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This paper proposes a new multi objective genetic algorithm (MOGA) for solving unequal area facility lay-
out problems (UA-FLPs). The genetic algorithm suggested is based upon the slicing structure where the
relative locations of the facilities on the floor are represented by a location matrix encoded in two chro-
mosomes. A block layout is constructed by partitioning the floor into a set of rectangular blocks using
guillotine cuts satisfying the areas requirements of the departments. The procedure takes into account
four objective functions (material handling costs, aspect ratio, closeness and distance requests) by means
of a Pareto based evolutionary approach. The main advantage of the proposed formulation, with respect
to existing referenced approaches (e.g. bay structure), is that the search space is considerably wide and
the practicability of the layout designs is preserved, thus improving the quality of the solutions obtained.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The facility layout problem (FLP) concerns the optimal
placement of a set of departments with known dimensions within
the facility area, in order to minimize the operating cost and max-
imize the system efficiency. Generally speaking, the problem of
designing a physical layout involves the minimization of the mate-
rial handling cost as the main objective, and previous researches
demonstrate that such minimization can lead to a cost reduction
of 10–30% (Tompkins et al., 1996). Since the FLP is known to be
NP-Hard, in recent years, a lot of sub-optimal approaches have been
developed to solve facilities layout problems (Singh & Sharma,
2006). Recent developments are mostly based on iterative meta-
heuristic approaches such as Simulation Annealing (Chwif, Marcos,
& Lucas, 1998; Sahin & Turkbey, 2009), Tabu Searching (Mckendall
& Hakobyan, 2010), Ant System (Komarudin & Wong, 2009, 2010;
Konak-Kulturel & Konak, 2010) and Genetic Algorithms (GAs)
(Islier, 1998; Al Hakim, 2000; Aiello, Enea, & Galante, 2006; Diego,
Santamarina, Alcaide, & Cloquell, 2009). In recent years GAs have
been widely implemented to solve combinatorial optimization
problems (Gero & Kazakov, 1997; Gilkinson, Rabelo, & Bush,
1995; Goldberg, 1989; Nang, 1994; Whitley, Starkweather, &
Shaner, 1991). The structure of a GA involves the production of an
initial population and the achievement of a sub-optimal solution
via recursive operations of reproduction, crossover, and mutation
(Holland, 1992; Michalewicz, 1992). Several formulations have
been proposed for unequal area facility layout problems (UA-FLPs),
ll rights reserved.

a).
among others, the flexible bay structure (FBS) is currently receiving
many attentions from researchers (Aiello, Enea, & Galante, 2002;
Konak, Konak-Kulturel, Norman, & Smith, 2006). In FBS formula-
tion, the placement of departments generates columns or bays with
different widths and number of departments. The width of a bay is
automatically adjusted according to the number of departments
contained. By means of such representation, the problem complex-
ity is reduced into determining the departments placement order
and the total number of departments each bay will contain. FBS
has an advantage in that the bays will become candidates for aisle
structures and this facilitates users to transform the model into an
actual facility design. However, in the bay structure, the floor is al-
ways divided in one direction (vertically or horizontally) into rect-
angular blocks (bays). An alternative decomposition scheme for
facility layout design is the slicing structure. A slicing structure
results from dividing an initial rectangle either in horizontal or ver-
tical direction completely from one side to the other (so-called guil-
lotine cut) and recursively going on with the newly generated
rectangles (Scholz, Jaehn, & Junker, 2010). This procedure is recur-
sively applied to the sub matrices produced by the decomposition
until the location matrix is fully decomposed into either row or col-
umn vectors. In this paper, in order to overcome the simplifying
assumptions of the bay structure, we propose to solve the facility
layout problem using a genetic algorithm encoded by a slicing
structure. The objective of the problem considered here is to mini-
mize the total Material Handling Cost, i.e., the sum of rectilinear
distance costs weighted by flow amounts between the centroids
of the facilities. Three additional objective functions, commonly
employed in the literature (Harmonosky & Tothero, 1992; Meller
& Gau, 1996) have also been considered, namely: the distance
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Fig. 1. The localization matrix.

