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Abstract

Background: Understanding the process of amino acid fermentation as a comprehensive system is a challenging
task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional
regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway,
the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was
defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters.
However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation
were required.

Results: We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding
α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production;
the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation.
Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would
regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation.
We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production
strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation
of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful
predictive power of our dynamic metabolic simulation model.

Conclusions: In this study, dynamic simulation using a literature-based model was shown to be useful for
elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity
analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.
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Background
Understanding metabolic behavior in terms of a system
is important for the design and fabrication of useful sub-
stances by biotechnological approaches [1]. Due to the
progress in -omics studies and bioinformatics, including
computer simulation, we can now integrate knowledge
from different levels such as that pertaining to gene ex-
pression, protein expression, and metabolite concentra-
tions. This information is useful for designing a strain for
producing a particular substance [2]. Dynamic metabolic
modeling is a useful approach for studying the regulation
of metabolism by integration of biological knowledge from
different biochemical systems. For example, mathematical
modeling of the tryptophan operon in Escherichia coli
clearly showed that TrpR and TrpL were responsible for
high and low intracellular tryptophan concentrations, re-
spectively [3]. This knowledge formed the theoretical basis
for engineering a tryptophan-production strain [4].
L-glutamic acid, a flavor enhancer that is produced

worldwide in quantities of over 2 million metric tons per
year, is a very important fermentation product and is
typically produced by fermentation using Corynebacter-
ium glutamicum [5,6]. Studies on the mechanism under-
lying L-glutamic acid overproduction in C. glutamicum
are in progress and have shown the importance of
α-ketoglutarate dehydrogenase activity [7]. Additionally,
E. coli has been used as a model microorganism for re-
search and also as an industrial producer of useful sub-
stances, including amino acids and organic acids [8].
Specifically, the E. coli MG1655 ΔsucA strain, which lacks
α-ketoglutarate dehydrogenase activity, has been used as a
model L-glutamic acid-production strain [9,10].
To optimize carbon flux through gene deletion or gene

amplification is one of the key technologies for production
of substances based on fermentation. Several algorithms
and methodologies have been proposed for the identifica-
tion of a target for molecular breeding in metabolic engin-
eering. Flux balance analysis is commonly used to obtain
the theoretical maximum yield and the optimal biosyn-
thesis pathway [11,12]. Additionally, OptKnock is used as
a strategy for knocking out genes or pathways in order to
find optimal biosynthesis pathways [13]. Elementary mode
analysis is also used to analyze metabolic network analysis
to obtain all possible combinations of reaction networks
[14,15]. These approaches are based on a stoichiometric
matrix of chemical reactions and static analyses. In con-
trast, dynamic simulation of cell metabolism is expected
to become a useful method for analyzing and elucidating
not only a metabolic state but also all transient in vivo cel-
lular bioprocesses; such dynamic modeling requires know-
ledge of kinetic parameters.
There are mainly 2 approaches to obtaining kinetic

parameters. One is parameter estimation, used for deter-
mining the coefficients in power-law equations utilizing

the S-system [16]. The other involves obtaining the
Michaelis constants and catalytic constants from bio-
chemical experiments, in which Michaelis-Menten-type
equations are used for modeling [17,18]. In a previous
study, we constructed our own model for the glucose
phosphotransferase system (PTS) in E. coli. It included
the transcription of genes and their regulatory mecha-
nisms, protein translation, and Michaelis-Menten-based
approximations of enzymatic reactions, using parameters
adopted from scientific literature. In a simulation study,
this model indicated that amplification of ptsI would in-
crease the specific glucose consumption rate; we subse-
quently validated this prediction experimentally [19]. We
expanded this model and constructed a large-scale meta-
bolic and regulatory model of E. coli central metabolism,
which included the metabolic enzymes related to PTS,
glycolysis, the pentose-phosphate pathway, the tricarb-
oxylic acid (TCA) cycle, anaplerotic enzymes, and the
glyoxylate shunt, as well as transcriptional regulation by
the cyclic AMP receptor protein (CRP), making large col-
onies protein (Mlc), catabolite repressor/activator (Cra),
pyruvate dehydrogenase complex repressor (PdhR), and
acetate operon repressor (IclR) [10]. We also proposed a
modeling approach to describe the successive transient
phases in batch or fed-batch cultivation and successfully
simulated the L-glutamic acid fermentation process using
E. coli MG1655 ΔsucA as a model strain [10]. In this
study, we improved our previous model, performed sensi-
tivity analyses and simulation, and validated our model
mathematically. This model led us to discover a new fac-
tor influencing L-glutamate production, which we then
verified experimentally.

