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Abstract 
This paper investigates an alternative way to react to demand uncertainty in an integrated inven-
tory model, namely the variation of the production rate that enables the manufacturer to reduce 
lead times and the corresponding demand uncertainty. To investigate the impact of variable pro-
duction rates on the supply chain, this paper considers a single-vendor single-manufacturer inte-
grated inventory model where the vendor ships finished products in multiples of full truckloads 
to the manufacturer. The objective of the model is to coordinate both production and distribution 
of the product in such a way that the total costs of the supply chain are minimized. A solution 
procedure is suggested, and the behaviour of the model is analysed in numerical examples. Our 
results illustrate that the total supply chain cost is reduced when the manufacturer’s production 
rate is included as a decision variable in the model. These savings can generally benefit both the 
vendor and the manufacturer. However, in situations where coordinated decision making is ini-
tially not beneficial to the vendor, the supply chain members can benefit from a revenue sharing 
contract that supports the sharing of the total savings.  

Keywords: Integrated inventory model, variable production rate, stochastic demand, full truck-
load shipments 
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A single-vendor single-manufacturer integrated inventory model with 
stochastic demand and variable production rate 

 

 

ABSTRACT  

This paper investigates an alternative way to react to demand uncertainty in an integrated 

inventory model, namely the variation of the production rate that enables the manufacturer to 

reduce lead times and the corresponding demand uncertainty. To investigate the impact of 

variable production rates on the supply chain, this paper considers a single-vendor single-

manufacturer integrated inventory model where the vendor ships finished products in 

multiples of full truckloads to the manufacturer. The objective of the model is to coordinate 

both production and distribution of the product in such a way that the total costs of the supply 

chain are minimized. A solution procedure is suggested, and the behaviour of the model is 

analysed in numerical examples. Obviously, the total supply chain cost is reduced when the 

manufacturer’s production rate is included as a decision variable in the model. These savings 

can generally benefit both the vendor and the manufacturer. However, in situations where 

coordinated decision making is initially not beneficial to the vendor, the supply chain 

members can benefit from a revenue sharing contract that supports the sharing of the total 

savings. The model proposed in the paper at hand supports both the determination of an 

optimal production rate as well as the distribution of coordination benefits among the supply 

chain members. 

Keywords: Integrated inventory model, variable production rate, stochastic demand, full 
truckload shipments 

 

1.0     INTRODUCTION 

      Supply Chain Management (SCM) describes the management of materials, information 

and financial flows along the entire supply chain, extending over suppliers, manufacturers, 
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distributors and customers (see Evans, 1995). The ultimate goal of SCM is to alleviate 

uncertainties and risks in the supply chain and to facilitate a smooth flow of materials, error-

free production and an on-time delivery of products to the supply chain’s customers.  

      To support managers in coordinating supply chains, researchers have developed so-called 

integrated inventory models in the past that, in their most basic form, aim on finding order 

and production quantities that minimize the total costs of the supply chain, instead of 

minimizing the costs of individual supply chain members. Starting with the work of Goyal 

(1976), a research stream has emerged over recent years that focuses on the coordination of 

operational decisions in supply chains, with a recent review of integrated inventory models 

being the one of Glock (2012). 

      The paper at hand studies a two-echelon single-vendor single-manufacturer supply chain 

where a vendor produces an intermediate product that is shipped in multiples of full 

truckloads to a manufacturer. The manufacturer transforms the intermediate product into a 

final product subject to stochastic end customer demand. While the vendor’s production rate 

is fixed, the manufacturer has the opportunity to vary its production rate, which may result in 

a faster or slower completion of the lot size, depending on how the production rate is varied. 

By speeding up the production process, the manufacturer may reduce its own delivery lead 

time, which helps to shorten the period during which the manufacturer is at risk to run out of 

stock. This, in turn, reduces safety stocks and may offset the additional costs associated with 

varying the production rate.  

       The scenario studied in this paper is motivated by a case we observed in practice. A 

vendor supplies polymers (raw material) to a manufacturer in multiples of full truckloads. 

The manufacturer faces random demand by its customers, and hence keeps inventory of raw 

material in its warehouse. The manufacturer can increase/decrease its production rate via 

accelerating/decelerating the production process, which mainly includes blending and filling 
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processes. This paper contributes to the literature by providing an integrated stochastic 

inventory model with a variable production rate at the manufacturer, which, to our 

knowledge, has not yet been addressed in the literature. In addition, the paper considers a full 

truckload shipment constraint that frequently governs logistics processes in practice. The 

paper finally proposes a solution technique for the developed model and illustrates the impact 

of the variable production rate and the full truckload constraint on the integrated inventory 

model via numerical examples.  

       The remainder of the paper is structured as follows: The next section summarizes the 

related literature, and Section 3 describes the problem studied in this paper formally and 

proposes a mathematical model. An efficient solution technique is presented in Section 4 

along with numerical illustrations of the proposed model. Section 5 presents future research 

opportunities and concludes the paper. 

 

   2.0 LITERATURE REVIEW 

       The supply chain management literature spans a plethora of topics, ranging from daily 

operations scheduling and control to strategic decision problems such as facility location 

planning. This section discusses two streams of research that are of special relevance to the 

work at hand, namely I) works that study variable production rates in inventory models and 

II) works that investigate the coordination of multiple echelons in supply chains. In 

discussing the second stream of research, the focus will be on single-vendor single-buyer 

integrated inventory models. 

 

2.1 Inventory models with variable production rates 

Determining optimal production rates for a manufacturing system has started to attract the 

attention of researchers many years ago. Khouja (1994) was among the first to extend the 
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basic Economic Production Quantity (EPQ) model to consider production volume flexibility 

by assuming that the production rate can be varied prior to the start of a production run. The 

model suggested that in volume-flexible manufacturing systems, the optimal production rate 

is smaller than the production rate that minimizes the unit production cost. Khouja and 

Mehrez (1994) extended the work of Khouja (1994) by assuming that a change in the 

production rate does not only affect the unit production cost, but also the quality of the 

product. The result of the paper indicate that for cases where an increase in the production 

rate causes a sharp decline in product quality, the optimal production rate is smaller than the 

production rate that minimizes the unit production cost. For situations where product quality 

does not depend on the production rate, the optimal production rate might be larger than the 

rate that minimizes the unit production cost. Khouja (1999) extended Khouja’s (1994) model 

by assuming that the production process may shift out of control with a probability that 

depends on the production rate. The author showed that incorporating product quality into the 

EPQ model with a variable production rate leads to a shorter cycle time and a smaller optimal 

lot size. Eiamkanchanalai and Banerjee (1999) developed a model that determines both the 

optimal production cycle length and production rate for a single item. In contrast to earlier 

works, the authors added a desirability term to the objective function (that could express a 

desire for unused capacity, for example), and showed that the optimal production rate can be 

larger or smaller than the production rate that minimizes the unit production cost. 

       Giri et al. (2005) introduced a variable production rate EPQ model in which the stress 

level of the machine varies with the production rate (i.e., a higher production rate implies a 

higher stress level and thus a higher failure rate). The unit production cost was expressed as a 

function of the production rate, and an EPQ model was developed under general failure and 

repair time distributions. This model was later extended to consider stochastic demand (Ayed 
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et. al. 2012), inspection sampling (Bousalah et al. 2013), and stochastic repair time (Singh 

and Prasher, 2014). 

