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Abstract—Applications that demand stringent conditions on
output dc voltage ripple require models that can accurately
predict the magnitude of ripple at the output voltage. The paper
analyses the impact of dc input ripple on the output ripple for
Series Resonant Converter (SRC) using discrete domain sampled
data modelling method. The paper presents a novel discrete
state space and small signal model for SRC. This small signal
model is then simplified using practical assumptions. Analysis
of the model indicates that a resonant peak can occur in the
audio susceptibility transfer function for certain range of SRC
circuit parameters. Small signal transfer function between input
and output is analytically derived and validated with simulation
by comparing audio susceptibility gain response plot and the
resonant frequency. The paper also proposes a SRC parameter
design region where the audio susceptibility gain of SRC to any
input ripple frequency is less than unity. This can aid the selection
of resonant tank parameters L, and C, of the SRC to ensure
low output ripple.

Index Terms—series resonant converter, sampled data mod-
elling, audio susceptibility, small signal model

I. INTRODUCTION

Series Resonant Converter (SRC) shown in Fig. 1(a) is a
preferred topology for High Voltage (HV) low current power
supply due to the absence of magnetics at the HV side [1].
Radar, X-rays are some of the applications where HV power
supplies are used. Some of these applications impose stringent
performance parameters on the HV power supply such as dc
voltage ripple and regulation [2]. To maintain better imaging
quality in case of radar and contrast of image in case of X-
ray, both of these applications demands a good control over
dc voltage ripple even less than 0.001%. In this paper an
analysis is carried out to evaluate the contribution of ripple
on input voltage Aw;,, on output voltage ripple Awv, which is
also referred to as audio susceptibility (AS) model [3].

Small signal models of resonant converters are of interest
over a long time and recent work have further refined the
converter model [4]-[11]. In many small signal models transfer
functions are derived based on numerical solutions instead
of analytical solutions that result in loss of physical insight,
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which hampers its use for design purpose. The widely used
state-space averaging approach fails for resonant converter
since the states are of ac behaviour [4]. Small signal models for
SRC are derived by using High-Q approximation [5]. Another
modelling approach is by the low frequency approximation of
the states [6]. Both these approaches have sinusoidal waveform
assumption that results in accuracy limitations. The small
signal transfer functions of SRC in [7] are derived numerically
due to the difficulty in converting into an expression form.
In [8] the amplitude and the phase of the states are transformed
into slowly varying signals where the accuracy is improved by
finding a series of averaged models which necessitate the use
of numerical approach. In extended describing function each
non-linear elements are replaced by describing function and
the states are approximated by its first harmonic sinusoids [9],
[10]. In contrast the sampled data modelling methods can be
employed without any approximation and hence it is capable
of describing the circuit accurately [11]. In this methods the
modelling is carried out by solving piece-wise linear time
invariant state equations by use of the switching boundary
conditions. Then by performing the perturbation and lineari-
sation, a small signal model is accurately analysed. Due to the
complexity in the analysis the converter models using sampled
data modelling method are so far reported only in numerical
solutions.

In this paper the audio susceptibility transfer function of
SRC is obtained analytically by using the sampled data mod-
elling approach. The paper also proposes a simple method to
handle the resonant tank and output filter state variables of the
SRC while formulating the combined state space equation for
the switching period 7. The resulting model provide physical
insights into the system, dynamic response in terms of SRC
circuit parameters. It is shown from the analysis that it is
possible to have a resonant peak in audio susceptibility transfer
function of the SRC. From the derived transfer function, gain
and open-loop bandwidth offered by SRC to variations in
input frequency are derived. Due to the capability of extracting
physical insight from the derived model an operating region
is also formulated that connects quality factor ) and ratio of
switching frequency to resonant frequency F' with the audio
susceptibility gain. From this, an operating condition can be
identified for SRC where for any input ripple frequency f;,
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Fig. 1.
diagram of the output stage with input modelled as current source.

the gain offered by SRC is always less than unity. This region
can also be used for the design of SRC component parameters
for better input voltage disturbance rejection performance.
Gain plot and the region of operation for less than unity
gain obtained from the small signal model are compared with
the time domain simulation results, which indicate the good
accuracy of the analytical model.