Results
Sensitivity analysis for L-glutamic acid production
Using a dynamic simulation model, we calculated the
difference in L-glutamic acid production yields in re-
sponse to variation in gene copy number. We defined
the ratio of this difference to the variation in copy num-
ber as sensitivity. Because the sensitivity value changes
depending on copy number variation, we obtained a
maximum sensitivity value by changing the copy number
variation from 0.001 to 1000. Moreover, we defined a
scaling factor in Table 1 as the copy number that pro-
vides the maximum sensitivity value. The maximum sen-
sitivity of L-glutamic acid production to the increase or
decrease in copy number of 44 individual gene species is
shown in Table 1; in this table, the top 15 genes (or op-
erons) are arranged in descending order of maximum
sensitivities. Based on this result, we classified the 15
factors that affected L-glutamic acid production in our
model into 3 groups. The first group consisted of factors
for which the enhancements directly involved the biosyn-
thetic pathway of L-glutamic acid, including the sugar
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uptake system. The genes icdA, gdhA, gltA, fba, tpiA,
gapA, pgk, and pykF, corresponding to the 1st, 4th, 5th, 6th,
8th, 11th, 12th, and 14th items, respectively, in Table 1, en-
code the biosynthetic enzymes of L-glutamic acid. The
genes ptsG and crr, corresponding to the 9th and 13th

items in Table 1, respectively, encode components of the
sugar-uptake system (PtsG and IIAGlc of PTS). Enhance-
ment of these factors is estimated to result in positive
changes in L-glutamic acid production. In previous stud-
ies, an increase in citrate synthetase or glutamate dehydro-
genase activity has been shown to be a factor leading to an
increase in L-glutamic acid production in C. glutamicum
[20-22]. Through sensitivity analysis, we confirmed a
similar effect in E. coli. The maximum sensitivities for an
increase in the copy number of gltA, which encodes cit-
rate synthetase, and of gdhA, which encodes glutamate de-
hydrogenase, are 0.17565 and 0.21119, respectively
(Table 1). Furthermore, in E. coli, we observed a 4.0 g/L
increase of L-glutamic acid production in the gltA amplifi-
cation strain and a similar 1.6 g/L increase in the icdA
amplification strain in the fermentation experiment after
48 h cultivation (Table 2). These results suggested that
there are similar metabolic principles for L-glutamic acid
production in E. coli and in C. glutamicum.

The second group of factors comprised those that de-
creased the carbon flux in the glyoxylate shunt, that is,
aceBAK and iclR, which corresponded to the 2nd and 3rd

items, respectively, in Table 1. The increase in iclR expres-
sion levels and the decrease in the aceBAK operon expres-
sion level led to a decrease in the carbon flux of the
glyoxylate shunt. Furthermore, icdA, encoding isocitrate
dehydrogenase, which caused maximum sensitivity, was
also related to carbon flux distribution at the branch point
of the TCA cycle and the glyoxylate shunt, indicating that
the balance of the metabolic flux between the TCA cycle
and the glyoxylate shunt is of critical importance for
L-glutamic acid production.
For the third group of factors, including the pdhR

(7th), gpmA (10th), and eno (15th) genes, it was difficult
to determine the reason why decreased expression
would lead to an increase in L-glutamic acid production.
The reason why a 3-fold increase in the expression of
pdhR resulted in maximum sensitivity for L-glutamic
acid production is discussed later in the subsection “Per-
turbation analysis by pykF amplification.” Attenuation of
the activity of phosphoglyceride mutase (GpmA) and
enolase (Eno) led to a decrease in L-glutamic acid pro-
duction, although both enzymes catalyzed reactions in
the L-glutamate biosynthetic pathway. We assumed that
a decrease in the expression of gpmA may lead to accu-
mulation of 3-phosphoglycerate. A decrease in the ex-
pression of eno would also result in accumulation of
3-phosphoglycerate, since reactions catalyzed by GpmA
and Eno are reversible. The detailed mechanism of the
effect of 3-phosphoglycerate accumulation on glutamate
production has been described later.

