E, Fernández EB

(2013) An analysis of security issues for cloud computing.

J Internet Serv Appl 4(1). doi:10.1186/1869-0238-4-5

3. Avgeriou P (2003) Describing, instantiating and evaluating a

reference architecture: a case study. Enterp Archit J

4. Taylor RN, Medvidovic N, Dashofy EM (2009) Software archi-

tecture: foundations, theory, and practice. Wiley, London. ISBN

0470167742, 9780470167748

Fig. 12 Sequence diagram for the use case ‘‘Securely Publish VM Images’’

Requirements Eng

123

http://dx.doi.org/10.4067/S0718-18762013000300005
http://dx.doi.org/10.4067/S0718-18762013000300005
http://dx.doi.org/10.1186/1869-0238-4-5


5. HP (2011) Understanding the HP CloudSystem Reference

Architecture. White paper, Hewlett-Packard Development

Company

6. IBM (2012) IBM SmartCloud. White paper, IBM Corporation

7. Microsoft Global Foundation Services (2009) Securing Micro-

soft’s cloud infrastructure. Technical report, Microsoft

8. NIST Cloud Computing Security Working Group (2013) NIST

cloud computing security reference architecture. Working docu-

ment, NIST

9. Campbell RH, Montanari M, Farivar R (2012) A middleware for

assured clouds. J Internet Serv Appl 3(1):87–94. doi:10.1007/

s13174-011-0044-9

10. Hafner M, Memon M, Breu R (2009) SeAAS—a reference

architecture for security services in SOA. J UCS 15(15):