      Larsen (2005) introduced an EPQ model where the production cycle is composed of 

multiple runs at different production rates; the production rates and their corresponding 

runtimes were treated as decision variables in this model. The author showed that the 

production rates should adopt values between the demand rate and the production rate that 

minimizes the unit production cost, and that it should be increased over the production cycle.  

      Glock (2010, 2011) studied the effect of variable production rates on a two-stage and a 

multi-stage EPQ model with either equal- or unequal-sized batch shipments. The author 

investigated how production rates should be set to minimize the total costs of the system.  

      Finally AlDurgam and Duffiaa (2013) provided a new application of the Partially 

Observed Markov Decision Process by modelling a machine with multiple machine and 

quality states, where in each time period, the decision maker determines the optimal 

production rate and the optimal maintenance action to maximize the Overall System’s 

Effectiveness (OSE). OSE was defined as the product of availability, process rate, and quality 

rate. The model captured the impact of the production rate on the machine failure and scrap 

rates. In addition, the impact of the maintenance rate on the time the machine is down due to 

maintenance and enhanced availability were investigated. 

 

2.2 Coordination of single-vendor single-buyer integrated inventory systems 

Integrated inventory models (which are also frequently referred to as Joint Economic Lot 

Size or JELS models) have enjoyed an increased popularity in recent years. This section 

presents some integrated inventory models that are of special relevance to the work at hand, 

namely JELS models with different lot-sizing strategies and JELS models with stochastic 
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demand and/or stochastic lead time. For a comprehensive review of the JELS literature, the 

reader is referred to Glock (2012). 

      The first single-vendor single-buyer integrated inventory model was proposed by Goyal 

(1976), who illustrated the economic advantage of joint lot-sizing in a simple two-stage 

supply chain. Banerjee (1986) extended Goyal’s model and relaxed the assumption of an 

infinite production rate. The author implemented a so-called lot-for-lot policy for 

coordinating the production and consumption cycles of the vendor and the buyer. Lu (1995) 

extended the work of Banerjee (1986) to account for equal-sized batches that the vendor ships 

to the buyer. Goyal (1995) extended the works of Banerjee (1986) and Lu (1995) by 

assuming that subsequent batch shipments increase in size according to a geometric series, 

which led to another reduction in total system cost. Hill (1997) generalized this model by 

assuming that subsequent batches first increase in size according to a geometric series, and 

that batch sizes then remain constant. The optimal batch shipment policy, which also consists 

of a combination of unequal- and equal-sized shipments, was later proposed by Hill (1999). 

Hoque and Goyal (2000) studied the case of a transport facility with limited capacity and 

showed that the optimal policy in this case also consists of unequal-sized batches increasing 

by a fixed factor, followed by equal-sized batch shipments. Other authors who studied the 

determination of batch sizes in an integrated inventory model are Huang (2004) and Wee and 

Widyadana (2013), among others. 

        The JELS models discussed so far all assumed that demand is deterministic. Sharafali 

and Co (2004) presented one of the first JELS models with stochastic demand. Ben-Daya and 

Hariga (2004) assumed a normally distributed and lot-size-dependent lead time and derived 

an optimal solution for the model. This paper was extended by Glock (2009), who took 

account of unequal-sized batch shipments. Quyang et al. (2004) proposed another extension 

of this model by assuming stochastic demand with shortages allowed during lead time. In 
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addition, the authors assumed that the lead time can be shortened at an additional cost. Jha 

and Shanker (2009) proposed a JELS model with controllable lead time and a service level 

constraint. The service level constraint guarantees that a certain level of demand is satisfied 

in each cycle. Glock (2012) considered a single-vendor single-buyer JELS model with 

stochastic demand and variable lead time. In this model, lead time can be shortened by 

reducing the lot size, by increasing the production rate, or by crashing a constant delay time. 

The author investigated how the three lead time reduction methods should be combined to 

minimize the total costs of the system. 

        The works discussed above have shown that moving from a scenario where one of the 

supply chain members dominates the supply chain to a scenario where a centrally coordinated 

solution is obtained for the supply chain improves the cost position of the supply chain as a 

whole. A coordinated solution may, however, place individual members of the supply chain 

at a cost disadvantage. To induce all members of a supply chain to participate in a 

coordinated solution, the supply chain may use coordination mechanisms that distribute the 

cooperation gain among the parties involved. The literature discusses a plethora of 

coordination mechanisms that may be used in a supply chain, including information sharing 

mechanisms (e.g., Li, 2002; Kelle and Akbulut, 2005), the design of special contracts (e.g., 

Panda, et. Al., 2015; Modak et. al., 2016), risk sharing mechanisms (e.g., Hou, et. Al., 2010; 

Linh and Hong, 2009), or strategic alliances such as vendor managed inventory or 

consignment stock (e.g., Zavanella and Zanoni, 2009; Ben-Daya et. al., 2013). For a 

comprehensive review of the supply chain coordination literature, the reader is referred to 

Kanda and Deshmukh (2008) and Sarmah et al. (2006).  

 

2.3 Synthesis of both research streams 
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       Our review of the literature showed that variable production rates have thus far only very 

infrequently been studied in the context of an integrated inventory model. In addition, we 

found that shipment constraints that very frequently apply in practice have not been 

considered in JELS models with stochastic demand so far. The work closest related to the 

paper at hand is the one of Glock (2012), who did, however, neither consider shipment 

constraints nor raw material purchases in his model. This paper therefore contributes to the 

literature by proposing a JELS model with stochastic demand and a shipment constraint 

where the production rate at the manufacturer can be varied. A detailed description of the 

proposed model is provided in Section 3.  

 

3.0 THE MODEL 

3.1 Problem description 

This section develops a mathematical model for a single-vendor single-manufacturer supply 

chain with stochastic demand and a shipment constraint. Figure 1 illustrates how inventory 

develops at the supply chain parties over time. In the scenario considered here, the vendor 

produces a raw material at a constant rate (��	) and sends full truckload batch shipments of 

size � to the manufacturer (Figure 1 – Part A). The manufacturer, Figure 1 – Part B, initiates 

production immediately upon arrival of the first shipment at its premises (i.e., after a lead 

time of length		�� + ∆, where �	 represents the production lead time of the vendor needed to 

produce � units and ∆ is the transportation lead time) by depleting the raw material received 

at a rate that is proportional to its production rate (
�). In each cycle, the inventory of raw 

material accumulates in the warehouse of the manufacturer to a maximum level, ���. The 

manufacturer faces random end customer demand for the final product and uses a continuous 

review (�, �) inventory control system (Figure 1 – Part C), Note that when the finished items 

inventory of the manufacturer drops to the reorder level	�, the vendor reinitiates its 
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production process. This pattern is assumed to repeat in every cycle. The objective of the 

model proposed in the following will be to determine the production rate, the number of full 

truckload shipments, the re-order point, and the production lot size that minimizes the total 

costs of the supply chain.  
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                                         Figure 1:  Inventory profile of the supply chain 

       

In developing the proposed model, the following assumptions will be made: 
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• The production rate of the vendor, ��, is known and fixed. 

• Shipments are made in full truckloads of size �, and the time to produce a full truckload 

is	� units of time. 