Perturbation analysis by pgk amplification
The top 5 entries in Table 1 are factors known to influ-
ence L-glutamic acid production. To identify novel fac-
tors using our simulation model, we analyzed the effects
of enzyme concentration and gene copy number on L-
glutamic acid production. In this analysis, we perturbed
gene copy number by multiplying the copy number with
factors from 0.001 to 1000 in a logarithmic manner. The
results were plotted on graphs in which the horizontal

Table 1 Maximum sensitivity for L-glutamic acid
production

No. Gene or
operon

Gene product Maximum
sensitivity

Scale
factor

1 icdA isocitrate dehydrogenase 0.33615 1000

2 aceBAK malate synthase, isocitrate lyase,
isocitrate dehydrogenase
kinase/phosphatase

0.27963 0.001

3 iclR isocitrate lyase regulator 0.27693 1000

4 gdhA glutamate dehydrogenase 0.21119 1000

5 gltA citrate synthase 0.17565 1000

6 fba fructose bisphosphate aldolase 0.09989 400

7 pdhR pyruvate dehydrogenase
complex regulator

0.09614 3

8 tpiA triose phosphate isomerase 0.09399 4

9 ptsG glucose-specific PTS permease,
IICB domain

0.07520 500

10 gpmA phosphoglycerate mutase 0.06702 0.001

11 gapA glyceraldehyde-3-phosphate
dehydrogenase

0.06605 600

12 epd-pgk glyceraldehyde-3-phosphate
dehydrogenase, phosphoglycerate
kinase

0.06446 900

13 crr glucose-specific PTS permease,
IIA domain

0.05030 1000

14 pykF pyruvate kinase 0.03785 5

15 eno enolase 0.03391 0.001

Table 2 L-Glutamic acid fermentation results of gltA and
icdA gene amplification strain in E. coli

Strain OD600 L-glutamic acid Residual

Accumulation Glucose

(g/l) (g/l)

E. coli MG1655 ΔsucA/
pTWV228-Ptac-Ttrp

18.5 ± 0.2 16.6 ± 0.1 0.0 ± 0.0

E. coli MG1655 ΔsucA/
pTWV228-Ptac-gltA-Ttrp

16.2 ± 0.9 20.6 ± 0.8 0.0 ± 0.0

E. coli MG1655 ΔsucA/
pTWV228-Ptac-icdA-Ttrp

16.1 ± 0.2 18.2 ± 0.2 0.0 ± 0.0
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axis corresponded to gene copy number and the vertical
axis corresponded to L-glutamic acid and other metabol-
ite concentrations. Through this analysis, we found that
an increase in pgk copy number correlates with an in-
crease in L-glutamic acid production (Figure 1).
Amplification of pgk was a novel important factor for

L-glutamic acid production, and we attempted to inter-
pret the mechanism underlying this observation. In E.
coli, pgk encodes phosphoglycerate kinase. Phosphoglyc-
erate kinase is known to catalyze the reaction converting
1,3-bisphosphoglycerate and ADP to 3-phosphoglycerate
and ATP [23]. An increase in the pgk copy number
would cause accumulation of 3-phosphoglycerate, which
seemed to be closely correlated with the relationship be-
tween the decreased expression of gpmA and eno and
accumulation of 3-phosphoglycerate. It is known that
3-phosphoglycerate acts as an inhibitor of isocitrate

dehydrogenase kinase/phosphatase, which is encoded
by aceK in E. coli [24,25]. Since unphosphorylated
isocitrate dehydrogenase retains its activity, an increase
in unphosphorylated isocitrate dehydrogenase is associ-
ated with an increase in L-glutamic acid production
(Figure 2). In Figure 3, we have shown the accumulation
of 3-phosphoglycerate and the consequential increase in
L-glutamic acid production observed when simulating
a100-fold amplification of pgk. If our model, simulation,
and interpretation are appropriate, then the data indi-
cate that more than 100 copies of pgk would increase L-
glutamic acid production experimentally.

L-glutamic acid production in a strain with amplification
of pgk
To confirm the effect of pgk gene amplification in L-
glutamic acid fermentation in E. coli, we constructed