II. DISCRETE STATE SPACE MODEL OF SRC

The circuit components involved in SRC and their names
referred in the analysis are shown in Fig. 1(a). The state
variables chosen are resonant capacitor (C,.) voltage v.(t),
resonant inductor (L,) current i (¢) and output capacitor
(C,) voltage v,(t). Turning ON of switch S; and S, at
t = 0 indicates the starting of first switch configuration in
the operation of SRC out of the four switch configurations
present in T shown in Fig. 2. First switch configuration ends
and second switch configuration starts when iy, () reaches zero
from negative polarity at time 77. When switch S, and S, are
turned OFF at time 7’ /2 second switch configuration ends and
third switch configuration starts [2]. Third switch configuration
ends at time 75 when iy, (t) reaches zero from positive polarity
and fourth switch configuration continues until .S; and Ss are
again turned ON. The input ripple frequency f;, are chosen
from 100H z to 10k H z. The operating frequency of SRC, fs,
considered in the analysis are in the range of 100k H z. Table I
gives the values of various SRC parameters considered for the
time domain simulation for verifying the analysis.

A. Sampled data modelling

In this analysis state space model of SRC are derived using
sampled data modelling [12]. It assumes that the states of
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Fig. 2. Switching sequence of SRC.
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Circuit models used for the converter (a) Series Resonant Converter (b) Equivalent circuit diagram with constant dc output (c) Equivalent circuit

TABLE I
NOMINAL VALUES OF SRC PARAMETERS
Parameters Values
DC input voltage 700V
DC input ripple frequency | 100Hz — 10kHz
Output power 10EW
DC output voltage 10kV
DC output voltage ripple 0.1%
SRC resonant frequency 100kH =z
Range of F' 1.01—-1.5
Range of @ 0.5—-10

the system are represented by linear time invariant differential
equations and continuous from one switch configuration to the
next. Hence the states at the end of one switch configuration
form the initial condition for the next switch configuration. If
x [kT;] is the initial condition of the state at k' sample and
u(t) is the input between k*" sample and time kT + ¢, then
states,

x [kTy + t] =eMFTAU=RT) g [ ] 4
kTs+t

eA([k’Ts+t]—T)Bu<T)dT

(D
kT,

where, A, B are the state matrices derived from dynamic
equations valid between kT and kTs+t [12]. Initial conditions
of the states z [kT,] = [I V. V,]" and input u [kTy] = [Vin],
where V, and V;, represents the nominal dc output and
input voltage respectively. The term e’ computed using

L ([SI—A]*).

B. Non-linear state equations of SRC

The state equations of SRC can be formulated with 3 state
variables for the analysis of audio susceptibility. It is carried
out in two steps.

1) Step 1: Since f;, is one order less than f,, the variation
in v,(t) and v,(t) at frequency f;, are neglected in a
switching period 7T,. This simplifies the circuit to 2 state
variables z (t) = [i(t) ve(t)]" and input u (t) = [Vin V,]".
The dynamic equations from the simplified equivalent diagram
shown in Fig. 1(b) gives the state matrices related to the four



switch configurations represented by suffix from 1 to 4 given
by,

0 L 11
Mi=Ay=Ag=Ay=| | Lo Bi=-By= |, NI,
— 0 0 0
C,
)
1 1

By=—-Bs=|[, NL,
0 0

Substituting (A7, B1) from (2) and input w(¢) in (1), the
state at the end of first switch configuration x [kTs + T7]
at t = 17 can be derived which is the initial condition
for the second switch configuration. The state at the end
of second switch configuration x [kTs + (Ts/2)] is derived
using the state matrices (Ag, By) given in (2) and input u ().
This continues until the state at the end of switching period
x [kTs + Ty] are derived given by,

z[kTs + T = {Z” le} z [KT,] + {213 lg“] u [KT]
21 W22 23 V21

3)

[ V)", [V Vin] "

The elements a3 and ao3 are defined in this manner to aid
the development of the state space model of the overall system
as explained in section II-C. The elements in the matrices are
given in Appendix A.l.

2) Step 2: ir(t) is considered as an input current source
for the estimation of the state variable v,(t) for the period T
where ir,(t) is updated in Step I in each T. This simplifies the
circuit to one state variable z () = [v,(t)] and input u (t) =
[ir(t)]. The dynamic equations from the simplified equivalent
diagram shown in Fig. 1(c) gives the state matrices related to
four switch configurations represented by suffix from 1 to 4

gl\/en by,
0 ():|

B|=— B\=— B,=B)= {_

where x [kT,] = u[kTs] =

A= A= Al A= {_

4
1 } “)
NC,
The input w (t) for each switch configuration can be found
from the solution of the state iz, (¢) for each switch con-
figuration derived in Step I. Substituting (A’, B’) matrices
given in (4) and w(t) in (1), the states for each switch
configuration can be derived. Using the state at the end of

each switch configuration as an initial condition for the next
switch configuration the state at the end of T is given by,

x [kTs + Ty) = [ass] « [KTs] +
where  [kT,] = [V5],

The elements in the matrices of (5) are given in Appendix
A.2. Even though the input u(t) = [i1(¢)], the waveform for
ir,(t) depends on the initial conditions of v.(t) and v, ().
This results in u [kT%] = [I, V. Vin]" given in (5).