2916–2936

11. Hashizume K, Fernandez EB, Larrondo-Petrie MM (2012) Cloud

service model patterns. In: 19th international conference on

pattern languages of programs (PLoP2012), Tucson, AZ

12. Hashizume K, Fernandez EB, Larrondo-Petrie M (2012) Cloud

infrastructure pattern. In: First international symposium on soft-

ware architecture and patterns. LACCEI, Panama City, Panama,

pp 23–27

13. Fernandez EB (2013) Security patterns in practice: designing

secure architectures using software patterns, 1st edn. Wiley,

London. ISBN 1119998948

14. Hashizume K, Yoshioka N, Fernandez EB (2013) Three misuse

patterns for cloud computing. In: Rosado DG, Mellado D, Fer-

nandez-Medina E, Piattini MG (eds) Security engineering for

cloud computing: approaches and tools. IGI Global, Hershey,

pp 36–53. doi:10.4018/978-1-4666-2125-1.ch003

15. Angelov S, Grefen P, Greefhorst D (2012) A framework for

analysis and design of software reference architectures. Inf Softw

Technol 54(4):417–431. doi:10.1016/j.infsof.2011.11.009, ISSN

0950-5849

16. CSA (2011) Quick guide to the reference architecture TCI

(trusted cloud initiative). Technical report, Cloud Security

Alliance

17. Warmer J, Kleppe A (2003) The object constraint language:

getting your models ready for MDA, 2nd edn. Addison-Wesley

Longman, Boston. ISBN 0321179366

18. Garavel H, Graf S (2013) Formal methods for safe and secure

computer systems. Technical report. BSI Study 875, Federal

Office for Information Security, Bonn

19. Brown A, Apple B, Michael JB, Schumann MA (2012) Atomic-

level security for web applications in a cloud environment. IEEE

Comput 45(12):80–83. doi:10.1109/MC.2012.400

20. Fernández EB, Washizaki H, Yoshioka N, VanHilst M (2011) An

approach to model-based development of secure and reliable

systems. In: Sixth international conference on availability, reli-

ability and security, ARES, pp 260–265, Vienna. doi:10.1109/

ARES.2011.45

21. Delessy N, Fernandez EB, Larrondo-Petrie MM (2007) A pattern

language for identity management. In: Proceedings of the inter-

national multi-conference on computing in the global information

technology, ICCGI ’07, p 31, IEEE Computer Society, Wash-

ington, DC. doi:10.1109/ICCGI.2007.5, ISBN 0-7695-2798-1

22. Braz FA, Fernández EB, VanHilst M (2008) Eliciting security

requirements through misuse activities. In: 19th international work-

shop on database and expert systems applications (DEXA 2008), 1–5

Sept 2008, Turin, pp 328–333. doi:10.1109/DEXA.2008.101

23. Fernandez EB, Yoshioka N, Washizaki H, Yoder J (2014)

Abstract security patterns for requirements specification and

analysis of secure systems. In: WER 2014 conference, a track of

the 17th Ibero-American conference on software engineering

(CIbSE 2014), Pucon, Chile

24. Fernandez E, Yuan X (2000) Semantic analysis patterns. In:

Laender A, Liddle S, Storey V (eds) Conceptual modeling—ER

2000, vol 1920 of lecture notes in computer science. Springer,

Berlin, pp 183–195. doi:10.1007/3-540-45393-8_14, ISBN

978-3-540-41072-0

25. Fernandez E, Pelaez J, Larrondo-Petrie M (2007) Attack patterns:

a new forensic and design tool. In: Craiger P, Shenoi S (eds)

Advances in digital forensics III, vol 242 of IFIP—The Interna-

tional Federation for Information Processing. Springer, New

York, pp 345–357. doi:10.1007/978-0-387-73742-3_24, ISBN

978-0-387-73741-6

26. Fernández EB, Yoshioka N, Washizaki H (2009) Modeling

misuse patterns. In: Proceedings of the fourth international con-

ference on availability, reliability and security, ARES 2009,

16–19 March, 2009, Fukuoka, pp 566–571. doi:10.1109/ARES.

2009.139

27. Fowler M (2002) Patterns of enterprise application architecture.

Addison-Wesley Longman, Boston. ISBN 0321127420

28. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D

(2011) Cloud computing reference architecture. Special publi-

cation 500-292, NIST

29. Stricker V, Lauenroth K, Corte P, Gittler F, Panfilis SD, Pohl K

(2010) Creating a reference architecture for service-based sys-

tems—a pattern-based approach. In: Towards the future inter-

net—emerging trends from European research, pp 149–160.

doi:10.3233/978-1-60750-539-6-149

30. Muller G, van de Laar P (2009) Researching reference architec-

tures and their relationships with frameworks, methods, tech-

niques, and tools. In: Kalawsky R, O’Brien J, Goonetilleke T,

Grocott C (eds) 7th annual conference on systems engineering

research (CSER 2009). Research School of Systems Engineering,

Loughborough University, Loughborough

31. Uzunov AV, Fernandez EB, Falkner K (2012) Securing distrib-

uted systems using patterns: a survey. Comput Secur

31(5):681–703. doi:10.1016/j.cose.2012.04.005, ISSN 0167-4048

32. Object Management Group (2014) Unified Modeling Lan-

guageTM (UML�) Tech. rep., Object Management Group Inc

33. Medvidovic N, Taylor R (2000) A classification and comparison

framework for software architecture description languages. IEEE

Trans Softw Eng 26(1):70–93. doi:10.1109/32.825767, ISSN

0098-5589

34. OWASP (2013) OWASP Top 10—2013: the ten most critical

web application security risks. Technical report, The OWASP

Foundation

35. Chonka A, Xiang Y, Zhou W, Bonti A (2011) Cloud security

defence to protect cloud computing against HTTP-DoS and

XML-DoS attacks. J Netw Comput Appl 34(4):1097–1107.

doi:10.1016/j.jnca.2010.06.004, ISSN 1084-8045

36. Fernandes D, Soares L, Gomes J, Freire M, Inácio P (2014)

Security issues in cloud environments: a survey. IntJ Inf

Secur 13(2):113–170. doi:10.1007/s10207-013-0208-7, ISSN

1615-5262

37. Ryan MD (2013) Cloud computing security: the scientific chal-

lenge, and a survey of solutions. J Syst Softw 86(9):2263–2268.

doi:10.1016/j.jss.2012.12.025, ISSN 0164-1212

38. Kalloniatis C, Mouratidis H, Vassilis M, Islam S, Gritzalis S,

Kavakli E (2014) Towards the design of secure and privacy-

oriented information systems in the cloud: identifying the major

concepts. Comput Stand Interfaces 36(4):75–759. doi:10.1016/j.