Figure 1 Simulated results of perturbation of the epd–pgk operon. The vertical axis in each graph shows the ratio of the concentration
obtained for metabolites to the initial concentration of these metabolites; the horizontal axis shows the magnitude of perturbation. (A)
Intermediates of the glycolysis pathway. (B) Intermediates of the pentose phosphate pathway. (C) Intermediates of the TCA cycle.
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a pgk-expression plasmid by using the high copy-
number plasmid pUC118. The gene pgk was cloned
into this vector with its native regulatory sequence,
promoter, and Shine-Dalgarno sequence [26]. The pgk
expression vector was introduced into a model L-glu-
tamate-producing strain, E. coli MG1655 ΔsucA. The
results for L-glutamic acid fermentation are shown in
Table 3. After 72 h of cultivation, no residual glucose
was observed in all the strains. A 3.2 g/L increase in
L-glutamic acid accumulation and a decrease in op-
tical density at 600 nm by 2.0 were observed for cul-
tures in which pUC118-pgk had been introduced, in
comparison with those into which pUC118 had been
introduced as a control. This result suggested that
our hypothesis regarding the increase in L-glutamic
acid production by pgk gene amplification was vali-
dated qualitatively.
During sensitivity analysis, an increase in gltA and gdhA

expression levels was predicted to lead to an increase in
L-glutamic acid production (Table 1). In a previous study,
the RSF-PPG plasmid, containing the genes ppc, prpC,
and gdhA was used in L-glutamic acid fermentation by
Pantoea ananatis, a member of the Enterobacteriaceae
family [27-29]. The genes ppc and gdhA encode PEP carb-
oxylase and glutamate dehydrogenase, respectively, and
prpC encodes citrate synthase activity in addition to
methylcitrate synthase activity [30]. By introducing the
RSF-PPG plasmid into E. coli MG1655 ΔsucA/pUC118, a
4.6 g/L increase in L-glutamic acid accumulation was ob-
served, in comparison with a strain into which pUC118
had been introduced as a control (Table 3). This result
qualitatively supported our sensitivity analysis results.

After72-h cultivation, there was almost no residual glu-
cose in the medium. By introducing the pUC118-pgk plas-
mid into E. coli MG1655 ΔsucA/RSF-PPG, a 1.3 g/L
increase in L-glutamic acid accumulation and a decrease
of 1.0 in the optical density at 600 nm were observed,
when compared with E. coli MG1655 ΔsucA/RSF-PPG
(Table 3). This experimental result suggested that our hy-
pothesis regarding pgk amplification was also valid in a
higher L-glutamic acid-accumulating strain and that the
increase in L-glutamic acid production was at least par-
tially due to a decrease in biomass production.

Perturbation analysis by pykF amplification
An interesting phenomenon was observed when we
perturbed the copy number of pykF, which encodes
pyruvate kinase. A maximum increase in L-glutamic acid
production was observed at 5-fold amplification of the
pykF copy number (Table 1). Further enhancement of
the pykF copy number led to a decrease in L-glutamic
acid production. We propose that the mechanism under-
lying these findings involves the following. On increase
in the pykF copy number, the conversion of pyruvate to
PEP increases, resulting in a decrease in the acetyl-CoA
supply from pyruvate and an increase in glucose incorp-
oration via glucose PTS (Figure 4A). The decrease in
acetyl-CoA supply was closely related to the decrease in
isocitrate supply (Figure 4A). As a result of pykF amplifi-
cation, which raised PEP consumption, the concentra-
tion of 3-phosphoglycerate would be decreased, which
would lead to increased inactivation of isocitrate dehydro-
genase by the activation of isocitrate dehydrogenase kinase
(Figure 4B, C). Our simulation study suggested that, even
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Figure 2 Predicted mechanism underlying changes in L-glutamic acid production by pgk gene amplification. A schematic representation
of the simplified metabolic pathway from GA3P to L-glutamic acid. The effect of increased 3-phosphoglycerate concentration on phosphorylation
of isocitrate dehydrogenase is indicated.
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though the amount of the activated form of isocitrate de-
hydrogenase was reduced, the carbon flux toward α-
ketoglutarate could be slightly enhanced by reduction of
the carbon flux into the glyoxylate shunt when the
isocitrate concentration is low. As a result, the L-glutamic
acid production would increase. When the copy number
of pykF is amplified more than 5 times, it leads to a de-
crease in 3-phosphoglycerate concentration, while most of
isocitrate dehydrogenase would be inactivated (Figure 4B).
As a result, L-glutamic acid production would be de-
creased. We suggest that this is why moderate enhance-
ment of pdhR expression could have the same effect on
pyruvate concentration as pykF amplification.