• The capacity of the raw material warehouse of the manufacturer is limited. 

• To avoid shortages at the vendor, the production rate of raw materials at the vendor is 

larger than the maximum inventory depletion rate of the manufacturer, i.e. ��	 > max	(�). 

• The rate at which the raw material is depleted from the manufacturer’s warehouse is 

directly proportional to the production rate of the manufacturer, i.e. � = α�. 

• All shortages are backordered. 

• There is never more than a single production run outstanding, and the average rate of 

demand is constant over an infinite horizon (see, for the same assumption, Darwish et al. 

2013). 

• The expected number of backorders incurred per unit of time is independent of the 

expected number of production runs per year, provided that the stochastic process 

generating end customer demand is time-homogeneous. 

• The demand pattern is random and modelled using a normal probability distribution. 

• The production rate of the manufacturer has to be determined prior to the start of the 

production run. Such a production system is referred to as a “rigid system” in the 

literature, and it is representative for situations where a machine setup during production 

is technically impossible or involves prohibitively high cost. Rigid production systems 

have been studied by Buzacott and Ozkarahan (1980), Silver (1990), Saka and Babu 

(1993), Goyal (1994), Silver (1995), and Viswanathan (1995). 

• The unit production cost is assumed to follow the function proposed by Khouja (1994), 

i.e. �(�) = � + �
 + !�". Here, � is the unit acquisition cost of raw material, #

� represents 

the per unit cost component that is reduced as the production rate increases (e.g., labour 
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cost), and !�" is the unit cost component that increases in the production rate (e.g., tools 

and rework costs). 

The notations used in this paper are divided into three sets in the following: input parameters, 

auxiliary variables, and decision variables. Auxiliary variables are variables solely needed for 

calculating the decision variables. 

 
Input parameters 
$% : Setup	cost	of	the	manufacturer	per	cycle 
$4 : Transportation	cost	of	raw	material	per	truck 
$9 : Setup	cost	of	the	vendor	per	cycle 
! : non-negative parameter of the unit production cost formula as in Khouja 

(1994) 

< : non-negative parameter of the unit production cost formula as in Khouja 

(1994) 

� : Unit	acquisition	cost	of	raw	material	for	the	manufacturer 
�� : Total	production	cost	of	the		manufacturer	per	unit	of	time 
?@AB : Expected	value	of	the	end	customer	demand	per	unit	of	time 
E[Y] : Expected value of the lead time demand, E[Y]=E[Λ][	�+ τ+ ∆] 
�(D)�D : Probability	that	the	lead	time	is	between	y	and	y + dy 
g : non-negative parameter of the unit production cost formula as in Khouja 

(1994) 
ℎ�							 : Inventory holding cost of the vendor per unit of the finished item per unit of 

time 
ℎ4							 : Inventory	holding	cost	of	raw	material	per	unit	per	unit	of	time 
ℎJ : Inventory holding cost of finished goods for the manufacturer per unit per unit of 

time 
��� : Capacity of the raw material warehouse of the manufacturer 
��		 : Production	rate	in	units	per	unit	of	time	of	the	vendor 
� : Capacity	of	a	truck 
9 : A	random	variable	representing	safety	stock 
t : The	time	needed	by	the	vendor	to	produce	a	full	truckload	shipment	of	size	q 
N : Production	lead	time	of	the	manufacturer 
O : Unit	production	cost	of	the	vendor 
Y : A	random	variable	representing	lead	time	demand	@Y = 	Λ(τ + �+ ∆)B 
z : Ordering		or	administrative	cost per cycle 

� : Raw	material	consumption	rate	of	the	manufacturer	in	units	per	unit	of	time, 


 is a conversion factor from raw materials to the final product 

A : A	random	variable	representing	demand	per	unit	of	time 

∆ : Constant	lead	time	for	loading, transporting	and	unloading	a	full	truck 
∅ : Standard	normal	probability	density	function 
V : Fixed	penalty	cost incurred by the manufacturer per unit short 
XY									 : Standard	deviation	of	the	demand	per	unit	of	time				 
XZ													 : Standard	deviation	of	lead	time	demand	X[√τ + � + ∆ 
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auxiliary variables 

$�� : Total acquisition  cost of raw material for the manufacturer per unit of time 
$�� : Production cost of the vendor per unit of time 

]�� : Direct	production	cost	of	the	manufacturer	per	unit	of	time 

_.%ab		 : Total inventory holding cost of finished goods of the manufacturer per unit of 

time 

%._�c	 : Raw material inventory holding cost per unit of time of the manufacturer 

%.?d : Ordering and transportation costs for raw material per unit of time of the 

manufacturer 

%. 9e : Setup	cost per unit of time of the manufacturer 
9f											 : Expected	shortage	cost	per	unit	of	time	of	the	manufacturer	 
g : Expected	safety	stock	(s = E@SB) 
h : Inventory	cycle	length 

h. �g : Expected	average	total	cost	per	unit	of	time	of	the	integrated		model 
h	. �i : Long-run average cost per unit of time of the vendor 
h. �c : Long-run average total cost of raw material at the manufacturer’s warehouse 

per unit of time 

h. �j : Long-run average manufacturing cost per unit of time 

�. 9e	 : Long-run average setup cost of the vendor 

�._d : Long-run average inventory holding cost of the vendor 
 

Model decision variables  

k : Number	of	full	truckload	shipments	from	the	vendor	to the manufacturer per 

cycle 

� : Production	rate	of	the	manufacturer	in	units	per	unit	of	time 

� : Production	lot	size	of	the	manufacturer	per	cycle 

� : Raw	material	reorder	point			 
                                  

3.2 Model Formulation 

The model proposed in this paper investigates how demand uncertainty at the manufacturer 

influences the manufacturer’s production rate, the number of full truckloads shipped from the 

vendor to the manufacturer, the manufacturer’s reorder level, and the manufacturer’s optimal 

production quantity. The different components of the total system cost function are developed 

step-by-step in the following. 

1. Setup cost per unit of time at the vendor 
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The vendor incurs a setup cost	$9 for each production cycle. The long-run average setup cost 

per unit of time for the vendor is given as 9� = $g
h , which can be approximated as (see 

Darwish et al. (2013) and Ben-Daya and Hariga (2004)): 

                        	mno@pBq                                                                                                      (1)             

2. Inventory holding cost per unit of time at the vendor 

The inventory kept at the vendor per cycle equals the area under the inventory time plots in 

part A of Figure 1. Dividing the area by the expected cycle time and multiplying it with the 

unit inventory holding cost leads to the inventory holding costs per unit of time: 

							�. _e = o@pBrsq
tu s v

ℎw = o@pBxsq
tu v

ℎw                                                                          (2)  

3. Production cost per unit of time at the vendor 

The cost of producing the raw material at the vendor per unit of time equals the product of the 

unit production cost function multiplied with the total quantity produced in a cycle, where the 

cycle time is an expected value: 

       $�w = 
O?@AB			                                                                                                  (3)                                

4. Long-run average cost per unit of time at the vendor  

The long-run average cost per unit of time at the vendor equals the sum of Eqs. (1) to (3):                              

h.��(�, k) = �.9� +�._� +$��             

																																h. ��(�,k) = $g?@ΛB
� + ?@ΛB
2�

2k��
ℎ� + 
O?@AB                                      (4) 