csi.2013.12.010, ISSN 0920-5489

39. Tsugawa M, Matsunaga A, Fortes JA (2014) Cloud computing

security: what changes with software-defined networking? In:

Jajodia S, Kant K, Samarati P, Singhal A, Swarup V, Wang C

(eds) Secure cloud computing. Springer, New York, pp 77–93.

doi:10.1007/978-1-4614-9278-8_4, ISBN 978-1-4614-9277-1

Requirements Eng

123

http://dx.doi.org/10.1007/s13174-011-0044-9
http://dx.doi.org/10.1007/s13174-011-0044-9
http://dx.doi.org/10.4018/978-1-4666-2125-1.ch003
http://dx.doi.org/10.1016/j.infsof.2011.11.009
http://dx.doi.org/10.1109/MC.2012.400
http://dx.doi.org/10.1109/ARES.2011.45
http://dx.doi.org/10.1109/ARES.2011.45
http://dx.doi.org/10.1109/ICCGI.2007.5
http://dx.doi.org/10.1109/DEXA.2008.101
http://dx.doi.org/10.1007/3-540-45393-8_14
http://dx.doi.org/10.1007/978-0-387-73742-3_24
http://dx.doi.org/10.1109/ARES.2009.139
http://dx.doi.org/10.1109/ARES.2009.139
http://dx.doi.org/10.3233/978-1-60750-539-6-149
http://dx.doi.org/10.1016/j.cose.2012.04.005
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1016/j.jnca.2010.06.004
http://dx.doi.org/10.1007/s10207-013-0208-7
http://dx.doi.org/10.1016/j.jss.2012.12.025
http://dx.doi.org/10.1016/j.csi.2013.12.010
http://dx.doi.org/10.1016/j.csi.2013.12.010
http://dx.doi.org/10.1007/978-1-4614-9278-8_4


40. Prolexic (2012) DDoS Denial of service protection and the cloud.

White paper Prolexic Technologies Inc

41. Modi C, Patel D, Borisaniya B, Patel H, Patel A, Rajarajan M

(2013) A survey of intrusion detection techniques in Cloud.

J Netw Comput Appl 36(1):42–57. doi:10.1016/j.jnca.2012.05.

003, ISSN 1084-8045

42. Juels A, Oprea A (2013) New approaches to security and avail-

ability for cloud data. Commun ACM 56(2):64–73. doi:10.1145/

2408776.2408793, ISSN 0001-0782

43. EMA (2010) Securing the administration of virtualization. Mar-

ket research report, Enterprise Management Associates

44. Moscato F, Aversa R, Di Martino B, Fortis T, Munteanu V (2011)

An analysis of mOSAIC ontology for Cloud resources annotation.

In: 2011 federated conference on computer science and infor-

mation systems (FedCSIS), pp 973–980

45. Zhang M, Ranjan r, Haller A, Georgakopoulos D, Menzel M,

Nepal S (2012) An ontology-based system for cloud infrastruc-

ture services’ discovery. In: 2012 8th international conference on

collaborative computing: networking, applications and work-

sharing (CollaborateCom), pp 524–530

46. Lombardi F, Pietro RD (2011) Secure virtualization for cloud

computing. J Netw Comput Appl 34(4):1113–1122. doi:10.1016/

j.jnca.2010.06.008, ISSN 1084-8045

47. Malik S, Khan S, Srinivasan S (2013) Modeling and analysis of

state-of-the-art VM-based cloud management platforms. IEEE

Trans Cloud Comput 1(1):1–1. doi:10.1109/TCC.2013.3, ISSN

2168-7161

48. Kalantari A, Esmaeli A, Ibrahim S (2012) A service-oriented

security reference architecture. Int J Adv Comput Sci Inf Technol

(IJACSIT) 1(1):25–31

49. Dodani M (2010) On ‘cloud nine’ through architecture. J Object

Technol 9(3):31–39. doi:10.5381/jot.2010.9.3.c3, ISSN 1660-

1769

50. IBM (2013) IBM cloud computing reference architecture 3.0—

security. Technical report, IBM Developer Works, IBM

Corporation

51. OAuth (2014) The OAuth 2.0 authorization framework. Web

page, OAuth

52. Okuhara M, Shiozaki T, Suzuki T (2010) Security architectures

for cloud computing. Fujitsu Sci Tech J (FSTJ) 46(4):397–402

53. Amazon Web Services (2014) Amazon Web Services: overview

of security processes. Technical report, Amazon.com Inc.