Discussion
In our previous study, we constructed a dynamic simula-
tion model of E. coli based on biological knowledge and
reproduced the experimental cultivation results by
parameter fitting [10]. In this study, we attempted to
elucidate novel factors that affect L-glutamic acid fer-
mentation by using dynamic simulation based on a
computer-aided rational design of biochemical networks.
First, we refined the model with respect to biomass pro-
duction through model validation. Then, a precise sensi-
tivity analysis was performed and revealed many factors
that would be important for L-glutamic acid fermenta-
tion. For example, an increase in the expression of gltA,

Figure 3 Simulation of 100-fold amplification of the pgk gene. Each color shows the relative change in concentration of each molecule. The
circles next to the compound names indicate the relative change in concentration of the compound. The circles next to gene product names
show the relative change in the concentration of the enzyme and mRNA encoded by the corresponding genes. The relative changes in mRNA
and enzyme levels are presented in inner circles and outer circumferences, respectively.
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which encodes citrate synthase, icdA, which encodes
isocitrate dehydrogenase, and a combined increase in the
expression of both these genes were predicted to have a
high impact on L-glutamic acid production. In fact,
an increase in the expression of gltA or icdA enhanced
L-glutamic acid production in E. coli (Table 2). These

genes have already been utilized to optimize L-glutamic
acid fermentation in an industrial strain, C. glutamicum
[20,21], thus supporting the accuracy of our dynamic
simulation model for understanding E. coli metabolism.
In a previous study, we proposed that the putative tran-
scriptional regulator YdcI controls carbon flux into the
TCA cycle in E. coli [31]. We observed that an increase
of citrate synthase activity by deletion of ydcI led to an in-
crease in L-glutamic acid production, and a decrease of
citrate synthase activity due to ydcI amplification led to a
decrease in L-glutamic acid production. Our sensitivity
analysis results support a clear relationship between YdcI
and L-glutamic acid production, because both sensitivity
analysis and experimental results clearly showed that
a change in citrate synthase expression levels exert a
significant effect on L-glutamic acid production in
E. coli. Integration of the transcriptional regulator
YdcI into our dynamic simulation model is a subject
for future studies.

Figure 4 Simulation of pykF perturbation. The vertical axis in each graph shows the ratio of the concentration obtained for metabolites to the
initial concentration of these metabolites or the ratio of enzymatic activity obtained to the initial enzymatic activity, while the horizontal axis
shows the magnitude of perturbation. (A) Metabolites with a change rate between 0.5 and 2 fold. (B) Metabolites with a change rate between
0.1 and 10 fold; data for 3PG and PEP overlap. (C) Enzymatic activity change.

Table 3 L-Glutamic acid fermentation results

Strain OD600 L-glutamic acid Residual

Accumulation Glucose

(g/l) (g/l)

E. coli MG1655 ΔsucA/
pUC118

7.0 ± 0.4 16.2 ± 0.7 0.0 ± 0.0

E. coli MG1655 ΔsucA
/pUC118-pgk

5.0 ± 0.5 19.4 ± 1.0 0.1 ± 0.3

E. coli MG1655 ΔsucA/
RSF-PPG /pUC118

10.2 ± 0.6 20.8 ± 2.8 0.0 ± 0.0

E. coli MG1655 ΔsucA/
RSF-PPG/pUC118-pgk

9.2 ± 0.9 22.1 ± 2.8 0.2 ± 0.4
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In theoretical flux analysis, the metabolic flux distribu-
tion, which facilitates the maximal theoretical yield of
L-glutamic acid in E. coli, indicated that flux through
α-ketoglutarate dehydrogenase (encoded by sucAB) and
the glyoxylate shunt pathway (encoded by aceBA) should
be 0. Thus, to achieve maximal L-glutamic acid produc-
tion from the MG1655 ΔsucA strain, deletion of the
aceBAK operon, which encodes enzymes in the glyoxylate
shunt pathway and isocitrate dehydrogenase kinase/phos-
phatase, or amplification of iclR, which encodes a negative
regulator of the glyoxylate shunt, would be a plausible ap-
proach. In contrast, using the dynamic simulation model
in addition to sensitivity analysis, we identified unexpected
factors. This approach indicated that amplification of
pgk and attenuation of gpmA and/or eno would induce
accumulation of 3-phosphoglycerate, which inhibits the
phosphorylation of isocitrate dehydrogenase, and conse-
quently results in increased glutamate production. Fur-
thermore, the effects of amplification of pykF or pdhR on
L-glutamate production could be explained according to a
different mechanism. This type of working hypothesis
cannot be generated using conventional theoretical flux
analysis because it requires that the modification systems
that control enzyme activity be taken into account.
Thus, a critical advantage in using the dynamic simu-
lation model is to be able to take various modes
of regulation into consideration simultaneously and
comprehensively.
In biotechnology, both production yield and product-