5. Raw material inventory holding costs per unit of time at the manufacturer 

The costs considered here are the ordering, transportation and inventory holding costs of raw 

materials at the manufacturer. The inventory holding costs of raw materials at the 
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manufacturer can be calculated using the area under the inventory time plots in Part B of 

Figure 1. Multiplying this area with the holding cost of raw material per unit per unit of time 

of the manufacturer, the long-run average inventory holding cost of raw material per unit of 

time can be calculated as: 

              		%_�c = qxo@zB
tu {k {1 − x 

 v
~ + x 

 v
~ ℎc                                                               (5) 

The maximum inventory level at the raw material warehouse of the manufacturer is not 

allowed to exceed the capacity of the warehouse, ���. This can be expressed as k� −

(k − 1) � v 
� ≤ ���, which leads to a constraint on the maximum number of shipments per 

cycle that can be rewritten as an upper bound on k: 

k ≤ �w��� − 
��
�(1 − 
�)  

The manufacturer’s ordering and transportation cost for raw material per unit of time is  

                  		%?e = um�
� + �

� =
uo@pBm�	

q + �o@pB
q   

                  %?e = o@pB
q @k$c + �B                                                                                   (6)                                                                        

The long run average total raw material inventory control cost per unit of time is therefore 

given as 

            h. �c@�, k, �B = o@zB
q @k$c + �B + qxo@zB

tu {k@1 − x 
 v
B + x 

 v
~ ℎc                            (7) 

6. Inventory holding cost for the finished product per unit of time at the manufacturer 

Part C of Figure 1 shows that the expected net inventory at the beginning of a cycle is 9 + �, 

and at the end of the cycle it is 9, where 9 represents the safety stock (Hadley and Whitin, 

1963). It is important to note that these are also the average values of the on-hand inventory 
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when the expected number of backorders can be neglected, and since the expected demand 

rate is constant, the expected on-hand inventory changes linearly from 9 + � to 9. Thus, the 

average inventory for the manufacturer’s finished product is 12 @9 + 9 + �B=@9 +
q
t], and the 

inventory holding cost of finished goods at the manufacturer’s warehouse is {9 + �
2~ℎJ. In 

addition, during the manufacturer’s production run illustrated in part C of Figure 1, the 

average inventory holding cost per unit of time for the manufacturer’s product meant to be 

consumed in the next cycle is �
� {

�	
t × N × �~ℎ�. Given that N		 = q

 			 and h = q
o@zB, the average 

inventory holding cost for the manufacturer can be expressed as  �?@ΛBℎJ				2� . Hence, the total 

inventory holding cost for the manufacturer’s product per unit of time is the sum of the 

inventory holding cost for the average number of final products on stock and for the average 

work-in-progress inventory held during the production run. Thus, 

   _.%ab = ℎ� {q	t {1 +
o@pB
 ~ + 9~                                                                                       (8) 

Note that the computation of the safety stock 9 depends on the model assumption on 

shortages, and thus on whether shortages are satisfied (backordered) or lost. In case shortages 

are lost, the safety stock, which is a random variable, is unrestricted in sign and can be 

computed as follows: 

                          												9 = � − Z,								?@9B = � − ?@ZB,  

           													since	?@ZB = ?@ΛB@N + Δ + �B	then		?@9B = � − ?@AB@N + �+ �B		 

              																																				� = �
 �
= xq

u v
. 

Substituting the expression for ?@9B in Eq. (8), the total inventory holding cost for the 

manufacturer’s product per unit of time is                   
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ℎJ@�2 {1 −
?@ΛB
� ~+�− ?@ΛB { 
�k��+�~B                                                                           (9) 

7. Shortage cost 

Shortage cost is the cost associated with stockouts at the manufacturer. Shortage cost occurs 

when the demand during lead time exceeds the reorder level (R). The shortage quantity is a 

random variable, and it is calculated as follows: 

           Shortage =	�	Z − �																									Z > �
			0																															Z ≤ �  

The expected shortage cost per unit of time is thus given as 

   9e = �o@pB
q � @Z − �B�@DB�D�

�                                                                                                (10)      

8. Direct production cost at the manufacturer 

Direct production cost are the cost of producing the manufacturer’s product. Similarly to 

Khouja (1994), and without loss of generality, this paper assumes that the unit production 

cost is a function of the production rate. 

The direct production cost per unit of time can thus be approximated as 

		]�� = ?@AB �� + !���                                                                                                  (11)                

9. Total raw material acquisition cost at the manufacturer 

The manufacturer’s total raw material acquisition cost is the total cost of purchasing k full 

truckloads of raw material in one cycle. This cost is computed as follows: 

       	$�� = 
�?@AB			                                                                                                       (12)                                               

10. Total production cost per unit of time at the manufacturer 
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The total production cost per unit of time at the manufacturer is the sum of Eqs. (11) and 

(12): 

�� = ]��+ $�J = ?@AB �#�+ !�
<�+ 
�?@AB	                                                              (13)                                

11. Setup cost for finished products at the manufacturer 

This cost is calculated as  

								%9e	 = m�o@pB
q                                                                                                                 (14) 

The total cost incurred by the manufacturer per unit of time is now given as: 

h. �j@�, k, �, �B = m�o@pB
q + ℎ� {qt {1 −

o@pB
 ~ + � − ?@ΛB@xq	u v

+ �B~ + �o@pB
q � @Z −�

�

�B�@DB�D + 
ft?@AB 	+ ?@AB �� + !�
��B                  

12. Total cost of the supply chain 

The total cost of the supply chain is the sum of the vendor’s and the manufacturer’s total cost: 

h. ��@�, k, �, �B = h. �i(�, �) + h. �c@�, k, �B + 	h. �j@�, k, �, �B = o@pB
q @$� + @k$c + �B +

$�B + o@pBxsq
tu v

ℎw + 
?@AB@� + OB + qxo@zB
tu {k@1 − x 

 v
B + x 

 v
~ ℎc + ℎ� {qt {1 −

o@pB
 ~ + � −

?@ΛB@xqu v + �B~ + �o@pB
q � @Z − �B�@DB�D�

� 	+ ?@AB �� + !���                           (15) 

The following constraints have to be satisfied: 

k�

� =1              

k ≤ �w��� − 
��
�(1 − 
�)  

k ∈ 	k��#�4g 
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4.0 SOLUTION METHOD AND NUMERICAL ILLUSTRATIONS 

To minimize the objective function (15), it is necessary to determine optimal values for the 

production quantity, �, the re-order level, �, the production rate, �, and the number of full 

truckload shipments, k. First, assuming that the manufacturer has a limited production 

capacity, the manufacturer faces a finite range of possible production rates. We initiate our 

solution technique by performing a line search over the feasible range of values for �, and 

then for each value of �, we perform another line search on k ∈ {1,  v�����x� 
�(��x ) }. Given the 

fixed values of � and k, � is obtained from the equality constraint on (15), � = u�
x . Finally, 

for these fixed values of �, k, and �, notice that the objective function (15) is convex in �. 