Table 1
Areas of facilities in the example problem.

Department 1 2 3 4 5 6 7 8 9 10
Area 10 6 6 4 12 6 10 10 8 18

Fig. 2. Partitioning method.
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and the closeness requirements among the departments, and the
desired aspect ratio. As a consequence a multi objective genetic
algorithm (MOGA) has been developed in order to optimize such
objectives simultaneously. The approach proposed refers to the
class of Pareto-based approaches suggested by Goldberg (1989)
and it is developed according to the framework of non-dominated
sorting GA (NSGA) proposed by Srinivas and Deb (1995). Pareto
based approaches involve the evolution of the Pareto front consti-
tuted by the fitness of a generic individual corresponding to each
optimality criterion considered. The GAs belonging to this class
generally outperform the non-Pareto based approaches (Tamaki,
Kita, & Kobayashi, 1996; Zitzler & Thiele, 1999). In addition the fol-
lowing constraints are considered for feasibility: (1) blocks, which
specify locations and shapes of departments, must not overlap each
other; and (2) the size of each block must be equal to the area of its
corresponding department (area constraints), (3) the aspect ratio
must be within a specified range. The remainder of this paper is
organized as follows. Section 2 gives an encoding scheme for repre-
senting solutions. Section 3 describes the genetic algorithm imple-
mented in this study for the facility layout problem and how
various parameters are selected for the algorithm. To show perfor-
mance of the suggested algorithm, computational experiments are
done in Section 4. Finally, Section 5 concludes the paper with a
short summary and the results are reported.
2. Space partitioning method

The GA here proposed is based on the referenced slicing struc-
ture, where a solution is represented by an rXc matrix M, called
location matrix, which contains information about the relative
locations of the departments on the floor. In our representation,
in order to obtain a uniform genetic encoding scheme, only qua-
dratic matrices (r = c) are considered. Consequently, given N
departments, the rank (r) of the corresponding location matrix is
determined as:

r ¼ d
ffiffiffiffi
N
p
e ð1Þ

where dxe is the ceiling function that denotes the smallest integer
greater than or equal to x.

The number of elements (r2) in the matrix is thus greater than
or equal to the number of departments. When r2 is strictly greater
than N, (r2 � N) dummy departments with null area are introduced.
These dummy departments have null material fluxes from/to other
departments and are indexed as zero.

Let mij be the value of the element of the location matrix at row i
and column j in M. Then, using the aforementioned encoding
scheme, the department mij is to be placed to the right of the
department mi�1,j, to the left of the department mi+1,j, below the
department mi,j�1, and above the department mi,j+1 on the floor.
In this manner, the relative locations of all departments on the
floor are determined by M. For example, Fig. 1 shows a 3�3 loca-
tion matrix where there are seven (real) departments and two
dummy departments.

The floor is partitioned by a guillotine cut in such a way that the
area of each block is equal to the sum of areas of the departments
included in the submatrix corresponding to the block. The blocks
always have rectangular shapes since only either a vertical or hor-
izontal guillotine cut is used for partitioning. Considering every
possible alternative for the guillotine cuts for the decomposition,
the maximum number of cuts in which the matrix can be divided
is calculated by the following equation:

T ¼ 2r � 3 ð2Þ

In our representation, in order to always obtain a quadratic matrix,
at each horizontal cut follows a vertical cut and vice versa. This
method is illustrated with an example problem with N = 10, L = 9
and W = 10. Let L and W be the length and the width of the floor,
respectively. The areas of the facilities are presented in Table 1,
the rank of the location matrix is d

ffiffiffiffiffiffi
10
p
e ¼ 4 and the maximum

number of cuts is 5.
Fig. 2 shows a possible decomposition and its corresponding

layout, corresponding to the following sequence of cuts: vertical,
horizontal, horizontal, vertical and horizontal.
3. Genetic algorithm