ivity are important. In general, it is not simple to main-
tain productivity while improving production strains
because the achievable yield and productivity can vary,
depending on the strains and production conditions.
From an engineering point of view, improving yield
or productivity from a current production strain is a
practical issue. One of the key features that affect prod-
uctivity is biomass formation. In this study, we improved
our simulation model to describe biomass production
as precisely as possible; however, it was not sufficiently
accurate to predict productivity. In E. coli, the carbon
flux through the TCA cycle is known to affect biomass
production directly [32]. Our dynamic simulation pre-
dicted the changes in concentrations of each mol-
ecule with response to gene amplification or deletion,
and based on simulation results, we could speculate
whether these perturbations would affect cell growth
through carbon flux into the TCA cycle. In this study, we
predicted that the concentration of 3-phosphoglycerate
could play an important role in controlling the carbon
flux through the TCA cycle; we subsequently vali-
dated this hypothesis experimentally. We also estimated
that metabolic regulation through 3-phosphoglycerate
would contribute to the changes in biomass produc-
tion and fermentation productivity. In future, we

plan to describe these changes more precisely in our
model.
Our model requires further refinement. When we

perturbed the copy number of ppc, which encodes PEP
carboxylase, the sensitivity was 0.02138 and the ranking of
this gene was 17th. In a previous study on C. glutamicum,
it had been experimentally shown that an increase in PEP
carboxylase activity led to an increase in L-glutamic acid
yield, with a reduction in organic acid byproducts [33].
We speculated that one of the reasons for the low sensitiv-
ity of ppc was related to the process of parameter tuning
because the catalytic constant of PEP carboxylase was
modified to 100 times greater than the reported value.
Thus, an increase in PEP carboxylase was not sensitively
related to L-glutamate concentration in our model [10].
However, there is a difference in anaplerotic pathway en-
zymes and their regulation in E. coli and C. glutamicum
[34]. Together with these facts, we speculate that un-
known mechanisms, related to PEP carboxylase or an
anaplerotic pathway in E. coli, could exist and result in in-
adequate modeling. The citrate synthase reaction requires
both oxaloacetate and acetyl-CoA as substrates. An in-
crease in PEP carboxylase expression will intensify the
carbon flux toward oxaloacetate. However, to enhance
citrate synthase activity, acetyl-CoA would be required.
In our simulation model, the current acetate produc-
tion model may be too simplistic to describe the dy-
namic changes in acetyl-CoA concentration inside the
cell because the regulation of acetate metabolism, in-
cluding formation, excretion, uptake, and utilization
of this substance, is quite complex in reality [10]. In
the future, improvement in simulating the metabolism
of acetate, including its excretion, is a priority for re-
fining our model.
We recognize that our model is currently limited in

terms of quantitative predictive power. According to our
sensitivity analysis, amplification of pgk would increase
glutamate production yield by 106%, whereas, experi-
mentally, we found a 120% increase. One of the factors
that affect the prediction seems to be the difference be-
tween the experimental conditions considered for simu-
lation and those used for validation. In the simulation
model, data for the parameters were obtained using jar
fermenters; however, experimental validation involved
the use of shake flasks [10]. We assume that the most
important issue related to the predictive power is the
modeling of cell growth. In L-glutamic acid production
using E. coli MG1655 ΔsucA, the succinyl-CoA used for
biomass formation should be supplied through the
glyoxylate shunt. Amplification of pgk in E. coli MG1655
ΔsucA decreases the carbon flux toward the glyoxylate
shunt pathway. Consequently, we observed 2 phenom-
ena, viz., increased L-glutamic acid production and de-
creased biomass production. At present, this trade-off
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has not been accommodated in our simulation because
the cell growth profile is fixed in accordance with ex-
perimental results obtained using jar fermenters [10].
To further refine our model, the cell growth profile
should be allowed to be variable, based on the con-
centration of biomass precursor molecules. Experi-
mentally verified biological evidence will continue to
be appropriately incorporated into our model during
further refinements.

Conclusions
In this study, we evaluated a literature-based dynamic
metabolic pathway model of E. coli by computational ana-
lysis and verified it experimentally. Our kinetic metabol-
ism model was particularly useful for analysis of feedback
regulation systems, and it was stable and robust against
perturbation. In future, we would need to improve cell
growth modelling to improve the flexibility and quantita-
tive prediction capability of the current model. This
resource will contribute to metabolic engineering that pre-
dicts the key factors for substance production.