54. Cisco HyTrust, VMware, Savvis, Coalfire (2011) PCI-compliant

cloud reference architecture. White paper, Payment Card Industry

Security Standard Council Data Security Standard

55. VMWare, SAVVIS (2009) Securing the cloud: a review of cloud

computing, security implications and best practices. White paper,

VMware Inc.

56. Wilkins M (2011) Oracle reference architecture: cloud foundation

architecture, release 3.0. Technical report E24529–01, Oracle

Corporation

57. Cisco (2009) Cisco SAFE: a security reference Architecture.

White paper, Cisco Systems

58. Juniper Networks (2013) Juniper Networks metafabric architec-

ture. White paper, Juniper Networks Inc.

59. Haletky E (2013) Trend Micro deep security reference architec-

ture for the secure hybrid cloud. White paper, Trend Micro

60. E Systems (2014) Eucalyptus reference architectures. Technical

report, Eucalyptus Systems

61. OSA (2014) SP-011: Cloud computing pattern. Technical repoer,

OSA

62. Beckers K, Côté I, Faßbender S, Heisel M, Hofbauer S (2013) A

pattern-based method for establishing a cloud-specific informa-

tion security management system. Requir Eng 18(4):343–395.

doi:10.1007/s00766-013-0174-7, ISSN 0947-3602

63. Uzunov AV, Fernandez EB, Falkner K (2012) Engineering

security into distributed systems: a survey of methodologies.

J Univers Comput Sci 18(20):2920–3006

64. Badger L, Bohn RB, Chandramouli R, Grance T, Karygiannis T,

Patt-Corner R, Voas J (2010) Cloud computing use cases.

Working document. NIST

65. Fowler M (1997) Analysis patterns: reusable objects models.

Addison-Wesley Longman, Boston. ISBN 0-201-89542-0

66. Papazoglou M, van den Heuvel WJ (2007) Service oriented archi-

tectures: approaches, technologies and research issues. VLDB J

16(3):389–415. doi:10.1007/s00778-007-0044-3, ISSN 1066-8888

67. Mouratidis H, Islam S, Kalloniatis C, Gritzalis S (2013) A

framework to support selection of cloud providers based on

security and privacy requirements. J Syst Softw 86(9):

2276–2293. doi:10.1016/j.jss.2013.03.011, ISSN 0164-1212

68. Chappelle D (2013) Security in depth reference architecture,

release 3.0. White paper, Oracle Corporation, Redwood Shores

69. Joosen W, Lagaisse B, Truyen E, Handekyn K (2012) Towards

application driven security dashboards in future middleware.

J Internet Serv Appl 3(1):107–115. doi:10.1007/s13174-011-

0047-6, ISSN 1867-4828

70. Gollmann D (2006) Computer security. Wiley, London

71. Harrison NB, Avgeriou P (2010) How do architecture patterns and

tactics interact? A model and annotation. J Syst Softw

83(10):1735–1758. doi:10.1016/j.jss.2010.04.067, ISSN 0164-1212

72. Sindre G, Opdahl A (2005) Eliciting security requirements with

misuse cases. Requir Eng 10(1):34–44. doi:10.1007/s00766-004-

0194-4, ISSN 0947-3602

73. Howard M, Lipner S (2006) The security development lifecycle.

Microsoft Press, Redmond. ISBN 0735622140

74. Fernandez EB, Hashizume K, Buckley I, Larrondo-Petrie MM,

VanHilst M (2010) Web services security: standards and pro-

ducts. In: Gutierrez C, Fernandez-Medina E, Piattini M (eds)

Web services security development and architecture: theoretical

and practical issues, information science reference. Imprint of:

IGI Publishing, Hershey. ISBN 1605669504, 9781605669502

75. Fernández EB, Ajaj O, Buckley I, Delessy-Gassant N, Hashizume

K, Larrondo-Petrie MM (2012) A survey of patterns for web

services security and reliability standards. Future Internet

4(2):430–450. doi:10.3390/fi4020430

76. Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of

virtual machine live migration in clouds: a performance evalua-

tion. In: Proceedings of the 1st international conference on cloud

computing, CloudCom ’09. Springer, Berlin, pp 254–265. doi:10.