l[as1  asz  bsi|u[kT]

5
wlkTy = [I Ve Via]" ®

C. Discrete state space model of SRC

The discrete domain state space model is obtained by
combining the 2 state variables model in step/ and 1 state
variable model in step2 given in (3) and (5) respectively. The
complete discrete domain state space model of SRC is given
by,

2 [kT, +T] = Agz [KT.) + Bau [kT)] ©)
ai1 aiz2 a13 b1
Ag= a1 a ax|, Bg=|bau|,
asi asz Gs3 b3 7
kT =[In Ve V)], wlkTy) = [Vin]

From (6) SRC can be completely described by states, input
and various time durations. Hence (6) can be described by,

z[kTs +Ts) = f(z,u,Ts,T1,T3) ®)

This is a state space model of a discrete-time non-linear
system. It can be linearized after identifying the equilibrium
operating trajectory for the system.

III. SMALL SIGNAL MODEL OF SRC

The SRC under steady state have waveforms that are
periodic with period Ts. The steady state values of the x [kT]
are derived as follows.

A. Cyclic steady state model of SRC
SRC is reached cyclic steady state denoted by upper index
s if the following equations and constraints are satisfied [12].
o KT+ T = f (0%, T3 TE T = BT
i3 (kTs +T1) =0, i1 (kTs+T3) =0,
Equations (9) represents the cyclic steady state conditions and
constrains for time 7 and 73 respectively. Using (6) in (9)

cyclic steady state of time 7} and 73 can analytically derived
to be constrained by,

Ve=Vin— %
fr1 = I cosw, T} — 7 sinw, 1y =0  (10)
Ve —Vin — %
frs = I cosw, T35 — N sinw, T35 —
Ze (11)
NZ. > sinw, (T3 — T — Z “sinw,(T5 — L) =0

B. Small signal model of SRC

Since the small signal analysis is restricted to audio sus-
ceptibility the switching period T of SRC is assumed to be
constant and a small variation for the input is applied about
its cyclic steady state. This result into a variation denoted by
the symbol ~in states, input, and subinterval times given by,

r [KTs) =1y [KTs] 17 [KT]

Ve [KTs] =Ve [KTS] =V [KTS],

Uo [KTs] =V, [KT] =V [KT] (12)
Vin [kT ] =Vin [k ] Vi [kTs] )

te=T1 =T} tap=Tsx—T5



By substituting (12) in (6) the variation in states at k7T + T
is,

FkT + T =a kT, + Ty — 2° [kTo + T]  (13)

Applying Taylor series around the steady-state operating point
in (8) and truncating the higher order non-linear terms gives
linearized small signal model as,

~ of| L of| L oF| 0|
x[k’Ts—&-Ts}—ax $5x+ B usu+ T Tft1+ T Tftg (14)
Substituting (6) in (14) gives,
T [kTs + Ts) = A [kTs) + Bati [kTs) + Tatr (15)
where,
1y [[0409B4) [¢[KL]] [0449Ba] [z ()
= 8T1 8T1 U[kTe} BTd BTd U[kTe} ’

i o n (16)
P [kTs) = ||, a[kTs]=[Oin], t= H
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Using (7) in (16) the elements td,, of T; where (p,q) are
rows and columns are given in Appendix A.3.

1) Estimation of t,: Applying Taylor series around the
steady-state operating point in (10) and (11) and truncating
higher order non-linear terms, #; and 3 can be represented in
terms of Z and u as,

8 =Tho® [kTs] + Tt [KT) (17)

The elements of Ty, and 7T}, are denoted by tx,, and
tuy,q respectively where the suffix represents the row and
column numbers. These elements are given in Appendix A.4.
Substituting (17) in (15) gives the overall small signal model
of SRC in terms of states and input given by,

@ [kTy + Ts] = Asqi [KT,] + Baqii [KT})
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where Asd == [Ad + Tdim] Bsd = [Bd + Tdiu] ( )

This represents a system with states representing the incremen-
tal resonant capacitor voltage, resonant inductor current and
output voltage. The input for this model is the incremental
input voltage.