Methods
Model and modification of biomass production
Model construction is described in Usuda et al. [10].
The enzymatic reactions and transport processes were
modelled based on Michaelis–Menten-type velocity equa-
tions. Gene expression was described by transcription and
translation rate equations. The systems parameters and
metabolite concentrations used as constants in the simula-
tion were obtained largely from the literature. The initial
values for metabolites, messenger RNA (mRNA), and pro-
teins were set as described [10]. The parameters used for
the enzymatic reactions, gene expression, and proteins
levels were basically adopted from the literature. Promoter
concentrations, rate constants of transcription, and mRNA
degradation rates were estimated. The most important fea-
ture was that the RNA polymerase (RNAP) and ribosome
concentrations were expressed as a function of the specific
growth rate, μ, which varied during batch cultivation and
was calculated from experiments.
We prepared a summation model for biomass forma-

tion, which comprised the consumption and production
steps of key precursor substances required for biomass
production. The key precursor substances and their
quantitative composition reflected the actual biomass
composition, and the biomass per gram was expressed
as a summation of key precursor substances with stoichi-
ometry coefficients [35]. This approach is well established
in theoretical flux analysis [36], and we applied this meth-
odology in our dynamic simulation model. Biomass for-
mation was taken into account, based on the cell growth
and the stoichiometric matrix, by subtracting the required

amount of biomass formed from the precursor metabolite.
In other words, if the stoichiometric coefficient of a key
precursor of biomass composition is a positive value, the
key precursor is used for biomass production, whereas if
the stoichiometric coefficient of a key precursor is a nega-
tive value, the production of the key precursor is associ-
ated with biomass production. However, the choice of key
precursor substances in this case would not be the same
as in theoretical flux analysis [10]. In our previous model,
the amounts of OAA and FUM molecules required for
producing 1 g of biomass achieved negative values. This
indicated that cell growth causes intracellular accumula-
tion of OAA and FUM, which would not be in accordance
with the metabolic process that we expect in E. coli and
may have resulted in deviations from the experimental ob-
servations. Therefore, we revised the model so that the co-
efficients of OAA and FUM for producing biomass
attained positive values.
We observed that lipid composition influenced the co-

efficients of OAA in our model. Odd-numbered fatty
acids, as a part of biomass production, were set to 0 be-
cause, typically, fatty acids are synthesized as multiples
of 2, and production of odd-numbered fatty acids is
negligibly low. Saturated and unsaturated fatty acids with
carbon numbers of 13, 15, and 17 were subjects for
modification of our model. In a previous model [10], the
FUM required for biomass production was itself pro-
duced not only from the TCA cycle, but also through
the arginine biosynthesis pathway and the nucleotide
biosynthesis pathway, as follows:

eq:AÞ ARGSUC‐ > ARGþ FUM

eq:BÞ SAICAR‐ > AICARþ FUM

Because energy supply through the TCA cycle is primar-
ily important for biomass formation and the stoichiometry

Table 4 Strains and plasmids

Strain Reference

E. coli MG1655 ΔsucA [9]

E. coli DH5α TOYOBO

Plasmid Reference

RSF-PPG [28]

pUC118 TAKARA BIO

pUC118-pgk this study

pTWV228 TAKARA BIO

pTWV228-Ptac-Ttrp this study

pTWV228-Ptac-gltA-Ttrp this study

pTWV228-Ptac-icdA-Ttrp this study
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coefficient of FUM in the previous model had a negative
value, we assumed that the FUM produced via the steps
shown in eq. A and eq. B was immediately and completely
oxidized through the TCA cycle. We therefore modified
these equations as follows:

eq:AÞ ARGSUC‐ > ARGþ4CO2‐6NADþþ6NADH‐2FADþ

þ 2FADH‐2ADP‐2Piþ 2ATP;

eq:BÞ SAICAR‐ > AICARþ4CO2‐6NADþþ6NADH‐2FADþ

þ 2FADH‐2ADP‐2Piþ 2ATP

These modifications resolved the biological conun-
drum caused in our previous model by the negative stoi-
chiometry coefficients of OAA and FUM in the biomass
composition. For glycogen production, we modified the
stoichiometry as follows:

1glycogen ¼ 8G6Pþ 8ATP ½37�:
In our previous model, stoichiometric coefficients in-

dicating the relation between key precursors for biomass
production and other general metabolites were not inte-
gers. One of the reasons for this phenomenon is the use
of a pseudoinverse matrix in the MATLAB script. For
example, the balance equation for S7P was expressed as
follows:

eq:CÞ 1S7P ¼ 0:5E4P‐1GAPþ 0:5R5Pþ 0:5F6Pþ 0:5X5P

In our model, S7P appeared in 2 reactions:

1E4Pþ 1F6P ¼ 1GAPþ 1S7P

and

1X5Pþ 1R5P ¼ 1GAPþ 1S7P

When we individually transformed these reactions, the
2 reactions were expressed as follows:

1S7P ¼ ‐1GAPþ 1E4Pþ 1F6P

and

1S7P ¼ ‐1GAPþ 1R5Pþ 1X5P;

in which the coefficients were integers. However, when
we combined these 2 equations into a single equation,
we calculated the weighted average; thus the stoichiom-
etry of the mass balance equation for S7P is not an
integer, as shown in eq. C. In our MATLAB script, we
transformed these reactions using a pseudoinverse matrix,
thereby obtaining equivalent average coefficients. These
non-integer coefficients are caused by metabolites that
are at the branch-points of a metabolic reaction. To re-
move these apparent defects, we added metabolites at

branch-points, like S7P, to the key substances required for
biomass production. In this regard, however, these modifi-
cations were made merely for purposes of calculation and
do not influence biomass production.

Calculation, sensitivity, and scale factor
We used the ode15s function in MATLAB for simula-
tions over a calculation period of 840 minutes with 5
min intervals. The sensitivity analysis (results shown in
Table 1) was performed as follows. Maximum sensitiv-
ity was defined as the maximum value for the ratio of
L-glutamic acid yield to the variation in gene copy
number or enzyme concentration. The initial L-glu-
tamic acid yield was defined as Y0, and the L-glutamic
acid yield obtained from the parameter-modified model
was defined as Y. By changing each parameter and by
multiplying with 0.001 to 1000 at an exponential rate, a
maximum value of (Y – Y0)/Y0 was explored. Thus,
maximum sensitivity was defined as maximum value of
(Y – Y0)/Y0. The scale factor was defined as the model
parameter that resulted in maximum sensitivity
(Table 1). The initial model parameter was defined as
X0, and the modified parameter, giving the maximum
sensitivity, was defined as X; the scale factor was
defined as X/X0.

Strains, plasmids, and medium
The strains and plasmids used in this study are shown in
Table 4. For pgk cloning, primers with the sequences 5′-
gcggatccctgtaaaagccaatgaatgtc-3′ and 5′-gcaagcttattacgc
caggttttacgaa-3′ were used to amplify pgk from E. coli
genomic DNA. After BamHI and HindIII digestion of
the PCR fragment, it was cloned into pUC118 (Takara
Bio.). E. coli DH5α was used as the cloning host and E.
coli MG1655 ΔsucA was used as the L-glutamic acid fer-
mentation strain. To construct the pTWV228-Ptac-Ttrp

vector, the synthesized tac promoter region and trypto-
phan operon terminator region were cloned into
BamHI- and KpnI-digested pTWV228 (Takara Bio) vec-
tor. For gltA cloning, primers with sequences 5′-cacaag
gagactcccatggctgatacaaaagcaaaactc-3′ and 5′-gaactggcgg
ctcccttaacgcttgatatcgcttttaaa-3′ were used to amplify
gltA from E. coli genomic DNA. For icdA cloning,
primers with sequences 5′-cacaaggagactcccatggaaagtaa
agtagttgttccg-3′ and 5′-gaactggcggctcccttacatgttttcgatga
tcgcgtc-3′ were used to amplify icdA from E. coli gen-
omic DNA. By using an in-fusion cloning kit (Clontech),
these fragments were cloned into a SmaI-digested
pTWV228-Ptac-Ttrp vector to construct the pTWV228-
Ptac-gltA-Ttrp and pTWV228-Ptac-icdA-Ttrp expression
vectors, respectively. Shake-flask culture was used for
fermentation. The composition of the medium for L-
glutamic acid fermentation was as follows: 40 g/L of
glucose, 1 g/L of MgSO4·7H2O, 20 g/L of (NH4)2SO4,
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1 g/L of KH2PO4, 10 mg/L of FeSO4·7H2O, 10 mg/L
of MnSO4·7H2O, 2 g/L of yeast extract, and 0.6 g/flask
of CaCO3. Chloramphenicol (30 mg/L), Tetracycline
(25 mg/L) or ampicillin (100 mg/L) was added to the
media as required to select for the corresponding markers
in the bacterial chromosome or plasmid. Residual glucose
and L-glutamic acid concentrations were measured
by using an enzymatic electrode, using BF-5 (Oji
Keisokuki).
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