Thus, � can be found by taking the first partial derivative of (15) with respect to �, while the 

other variables are held constant. Setting this derivative equal to zero gives R=���(1 −
���
��@pB)	. Figure 2 provides a pseudocode of our suggested algorithm that determines the global 

optimal solutions in case they exist.  

h.�g∗ = !	#	% 
 
             For � = 	���u: g���	g	��:	�J¢£  
            For	k = 1: g���	g	��	¤�1:	  v�����x� 

�(��x )   

 

� = k�

  

R=���(1 − ���
��@pB) 

 Compute h. ��@�, k, �, �B 
 

                                            if 	h. �� ≤ h. ��∗ 
                                                      h.�g∗ = h.�g@�,k,�, �B 
                                                           �∗ = �, k∗ = k, �∗ = �, �∗ = � 
                                            End if 
             End for  
            End for 
                               �∗, k∗, �∗, �∗ = ¢4#J	k 	 h. �g∗ 	 
                               h.�g∗ = h.�g¥�∗, k∗, �∗, �∗¦ 

Figure 2: Pseudo code of the solution algorithm for the proposed model  
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Remark: since	Z is normally distributed with mean ?@ZB = ?@AB@N + � + �B and standard 
deviation X = Xm√N + � + ∆, noticing that N = �/�, which equals k�/
�, the necessary 
optimality conditions (obtained by substituting for � = k�/
, relaxing n and equating the 
gradient vector of h. �� to zero) will involve two integral equations (the first derivatives w.r.t 
k and �) which will be very complicated to solve in a closed form. 

 

Numerical Examples 

To study the impact of treating the manufacturer’s production rate as an additional decision 

variable in the JELS model proposed in Eq. (15), we define two cases, namely:  

I) The partially integrated case where the manufacturer is willing to collaborate with the 

vendor without deviating from the production rate that yields the minimum unit production 

cost. In this case, the manufacturer first determines the production rate that minimizes the 

unit production cost (11), then, given this fixed value, say �∗, the optimal values of 

k, �, and	� are determined such that the total supply chain cost, T. C¨@Q, n, �∗, RB in (15), is 

minimized (we refer to this minimum as h. �� 	− partially	integrated in the following). 

II) The fully integrated case where the manufacturer is willing to deviate from the production 

rate that minimizes the unit production cost (11). Here, the optimal values of �	, k, �, and	� 

are jointly determined such that total supply chain cost, T. C¨@Q, n, �, RB in (15), is minimized 

(we refer to this minimum as h. �� − 	fully	integrated	in the following). 

It is straightforward to show that h. �ª of the fully integrated case is always lower than or 

equal to that in the partially integrated case. We present some examples to compare both 

cases, the partially and the fully integrated cases, and evaluate the savings for the supply 

chain and individually for the vendor and the manufacturer.  

For the supply chain, we determine the percentage savings of the fully integrated case as 

compared to the partially integrated case as follows:  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 

 

�g = �.en	«¬®¯¬°°±	¯²®³´¬®³µ−�.en¶·°°±	¯²®³´¬®³µ
�.en	«¬®¯¬°°±	¯²®³´¬®³µ

× 100%                                                (16)      

Similarly, for both cases, after dividing h. �� into its components (h. �i and h. �c� = h. �c +

	h. �j), we determine the percentage savings for the vendor and the manufacturer 

individually as in Eq. (16) using h. �i and h. �c�, respectively, and we refer to these savings 

as �g� and �gJ for the vendor and the manufacturer, respectively: 

 �g� = �.e�	«¬®¯¬°°±	¯²®³´¬®³µ−�.e�¶·°°±	¯²®³´¬®³µ
�.e�	«¬®¯¬°°±	¯²®³´¬®³µ

× 100%                                               (17)      

�gJ = �.e��	«¬®¯¬°°±	¯²®³´¬®³µ−�.e��¶·°°±	¯²®³´¬®³µ
�.e��	«¬®¯¬°°±	¯²®³´¬®³µ

× 100%                                           (18)      

While �g is always larger than or equal to zero, notice that a positive �g� value implies that 

the fully integrated case is more beneficial to the vendor than the partially integrated case, 

and a negative �g� value implies the opposite. The same reasoning holds for �gJ. 

Unless stated otherwise, Table 1 introduces the basic data used in all numerical illustrations 

of this section.  

Table 1: Data used for numerical experimentation (unless stated otherwise)  
$J 2500 ?@ΛB 250 � 1000 

$g 2000 # 50 ∆ 0.1 

$4  500 ℎ� 3 V 200 

! 0.035 ℎ4 1 
 2 

<   1 ℎJ 5 X$ 40 

� 3.5 O 1.5 � 400 

 

To illustrate the behaviour of our model, we vary one parameter at a time, using some of the 

parameters given in Table 1. The results of our numerical experiment are presented in Tables 

2 to 15. 
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Table 2: Effect of the demand standard variation on the system 
 Partially integrated case Fully integrated case % savings 
σº k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
40 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 600 12369.6 1883.3 10486.3 9.3 0 10.7 

60 3 598 600 490 13875.6 1883.3 11992.3 3 433 600 600 12864.7 1883.3 10981.3 7.3 0 8.43 

80 3 598 600 529 14119.1 1883.3 12235.8 4 402 800 800 13306.6 1675 11631.6 5.8 11.1 4.94 

100 3 598 600 567 14362.6 1883.3 12479.3 4 435 800 800 13709 1675 12034 4.6 11.1 3.57 

120 4 598 800 688 14777 1675 13102 4 471 800 800 14131 1675 12456 4.4 0 4.93 

140 4 598 800 726 15029 1675 13354 4 511 800 800 14578.9 1675 12903.9 3 0 3.37 

 

Table 3: Effect of the demand standard variation on the system, � = 300  
 Partially integrated case Fully integrated case % savings 
σº k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
40 4 598 600 425 13724 1808.3 11915.7 4 365 600 600 12359 1808.3 10550.7 9.9 0 11.5 

60 4 598 600 462 13959.3 1808.3 12150.9 4 404 600 600 12808.2 1808.3 10999.9 8.2 0 9.5 

80 4 598 600 498 14194.5 1808.3 12386.2 5 395 750 749 13260.6 1641.7 11618.9 6.6 9.2 6.2 

100 4 598 600 535 14429.8 1808.3 12621.4 5 428 750 749 13658.7 1641.7 12017 5.3 9.2 4.8 

120 4 598 600 572 14665 1808.3 12856.7 5 464 750 749 14076 1641.7 12434.3 4.0 9.2 3.3 

140 5 598 750 673 15014.5 1641.7 13372.8 5 503 750 750 14514.3 1641.7 12872.6 3.3 0 3.7 

 
Table 4: Effect of the demand standard variation on the system, � = 200  

 Partially integrated case Fully integrated case % savings 
σº k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
40 6 598 600 397 14023.6 1733.3 12290.3 6 344 600 600 12581.9 1733.3 10848.6 10.3 0.0 11.7 

60 6 598 600 432.5 14250.3 1733.3 12517 6 378 600 600 12989.4 1733.3 11256 8.8 0.0 10.1 

80 6 598 600 468 14477.1 1733.3 12743.7 6 416 600 600 13422 1733.3 11688.7 7.3 0.0 8.3 

100 6 598 600 503.5 14703.8 1733.3 12970.4 7 419 700 700 13818.5 1614.3 12204.2 6.0 6.9 5.9 

120 6 598 600 539.1 14930.5 1733.3 13197.2 7 455 700 700 14229.6 1614.3 12615.3 4.7 6.9 4.4 