C. Simplified small signal model of SRC

The major assumption made for simplifying the small signal
model is T3 = (7Ts/2) + T1. The practical assumptions made
t

are eRoCo ~ 1, VO <t < T, andm < w?. This
implies that the output voltage decay is neglected over a
switching period, and the reciprocal of the output time constant
is much lower than the resonant frequency of the SRC. These

are applied for further simplification giving the A, B matrices
for small signal model as,

1+ 4w, 'V, sin w, T 0
B NZ.fr, Z, A B 0
Aga= | Z.sinw, T 1 — |, Bsa= |—4| (19)
4 N 0
0 —— 1
NZ.Cyw,

Small signal transfer function between output and input in z-

domain can be found by substituting (19) in (18). The obtained
audio susceptibility transfer function in z-domain is given in
(20). The complex roots of denominator shows a resonance
for the frequency response and the possibility of high gain of
the SRC for input ripple. The s-domain resonant frequency
for input ripple can be found from the complex roots of
denominator given by,

L 16
in,r — T 1 ENSYE R
Wine = N2Cow, Z,
The small signal analytical model for audio susceptibility

of a SRC given in (20) is compared with the time domain
simulations to verify the analytical model.
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IV. SIMULATION RESULTS

Conventionally SRC is designed based on two quantities
(i) F defined as the ratio of switching frequency f; to resonant
frequency f,. of SRC (ii) @ defined as quality factor of SRC.
Hence to cover a wide range of SRC design analysis is carried
out based on F' and () where F' € [1.01,1.5] and Q € [0.5,10].
Time domain simulation is carried out for the validation of
model in (20) where normalized gain is defined as,

. |Vin [ Vo
Gaing,gr Vi [ V0l

In Fig. 3(a) the input ripple frequency is varied from 100H 2
to 10k H z keeping the quality factor () = 0.5. The gain plot in
Fig. 3(a) is produced for various values of F' € [1.01,1.5]. The
peak Gaingg is found to be reducing as F' increases. Also
from Fig. 3(a) the maximum Gaingpg is 22 which occurs at
Win,r of 3950H 2z for F' = 1.01. The decrease in Gainyg for
higher F is found to be consistent for other @ € [0.5,10].
Fig. 3(b) shows peak Gaingpr for f;, varied from 100H z
to 10kHz keeping F' = 1.01. The Gaingpg is found to be
reducing as () increases. The decrease in Gaing,g for higher
(@ is also found to be consistent for other F' € [1.01, 1.5].

The gain plot from simulation and analytical model in (20)
are compared in Fig. 3(c) for Q=3 and F'=1.03 where gain is
defined as 201og;((|70/0sn|). In Fig. 3(d) wjy, » given in (21)
are compared with simulation results w;y, sy for £/ = 1.01

(22)

16 4V,
vo(2) NZ.Cowor {<Z D%z f’n} 0
v (2) 1v, 16 A
B ey Nz G D"+ N Zo o Y T Nz
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Fig. 3. Gain versus f;, from simulation (a) for @ = 0.5 and F' € [1.01,1.5] (b) for F = 1.01 and @Q € [0.5, 10]. Comparison of small signal model with
simulation for (c) frequency response when Q = 3 and F' = 1.03 (d) Aw,, ,o for various @ and (e) F and Q for which audio susceptibility gain is unity

and for the region above the curve gain is less than unity.

and Q € [0.5, 10] where Aw;,, v is defined in (23). Maximum
error Aw;y, 9 is found to be within +2.5% which indicate
good match of the analytical audio susceptibility resonance
frequency prediction with simulation results.

Win,r(s) — Win,r

Awip ro = 100 (23)

Win,r(s)

From Fig. 3(a) for any f;,,, Gaingp is always less than unity
for @ = 0.5 and F' > 1.3. This shows there exists a set of
values for F' and ) where audio susceptibility gain of the SRC
is always less than unity for any f;,,. Such values are plotted as
a region above the curves shown in Fig. 3(e). Such a region
obtained based on the analytical model (20) and simulation
are compared in Fig. 3(e). Design of the SRC using F' and )
values from this region is advantageous as it will have reduced
audio susceptibility with inherent ability to reject disturbance
in the input voltage.

V. CONCLUSION

The paper formulates a method to handle the 3 state
variables of a SRC using sampled data modelling approach.
From the non-linear state space model a small signal state
space model is derived. Considering practically observed
assumptions small signal model is simplified and the audio
susceptibility transfer function is derived. The analytical audio
susceptibility gain plot and maximum gain frequency are

validated using simulations. The paper also derived a desirable
SRC parameter selection region based on F' and ) where the
gain offered to input ripple is less than unity at any input
frequency. This region is also validated using simulations.
This helps to design a SRC converters with superior audio
susceptibility performance.

APPENDIX

The elements of the matrices Ay and By are given in (A.1)
and (A.2) respectively. The elements of T} is given in (A.3)
where as elements of Ty, and T}, are given in (A.4).
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