Goldberg (1989) indicated that traditional optimization search
methods consist of calculus-based methods, enumerative schemes,
and random search algorithms. The calculus-based methods, such
as the hill climbing approach, utilize the single point search to grad-
ually approximate the maximum value of the objective function.
They are therefore unable to reach the global optimum since their
search space is limited to local areas. Enumerative schemes such
as the dynamic programming and branch and bound approaches
calculate the objective function of each point in finite (discretised
infinite) search spaces and reach the optimal solution. However,
they are time consuming and inefficient and practically inapplicable
to NP-Hard problems. Random search algorithms improve the
drawbacks of the aforementioned methods and are able to save
search time. However, the solution may just be a near-optimal solu-
tion. GAs are peculiar random search algorithms which simulate the
evolutionary competition and survival fitness in natural evolution.
They use a parallel processing, robust, and multiple-points algo-
rithm in searching the solution space. Such approach enhances
the opportunity to achieve the global optimal solution without fall-
ing into a local optimum. In recent years multi objective genetic
algorithms have been investigated. Studies on multi-objective GAs
started with the pioneering work by Schaffer in 1984 (Fonseca &
Fleming, 1995) with the fundamental motivation to capture multi-
ple Pareto optimal solutions in a single run. In most of the literature
multiobjective GAs are divided into non-Pareto and Pareto-based
approaches (Tamaki et al., 1996; Zitzler & Thiele, 1999). The
category of non-Pareto GAs, uses one population and associated
selection metric for each individual objective function. Different



Fig. 3. Flow chart of GA optimization procedure.

I segment II segment 

4  3  0   1  0  6  2  7  9 0 1 

Fig. 4. Genetic encoding.

Fig. 5. Location matrix and cutting scheme corresponding to the sample encoding.
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objective selection methods and diversity maintenance mecha-
nisms are tried within these approaches, however, they tend to
converge to a subset of the Pareto-frontier while they leave a large
part of it unexplored (Harik, 1995). The Pareto-based approaches
are mainly motivated by a suggestion of a non-dominated GA by
Goldberg (1989). Pareto-based approaches have been proven to be
quite successful in maintaining diversity and exploring the
Pareto-front in several benchmark numerical multiobjective
optimization problems.

The algorithm here proposed belongs to the class of Pareto-
based approaches and consists of six steps (Fig. 3): initializing
the population, computing fitness values and rank, save Pareto
frontier, performing crossover, mutation and clone detection, and
reiterating steps 2–6 until the termination conditions are satisfied.

3.1. Genetic encoding

The encoding method in the natural system is regarded as chro-
mosomes. In the artificial system, it is a string of genes, coded by
fixed length binary values (0,1) or alphabetical characters (A,B,C)
or arabic numbers (1,2,3). In this study, the strings of genes are sub-
divided in two segments constituted by numerical values the first,
and binary variables the second. The first segment gives the depart-
ment placement sequence, i.e. the elements of the location matrix
read from up-left to bottom-right. The second segment shows the
type of cutting, where 0 indicates a sequence of horizontal–vertical
cuts, while 1 a sequence of vertical-horizontal cuts. According to
this decomposition scheme, after each couple of cuts a quadratic
matrix is always obtained, the number of cuts required is always
maximum (see Eq. (2)), the length of the second portion of the chro-
mosome is the same for all elements in the population and the last
cut will not be performed since the number of cuts required is
always odd. This means that the number of genes in the second
chromosome is strictly equal to the ceiling function of the square
root of T. The strings of genes (i.e. a solution to a layout problem),
which comprise these two segments, represent the whole chromo-
some encoding of a generic floor layout. In Fig. 4, a sample chromo-
some is reported.

Having regard to the considerations made in Section 2, the
resulting location matrix and cutting scheme is given in Fig. 5.