140 6 598 600 574.6 15157.2 1733.3 13423.9 7 494 700 700 14661.3 1614.3 13047.1 3.3 6.9 2.8 

 

To study the effect of a change in the standard deviation of demand on the supply chain and 

its members, we consider the base-case scenario parameters (Table 1). For X$, we consider 

different values ranging from 40 to 140 with a step size of 20. The results are summarized in 

Table 2, where it can be seen that the total supply chain savings measured by  �g decrease as 

X$ increases. For the fully integrated case, the system can balance an increase in uncertainty 

by producing faster and/or increasing the reorder point. Starting at Xm = 40, as compared to 

the partially integrated case, it is beneficial for the fully integrated system to increase � to its 

maximum value (�∗ = �∗ = 600), and, being consistent with Khouja’s (1994) result, to 

deviate from the  production rate of 598 units/unit of time which, in this case, minimizes the 

unit production cost. An increase in X$ then induces the fully integrated system to further 

react to this increase in demand uncertainty by increasing the production rate as a second 

mechanism to protect itself against shortages. Notice that the full integration was beneficial 
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for both the vendor and the manufacturer for X$-values of 80 and 100. For the remaining 

values of X$, only the manufacturer benefited directly from full integration.  

Tables 3 and 4 further illustrate the impact of Xm for different truck sizes (� = 300 and 

� = 200, respectively). As the truck size decreases (Tables 2-4), the supply chain performs 

better in terms of higher �g- and �gJ-values due to the increasing system flexibility provided 

by smaller trucks. However, the �g�-values tend to decrease as � decreases; this is mainly 

because the manufacturer is no longer forced to produce large lots and to use high reorder 

points when � is large in the partially integrated case. As in Khouja (1994), the optimal 

production rate is smaller than the production rate that minimizes the unit production cost 

(�∗ =598), with �∗ tending to further decrease with decreasing values of �. 

 
Table 5: Effect of the truck capacity on the system 

 Partially integrated case Fully integrated case % savings 
q k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 

400 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 599 12369.6 1883.3 10486.3 9.3 0 10.7 

440 3 598 660 488 13626.5 1837.6 11788.9 3 381 660 659 12379.9 1837.6 10542.3 9.1 0 10.6 

480 3 598 720 524 13664 1804.4 11859.5 3 374 720 719 12444.2 1804.4 10639.8 8.9 0 10.3 

520 2 598 520 452 13696 2101.5 11594.4 3 368 780 779 12551.1 1781 10770.1 8.4 15.3 7.11 

560 2 598 560 480 13661 2062.9 11598.2 3 363 840 839 12692.1 1765.2 10926.9 7.1 14.4 5.79 

600 2 598 600 507 13655.2 2033.3 11621.9 2 447 600 599 12689.5 2033.3 10656.2 7.1 0 8.31 

 

Table 5 illustrates the effect of the truck capacity on the system, for both the partially and the 

fully integrated cases. As can be seen, given the assumption that the vendor does not allow 

partially filled trucks, an increase in the truck capacity leads to lower lot size flexibility and 

consequently to a decreased	�g-value. However, the results also indicate some mutual 

benefits for both the vendor and supplier that result from full integration: the vendor’s �g� at 

�=520 and �=560 is due to the manufacturer producing larger lot sizes in the fully integrated 

case compared to the partially integrated case.  

Next, we explain the pattern observed in the �∗ and �∗ values. Since we only varied the full 

truckload capacity, �, an increase in the truckload capacity led to a decrease in the number of 

shipments, k, in discrete steps as k	¾		k��#�4g. Also, due to the equality constraint k�/
� =

1, for a given value of k, an increase in � entails that both �∗ and �∗ increase; �∗ then tends 
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to decrease to avoid a (too) fast buildup of inventory. As an example, consider k∗ = 3 for the 

fully integrated case of Table 5. We notice that if � increases from 400 to 560, �∗ also 

increases from 600 to 840, �∗ increases from 599 to 839, and �∗ decreases from 389 to 363.  

Table 6: Effect of the manufacturer’s holding cost on the system 
 Partially integrated case Fully integrated case % savings 
h¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
4 4 598 800 542 13122.5 1675 11447.5 4 349 800 800 11775.9 1675 10100.9 10.3 0 12 

5 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 599 12369.6 1883.3 10486.3 9.26 0 11 

6 3 598 600 448 14131.6 1883.3 12248.2 3 384 600 600 12928.5 1883.3 11045.2 8.51 0 9.8 

7 3 598 600 444 14626.7 1883.3 12743.4 3 380 600 599 13492.2 1883.3 11608.8 7.76 0 8.9 

8 3 598 600 440 15118 1883.3 13234.6 3 376 600 599 14056.5 1883.3 12173.2 7.02 0 8 

9 2 598 400 356 15474.7 2300 13174.7 3 373 600 599 14624 1883.3 12740.6 5.5 18.1 3.3 

 

Table 7: Effect of the manufacturer’s holding cost on the system, � = 300 
 Partially integrated case Fully integrated case % savings 
h¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
4 5 598 750 493.8 13191.6 1641.7 11549.9 5 342 750 748.4 11777 1641.7 10135.3 10.7 0.0 12.2 

5 4 598 600 424.7 13724 1808.3 11915.7 4 365 600 599.9 12359 1808.3 10550.7 9.9 0.0 11.5 

6 4 598 600 420.2 14220.9 1808.3 12412.6 4 361 600 599.4 12937.2 1808.3 11128.8 9.0 0.0 10.3 

7 4 598 600 416.3 14713.7 1808.3 12905.4 4 357 600 599.7 13516.1 1808.3 11707.8 8.1 0.0 9.3 

8 3 598 450 351 15110 2086.1 13023.8 3 405 450 449.6 13977 2086.1 11890.9 7.5 0.0 8.7 

9 3 598 450 348.3 15490.5 2086.1 13404.4 3 401 450 449.6 14394.7 2086.1 12308.6 7.1 0.0 8.2 

 

Table 8: Effect of the manufacturer’s holding cost on the system, � = 200 
 Partially integrated case Fully integrated case % savings 
h¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
4 6 598 600 402 13524.7 1733.3 11791.3 7 333 700 699.1 11991.8 1614.3 10377.5 11.3 6.9 12.0 

5 6 598 600 397 14023.6 1733.3 12290.3 6 344 600 600 12581.9 1733.3 10848.6 10.3 0.0 11.7 

6 6 598 600 392.7 14518 1733.3 12784.6 5 363 500 499.9 13155.2 1900 11255.2 9.4 -9.6 12.0 

7 5 598 500 347.1 14963.9 1900 13063.9 5 359 500 500 13641.7 1900 11741.7 8.8 0.0 10.1 

8 5 598 500 344.1 15379.9 1900 13479.9 5 356 500 499.5 14132.1 1900 12232.1 8.1 0.0 9.3 

9 5 598 500 341.3 15793 1900 13893 5 353 500 499.4 14622.8 1900 12722.8 7.4 0.0 8.4 

 