1007/978-3-642-10665-1_23, ISBN 978-3-642-10664-4

77. Santos N, Gummadi KP, Rodrigues R (2009) Towards trusted cloud

computing. In: Proceedings of the 2009 conference on hot topics in

cloud computing, HotCloud’09, USENIX Association, Berkeley

78. Zhang F, Huang Y, Wang H, Chen H, Zang B, (2008) PALM:

security preserving VM live migration for systems with VMM-

enforced protection. In: Trusted infrastructure technologies con-

ference, 2008. APTC ’08. Third Asia-Pacific, pp 9–18. doi:10.

1109/APTC.2008.15

79. Danev B, Masti RJ, Karame GO, Capkun S (2011) Enabling

secure VM-vTPM migration in private clouds. In: Proceedings of

the 27th annual computer security applications conference, AC-

SAC ’11. ACM, New York, pp 187–196. doi:10.1145/2076732.

2076759, ISBN 978-1-4503-0672-0

80. Fernandez EB, Monge R, Hashizume K, (2013) Two patterns for

cloud computing: secure virtual machine image repository and

cloud policy management point. In: 20th conference on pattern

languages of programs (PLoP 2013), Monticello, IL

81. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M

(1996) Pattern-oriented software architecture: a system of pat-

terns. Wiley, New York. ISBN 0-471-95869-7

Requirements Eng

123

http://dx.doi.org/10.1016/j.jnca.2012.05.003
http://dx.doi.org/10.1016/j.jnca.2012.05.003
http://dx.doi.org/10.1145/2408776.2408793
http://dx.doi.org/10.1145/2408776.2408793
http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://dx.doi.org/10.1109/TCC.2013.3
http://dx.doi.org/10.5381/jot.2010.9.3.c3
http://dx.doi.org/10.1007/s00766-013-0174-7
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1016/j.jss.2013.03.011
http://dx.doi.org/10.1007/s13174-011-0047-6
http://dx.doi.org/10.1007/s13174-011-0047-6
http://dx.doi.org/10.1016/j.jss.2010.04.067
http://dx.doi.org/10.1007/s00766-004-0194-4
http://dx.doi.org/10.1007/s00766-004-0194-4
http://dx.doi.org/10.3390/fi4020430
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1007/978-3-642-10665-1_23
http://dx.doi.org/10.1109/APTC.2008.15
http://dx.doi.org/10.1109/APTC.2008.15
http://dx.doi.org/10.1145/2076732.2076759
http://dx.doi.org/10.1145/2076732.2076759