3.2. Crossover

Crossover operator for the first chromosome is based upon the
generic uniformed-based scheme. A binary string is randomly gen-
erated. The children F1 and F2 are constructed copying the genes of
a parent G1 in a child F1, in correspondence of the ‘‘1’’ values in the
binary string. To complete F1, avoiding gene duplication (i.e. wrong
coding), the missing genes are introduced according to their se-
quence in G2. The second son is generated oppositely. The break-
point chromosome of F1 is chosen randomly between the
breakpoint chromosomes of G1 and G2; analogously for the other
child F2. For each couple of parents, hence, a couple of sons is gen-
erated. Being k the number of elements in the population, the
crossover routine involves the initial partitioning in k/2 couples
of parents randomly selected, and subsequently in the generation
of an offspring population of k sons. The two populations are sub-
sequently merged in a population of 2k elements, and the first k
elements are extracted to constitute the new population according
to the ranking procedure described below.

3.3. Mutation

Mutation operator is carried with a fixed probability at each
step. Mutation operates alternatively on the first or on the second
chromosome with an assigned probability. On the first chromo-
some, the mutation operator consists in swapping a fixed number
of genes, while on the second chromosome, it consists in randomly
switching ‘‘0’’ values to ‘‘1’’ and vice versa. This ensures the feasi-
bility of the resulting chromosomes.

3.4. Objective functions

In the proposed approach, four different aspects of the block
layout problem are taken into account: handling cost, adjacency
requests, distance requests and aspect ratio of departments. The
following objectives are therefore considered:

1. minimization of material handling cost,
2. maximization of the satisfaction of weighted adjacency,
3. maximization of the satisfaction of distance requests,
4. maximization of the satisfaction of aspect ratio requests.



Table 2
Departments areas.

Department 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Areas 10 12 23 15 13 24 30 34 21 18 18 11 18 11 11 23 22 16 30 20

Table 3
Departments flows.

Table 4
Closeness request.

Department 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 4 4 4
9 8 8

11 2 2 2

Table 5
Distance request.

Department 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 8 8 8 8 8 8
2 2 2 2 2 2 2
3 4 4 4 4 4 4
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3.4.1. Material handling cost
The first objective function expresses the total material

handling cost to be minimized:

cost ¼
X

i

X

j

ðfijcijÞdij ð3Þ

where fij is the material flow between the departments i and j, cij is
the unit cost (the cost to move one unit load one distance from
department i to department j) and dij is the distance between the
centres of departments using a pre-specified metric.

3.4.2. Closeness request
The second objective has been modeled by the maximization of

the adjacency function:

adjacency ¼
X

i

X

j

rijlij ð4Þ

where rij is the closeness rating and lij is the contact perimeter
length between departments i and j.
3.4.3. Distance request
The third aspect taken into account is the distance request

among some departments. A designer’s objective in fact can be
the separation of some departments from some others. Reasons
for such requirement may be, for example, environmental issues
like noise, vibration, pollution or aspects related to the security of
workers or to risks of fire or explosion. The objective function, to
be maximized, is expressed in this case by the following equation:

separation ¼
X

i

X

j

sijdij ð5Þ

where sij is the distance rating of departments i and j and dij is the
distance between the centres of departments using a pre-specified
metric.
3.4.4. Aspect ratio
For each department, a proper aspect ratio is required, typically

to optimize the placement of the machines inside. Let h and w be



Table 6
Best solutions obtained with the two different approaches.

Fig. 6. Satisfaction of aspect ratio request.
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the two dimensions of the rectangle; the aspect ratio of depart-
ment j is defined as:

cj ¼
maxfhj;wjg
minfhj;wjg

ð6Þ

Shape ratio is still considered acceptable, with a decreasing level
of satisfaction as long as it deviates from the optimal shape,
Fig. 7. Block layout correspondi
within a certain interval. When the value of aspect ratio is not
acceptable, the score function drastically drops to 0 because
manufacturing resources cannot be placed inside the department
anymore. The simplest shape of such score function is given in
Fig. 6, where arsj represents the aspect ratio satisfaction function
and cj,opt represents the optimal aspect ratio. The presence of
even a single department with unfeasible shape makes the
whole layout unfeasible and therefore the feasibility can be
evaluated by:

aspect ratio ¼minðarsiÞ ð7Þ

or

aspect ratio ¼
Y

arsi ð8Þ

A null value implies an unfeasible solution. The multi-objective
genetic algorithm, described in Section 3, requires a measure of
the constraint violation in order to rank the unfeasible solutions;
hence, the following parameter has been defined:

V ¼ Vr þ Vl ð9Þ
ng to the optimal solutions.
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where

Vr ¼
XN

i¼1

ci � cir 8ijci > cir ð10Þ

Vl ¼
XN

i¼1

ci1 � ci 8ijci < cil ð11Þ

For feasible solutions, the aspect ratio satisfaction is considered a
further objective. In order to rank these solutions, the satisfaction
level is measured by the mean of the aspect ratio satisfaction score
of each department:

aspect ratio ¼
PN

i¼1arsi

N
ð12Þ

In order to simplify the input data, a unique satisfaction function
has been hypothesized for each department and the aspect ratio
satisfaction function of each department is shown in Fig. 4. In par-
ticular defined in the interval 1 < c < 2.5 and reaching the optimal
aspect ratio in correspondence to c = 1.5.

The above objectives have been chosen because they are fre-
quently cited in literature and involve quantitative (1) and qualita-
tive (2,3) aspects as well as an aspect (4) that configures as a
problem constraint.

3.5. Raking procedure

The ranking procedure here employed is referred to the degree
of dominance. According to this approach, first non-dominated
individuals within the population are identified, they are given
the rank 1, and removed from the population. Then, the non-
dominated individuals within the reduced population are identi-
fied and given the rank 2, followed by their removal from the
population. This procedure is repeated until the whole population
is ranked.

4. Numerical example

The proposed approach has been applied to a layout of 20
departments, that must be placed within a square area, equal to
the sum of the departments’ area given in Table 2. In order to com-
pare the results with other referenced approaches, the input data
employed are the same employed in past applications. In particu-
lar, material flows between departments, randomly generated,
are given in Table 3. The flow fij in Eq. (1) is equal to the sum of
fij and fji reported in the Table 3. The unit cost (the cost to move
one unit load per unit distance from department i to department
j) is fixed equal to 1 for each couple of departments, while the dis-
tance between departments is the Manhattan distance between
their centres. The closeness requests between departments, rij

parameters, have been expressed by a binary scale and are shown
in Table 4. The distance requests sij are expressed again by a binary
scale and reported in Table 5 and Euclidean distance has been em-
ployed. The scores have been limited to few couples of depart-
ments, avoiding incongruence with the previous objective.

5. Results and conclusions

The genetic algorithm allowed to obtain a set of feasible Pareto-
optimal solutions characterized by different non-dominated values
of the objective functions. Among such solutions the most
representative ones are given in Table 6. The convergence of the
algorithm largely depends upon the genetic parameters, and it is
significantly influenced by the number of individuals in the popu-
lation and by the probability of mutation. These solutions have
been compared with those obtained in a previous work using the

 

 

bay structure approach (Aiello et al., 2006). All the solutions
reported are dominant towards those obtained in the previous
approach, thus showing the effectiveness of the genetic algorithm
developed and the efficiency of the slicing structure representa-
tion. In Fig. 7, the departments having an adjacency and distance
requests (Tables 4 and 5) are highlighted in light grey and dark
grey areas, respectively. Solutions 1⁄ and 2⁄ (see table 6) are refer-
enced solutions reported in Aiello et al. (2006).

Results obtained finally confirm the effectiveness of GA in
solving the FLP even when multiple objectives are considered.
Concluding, the main advantage of the proposed approach, is its
capability to explore a wide space of solutions, preserving the prac-
ticability of the design, thus it configures as a good basis for the
development of advanced and modern support tools to aid engi-
neers in determining the most effective layout configurations
trough a real multi-objective approach.
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