Table 6 illustrates the effect of an increase in ℎ� on the system. An increase in ℎ� makes it 

more and more expensive to keep inventory (and therewith safety stock) in the system, which 

for a constant	�∗, induces the fully integrated system to decrease the values of �∗ and	�∗, 

which is in contrast to the partially integrated case. Hence, in the fully integrated case, the 

system benefits from production flexibility by lowering the production speed from �∗ = 598 

that was obtained in the hierarchical case. Hence, slowing down production allows reducing 

the build-up of inventory. The additional unit production cost that result from varying the 

production rate from �∗ = 598 is offset through savings in inventory holding cost. Still, for 

both the partially and the fully integrated case, an increase in the manufacturer’s holding cost 

leads to a decrease in the lot size, resulting in a lower number of shipments.  
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The 18.1% savings of the vendor at ℎ�=9 in the fully integrated case is due to the 

manufacturer receiving three shipments every cycle, instead of two as in the partially 

integrated case; this change, which led to a decrease in the manufacturer’s savings, was 

responsible for the cost reduction on the vendor’s side. Also, notice that the �∗-values were 

equal for the partially and the fully integrated case for all ℎ�-values, except for ℎ� = 9 

(�∗ − partially	integrated = 400, �∗ − integrated = 600	), which implies a higher setup 

cost at the manufacturer in the partially integrated case as compared to the fully integrated 

case; this explains the sharp decrease in �gJ (3% at ℎ� = 9) compared to the other �gJ-

values of Table 6. 

In terms of lot sizing, reorder levels and production rate decisions, Tables 7 and 8 show 

similar results than Table 6 for the partially and fully integrated cases. The main difference is 

that the �g- and �gJ-values tend to increase slightly as � decreases (more system flexibility). 

However, the �g�-values tends to decrease to the extent of having a negative value in Table 

8. Hence, in this case, the reduction of � was more beneficial to the manufacturer. 

Table 9: Effect of the manufacturer’s setup cost on the system 
 Partially integrated case Fully integrated case % savings 

A¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
2500 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 599 12369.6 1883.3 10486.3 9.3 0 11 

7500 4 598 800 536 15331.6 1675 13656.6 4 345 800 799 14114.2 1675 12439.2 7.9 0 8.9 

12500 5 598 1000 619 16631.6 1550 15081.6 5 335 1000 967 15635.8 1550 14085.8 6 0 6.6 

17500 6 598 1200 701 17730.9 1466.7 16264.2 5 335 1000 967 16885.8 1550 15335.8 4.8 -5.7 5.7 

22500 6 598 1200 701 18772.5 1466.7 17305.9 6 365 1200 1038 17991.1 1466.7 16524.4 4.2 0 4.5 

27500 6 598 1200 701 19814.2 1466.7 18347.5 7 392 1400 1105 18999.9 1407.1 17592.8 4.1 4.1 4.1 

 

Table 10: Effect of the manufacturer’s setup cost on the system, � = 300 
 Partially integrated case Fully integrated case % savings 

A¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
2500 4 598 600 424.7 13724 1808.3 11915.7 4 365 600 599.9 12359 1808.3 10550.7 9.9 0.0 11.5 

7500 6 598 900 550.5 15416 1530.6 13885.4 5 337 750 749.7 14178.2 1641.7 12536.5 8.0 -7.3 9.7 

12500 6 598 900 550.5 16804.9 1530.6 15274.3 6 320 900 899.2 15685.7 1530.6 14155.1 6.7 0.0 7.3 

17500 6 598 900 550.5 18193.8 1530.6 16663.2 7 343 1050 958.6 16974.9 1451.2 15523.7 6.7 5.2 6.8 

22500 6 598 900 550.5 19582.7 1530.6 18052.1 8 365 1200 1012 18090.8 1391.7 16699.1 7.6 9.1 7.5 

27500 6 598 900 550.5 20971.5 1530.6 19441 9 386 1350 1061 19086.6 1345.4 17741.2 9.0 12.1 8.7 

 

Table 11: Effect of the manufacturer’s setup cost on the system, � = 200 
 Partially integrated case Fully integrated case % savings 

A¿ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
2500 6 598 600 397 14023.6 1733.3 12290.3 6 344 600 600 12581.9 1733.3 10848.6 10.3 0.0 11.7 

7500 6 598 600 397 16107 1733.3 14373.6 7 329 700 698.9 14476.2 1614.3 12861.9 10.1 6.9 10.5 

12500 6 598 600 397 18190.3 1733.3 16457 9 319 900 875.1 15992.2 1455.6 14536.6 12.1 16.0 11.7 

17500 6 598 600 397 20273.6 1733.3 18540.3 11 351 1100 949.4 17291.7 1354.5 15937.1 14.7 21.9 14.0 

22500 6 598 600 397 22357 1733.3 20623.6 12 365 1200 985.9 18398.7 1316.7 17082 17.7 24.0 17.2 

27500 6 598 600 397 24440.3 1733.3 22707 13 379 1300 1020 19394.5 1284.6 18109.9 20.6 25.9 20.2 
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Table 9 illustrates that, as the setup cost of the manufacturer increases, the number of 

shipments and the corresponding lot size increase in both the partially and the fully integrated 

scenario. 

In terms of percent savings, Table 9 highlights three possible scenarios, namely: I) the total 

supply chain savings materialize only at the manufacturer (�g�=0 and �gJ>0), II) both 

parties realize savings (both, �g� and �gJ >0), III) the vendor experiences a 5.7% loss. The 

5.7% loss for the vendor due to full integration at $� = 17500 is due to the manufacturer 

making five shipments every cycle instead of six in the partially integrated case, which 

imposes a loss on the vendor. In fact, since �g-fully integrated is always greater than �g-

partially integrated, the fully integrated scenario, in this case, can still be made attractive to 

the vendor by properly sharing the cost savings that occur at the manufacturer in case the 

vendor does not benefit from the cooperation. The same applies to all other cases with 

negative �gJ- or �g�-values.  

Tables 10 and 11 repeat the experiments of Table 9, but with different truck sizes (� = 300 

and � = 200, respectively). Tables 9 to 11 show that for the partially integrated case, due to 

the fixed production rate of 598, the system tries to offset higher setup costs by mainly 

increasing �∗ and �∗, which tend to take smaller values as � decreases. For the fully 

integrated case, Tables 9 to 11 indicate that, at given $�, the system has maintained almost 

the same �∗ and �∗ levels for the different truck sizes. However, as � decreases, the system 

achieved a better performance (i.e., for a given $�, as � decreases, �g, �gJ, and �g� 

increase), which is caused by slowing down the production rate and sending smaller trucks 

more frequently.  
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Finally, the reduction in the truck size was very beneficial to the vendor and the manufacturer 

reflected by the increase in both the �gJ- and �g�-values. 