82. Fernandez EB, Yoshioka N, Washizaki H (2014) Patterns for

cloud firewalls. In: AsianPLoP (pattern languages of programs),

Tokyo

83. Li M, Zang W, Bai K, Yu M, Liu P (2013) MyCloud: supporting

user-configured privacy protection in cloud computing. In: Pro-

ceedings of the 29th annual computer security applications con-

ference, ACSAC ’13. ACM, New York, pp 59–68. doi:10.1145/

2523649.2523680, ISBN 978-1-4503-2015-3

84. Young W, Leveson NG (2014) An integrated approach to safety

and security based on systems theory. Commun ACM

57(2):31–35. doi:10.1145/2556938, ISSN 0001-0782

85. Hogan M, Liu F, Sokol A, Tong J (2011) NIST cloud computing

standards roadmap. Special oublication 500-291, National Insti-

tute of Standards and Technology

86. Montanari M, Campbell R (2011) Attack-resilient compliance

monitoring for large distributed infrastructure systems. In: 2011

5th international conference on network and system security

(NSS), pp 192–199. doi:10.1109/ICNSS.2011.6060000

87. Zenoss (2014) Unified monitoring and event management.

Technical report, Zenoss

88. Huang J, Nicol D (2013) Trust mechanisms for cloud computing.

J Cloud Comput 2(1). doi:10.1186/2192-113X-2-9

89. Montanari M, Chan E, Larson K, Yoo W, Campbell RH (2013)

Distributed security policy conformance. Comput Secur

33:28–40. doi:10.1016/j.cose.2012.11.007, ISSN 0167-4048

90. Bernstein D, Vij D (2010) Intercloud security considerations. In:

2010 IEEE second international conference on cloud computing

technology and science (CloudCom), pp 537–544. doi:10.1109/

CloudCom.82

91. Buyya R, Ranjan R, Calheiros RN (2009) Modeling and simu-

lation of scalable Cloud computing environments and the

CloudSim toolkit: challenges and opportunities. In: 2009 inter-

national conference on high performance computing and simu-

lation, HPCS 2009, Leipzig, 21–24 June 2009, pp 1–11. doi:10.

1109/HPCSIM.2009.5192685

92. Kretzschmar M, Golling M (2011) Security management spec-

trum in future multi-provider Inter-Cloud environments: method

to highlight necessary further development. In: 2011 5th inter-

national DMTF academic alliance workshop on systems and

virtualization Management (SVM), pp 1–8. doi:10.1109/SVM.

2011.6096462

93. Senk C (2013) Adoption of security as a service. J Internet Serv

Appl 4(1):11. doi:10.1186/1869-0238-4-11, ISSN 1867-4828

94. Uzunov AV, Fernandez EB (2014) An extensible pattern-based

library and taxonomy of security threats for distributed systems.

Comput Stand Interfaces 36(4):734–747. doi:10.1016/j.csi.2013.

12.008, ISSN 0920-5489

95. Fernandez EB, Larrondo-Petrie MM, Sorgente T, VanHilst M

(2006) A methodology to develop secure systems using patterns.

In: Mouratidis H, Giorgini P (eds) Integrating security and soft-

ware engineering: advances and future vision. IGI Global, Her-

shey. ISBN 1599041472

Requirements Eng

123

http://dx.doi.org/10.1145/2523649.2523680
http://dx.doi.org/10.1145/2523649.2523680
http://dx.doi.org/10.1145/2556938
http://dx.doi.org/10.1109/ICNSS.2011.6060000
http://dx.doi.org/10.1186/2192-113X-2-9
http://dx.doi.org/10.1016/j.cose.2012.11.007
http://dx.doi.org/10.1109/CloudCom.82
http://dx.doi.org/10.1109/CloudCom.82
http://dx.doi.org/10.1109/HPCSIM.2009.5192685
http://dx.doi.org/10.1109/HPCSIM.2009.5192685
http://dx.doi.org/10.1109/SVM.2011.6096462
http://dx.doi.org/10.1109/SVM.2011.6096462
http://dx.doi.org/10.1186/1869-0238-4-11
http://dx.doi.org/10.1016/j.csi.2013.12.008
http://dx.doi.org/10.1016/j.csi.2013.12.008

	Building a security reference architecture for cloud systems
	Abstract
	Introduction
	Background and our previous work
	Related work
	Securing a cloud reference architecture
	Procedure to define needed security services
	A metamodel for securing clouds

	Stakeholders and use cases
	Stakeholders (actors)
	Use cases for security administration

	Identifying and controlling threats
	Identifying threats
	Cloud defenses

	Misuse patterns for SRAs
	Applying misuse patterns
	Malicious virtual machine migration process (misuse pattern)
	Intent
	Context
	Problem
	Solution
	Consequences
	Countermeasures
	Forensics
	Related patterns


	Secure reference architecture
	Security patterns applied to cloud security administration
	Secure virtual machine image repository (security pattern)
	Intent
	Context
	Problem
	Solution

	Security administration model

	Validation of the SRA
	Uses of cloud SRAs
	Evaluating the security of a cloud security using a reference architecture
	Applying the SRA to describe existing SRAs

	Conclusions and future work
	Acknowledgements
	References