Table 12: Effect of the vendor’s holding cost on the system 
 Partially integrated case Fully integrated case % savings 
hÄ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
3 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 599 12369.6 1883.3 10486.3 9.26 0 10.7 

5 3 598 600 452 13832.2 2083.3 11748.8 3 389 600 599 12569.6 2083.3 10486.3 9.13 0 10.7 

7 3 598 600 452 14032.2 2283.3 11748.8 3 389 600 599 12769.6 2283.3 10486.3 9 0 10.7 

9 3 598 600 452 14232.2 2483.3 11748.8 3 389 600 599 12969.6 2483.3 10486.3 8.87 0 10.7 

11 3 598 600 452 14432.2 2683.3 11748.8 3 389 600 599 13169.6 2683.3 10486.3 8.75 0 10.7 

13 3 598 600 452 14632.2 2883.3 11748.8 3 389 600 599 13369.6 2883.3 10486.3 8.63 0 10.7 

 

Table 13: Effect of the vendor’s holding cost on the system, � = 300 
 Partially integrated case Fully integrated case % savings 
hÄ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
3 4 597.6 600 424.7 13724 1808.3 11915.7 4 365 600 599.9 12359 1808.3 10550.7 9.9 0.0 11.5 

5 4 597.6 600 424.7 13874 1958.3 11915.7 4 365 600 599.9 12509 1958.3 10550.7 9.8 0.0 11.5 

7 4 597.6 600 424.7 14024 2108.3 11915.7 4 365 600 599.9 12659 2108.3 10550.7 9.7 0.0 11.5 

9 4 597.6 600 424.7 14174 2258.3 11915.7 4 365 600 599.9 12809 2258.3 10550.7 9.6 0.0 11.5 

11 4 597.6 600 424.7 14324 2408.3 11915.7 4 365 600 599.9 12959 2408.3 10550.7 9.5 0.0 11.5 

13 4 597.6 600 424.7 14474 2558.3 11915.7 4 365 600 599.9 13109 2558.3 10550.7 9.4 0.0 11.5 

 

Table 14: Effect of the vendor’s holding cost on the system, � = 200 
 Partially integrated case Fully integrated case % savings 
hÄ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 
3 6 597.6 600 397 14023.6 1733.3 12290.3 6 344 600 600 12581.9 1733.3 10848.6 10.3 0.0 11.7 

5 6 597.6 600 397 14123.6 1833.3 12290.3 6 344 600 600 12681.9 1833.3 10848.6 10.2 0.0 11.7 

7 6 597.6 600 397 14223.6 1933.3 12290.3 6 344 600 600 12781.9 1933.3 10848.6 10.1 0.0 11.7 

9 6 597.6 600 397 14323.6 2033.3 12290.3 6 344 600 600 12881.9 2033.3 10848.6 10.1 0.0 11.7 

11 6 597.6 600 397 14423.6 2133.3 12290.3 6 344 600 600 12981.9 2133.3 10848.6 10.0 0.0 11.7 

13 6 597.6 600 397 14523.6 2233.3 12290.3 6 344 600 600 13081.9 2233.3 10848.6 9.9 0.0 11.7 

 

 

Tables 12 to 14 illustrate the effect of the vendor’s holding cost on the system. Since the 

vendor holds no significant inventory (as compared to the manufacturer), s/he produces and 

ships continuously (Figure 1, Part A), and because of the demand satisfaction constraint the 

number of shipments do not change. Changes in ℎw and � resulted only in an increase in the 

total supply chain cost and decreased �g-values, while �gJ remained constant. A further 

observation from Tables 12 to 14 is that the smaller the truck size, the better the performance 

of the system in terms of �g- and �gJ-values. 

Table 15: Effect of the vendor’s setup cost on the system 

 Partially integrated case Fully integrated case % savings 
A¨ k∗ �∗ �∗ �∗ h. �� h. �i h. �c� k∗ �∗ �∗ �∗ h. �� h. �i h. �c� �g �g� �gJ 

2000 3 598 600 452 13632.2 1883.3 11748.8 3 389 600 599 12369.6 1883.3 10486.3 9.3 0 10.7 

7000 4 598 800 536 15331.6 3237.5 12094.1 4 345 800 799 14114.2 3237.5 10876.7 7.9 0 10.1 

12000 5 598 1000 619 16631.6 4050 12581.6 5 335 1000 967 15635.8 4050 11585.8 6 0 7.92 

17000 6 598 1200 701 17730.9 4591.7 13139.2 5 335 1000 967 16885.8 5300 11585.8 4.8 -15 11.8 

22000 6 598 1200 701 18772.5 5633.3 13139.2 6 365 1200 1038 17991.1 5633.3 12357.7 4.2 0 5.95 

27000 6 598 1200 701 19814.2 6675 13139.2 7 392 1400 1105 18999.9 5871.4 13128.5 4.1 12 0.08 
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Similar to the impact of the manufacturer’s setup cost on the system, Table 15 illustrates that 

an increase in the setup cost of the vendor entails an increase in the number of shipments and 

the corresponding manufacturer’s lot size, both in the partially and the fully integrated 

scenarios.  

In terms of percent savings, there are four possible scenarios with respect to the combination 

of �g� and  �gJ, namely: I) �g�=0 and �gJ>0, II) �g�<0 and �gJ>0, III) �g�>0 and 

�gJ>0, and IV) �g�>0 and �gJ<0.  

If the number of shipments, k∗ in the fully integrated case exceeds that of the partially 

integrated case, then �g� will be positive; in case they are equal, �g� will be zero; otherwise, 

�g� will be positive indicating that full integration is more beneficial to the vendor than 

partial integration. It can also be observed that as the setup cost increases, �gJ tends to 

decrease, and in some cases, �gJ even took on negative values; this effect is due to the 

increase in the lot size that the manufacturer has to produce in every cycle and the 

accompanying higher reorder level. 

Finally, the experiments of Table 15 were replicated but with different truck sizes (� = 300 

and � = 200, respectively), and all the observations made earlier on Tables 10 (� = 300) 

and 11 (� = 200) when compared to Table 9 (� = 400, baseline scenario as per Table 1), 

apply to  our results for � = 300 and � = 200 when compared to � = 400 (Table 15). 

Hence, to keep the paper short, we decided not to report the additional tables here. 

5.0   CONCLUSION 

This paper considered the single vendor-single manufacturer joint economic lot size problem 

under stochastic demand. As compared to previous works, we developed an integrated 

mathematical model that investigates the impact of a variable production rate on the system. 

A simple, yet fast solution technique was used to solve the model and obtain globally optimal 
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solutions. In numerical examples, we showed that the cost incurred in a supply chain system 

can be reduced by controlling the manufacturer’s production rate. This reduction in total 

supply chain cost can be beneficial to the vendor and the manufacturer. Some examples 

showed that varying the manufacturer’s production rate can benefit the manufacturer, but 

lead to disadvantages on the vendor’s side. These disadvantages, however, can be offset by 

implementing a proper sharing mechanism for the total supply chain savings. 

The paper at hand showed that in case of full truckload shipments, the truck capacity restricts 

the lot sizing decisions strongly, which negatively influences the performance of the system. 

First, it restricts the integration and may make it more difficult to coordinate, as the 

cooperation gain that can be redistributed is lower. Secondly, it may imply that the supply 

chain should evaluate whether shifting to less-than-truckload shipments or offering quantity 

discounts on large trucks is beneficial. In both cases, a variable production rate introduces 

additional flexibility into the supply chain, which may help to reduce total cost. 

As a future work, our model could be extended by incorporating quality issues resulting from 

variable production rates. Prior research has shown that deviating from the design production 

rate of a machine may lead to lower yield rates, which would have to be taken into account 

when coordinating the production policies of a vendor and a manufacturer. Clearly, 

investigating maintenance policies or the reworking of defective items in this scenario would 

be promising. A second option to extend our work would be the integration of quantity 

discounts the vendor could offer to the manufacturer to induce the manufacturer to consider 

the vendor’s position in making production and distribution decisions. 
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