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Abstract—Applications that demand stringent conditions on
output dc voltage ripple require models that can accurately
predict the magnitude of ripple at the output voltage. The paper
analyses the impact of dc input ripple on the output ripple for
Series Resonant Converter (SRC) using discrete domain sampled
data modelling method. The paper presents a novel discrete
state space and small signal model for SRC. This small signal
model is then simplified using practical assumptions. Analysis
of the model indicates that a resonant peak can occur in the
audio susceptibility transfer function for certain range of SRC
circuit parameters. Small signal transfer function between input
and output is analytically derived and validated with simulation
by comparing audio susceptibility gain response plot and the
resonant frequency. The paper also proposes a SRC parameter
design region where the audio susceptibility gain of SRC to any
input ripple frequency is less than unity. This can aid the selection
of resonant tank parameters Lr and Cr of the SRC to ensure
low output ripple.

Index Terms—series resonant converter, sampled data mod-
elling, audio susceptibility, small signal model

I. INTRODUCTION

Series Resonant Converter (SRC) shown in Fig. 1(a) is a
preferred topology for High Voltage (HV) low current power
supply due to the absence of magnetics at the HV side [1].
Radar, X-rays are some of the applications where HV power
supplies are used. Some of these applications impose stringent
performance parameters on the HV power supply such as dc
voltage ripple and regulation [2]. To maintain better imaging
quality in case of radar and contrast of image in case of X-
ray, both of these applications demands a good control over
dc voltage ripple even less than 0.001%. In this paper an
analysis is carried out to evaluate the contribution of ripple
on input voltage ∆vin on output voltage ripple ∆vo which is
also referred to as audio susceptibility (AS) model [3].

Small signal models of resonant converters are of interest
over a long time and recent work have further refined the
converter model [4]–[11]. In many small signal models transfer
functions are derived based on numerical solutions instead
of analytical solutions that result in loss of physical insight,
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which hampers its use for design purpose. The widely used
state-space averaging approach fails for resonant converter
since the states are of ac behaviour [4]. Small signal models for
SRC are derived by using High-Q approximation [5]. Another
modelling approach is by the low frequency approximation of
the states [6]. Both these approaches have sinusoidal waveform
assumption that results in accuracy limitations. The small
signal transfer functions of SRC in [7] are derived numerically
due to the difficulty in converting into an expression form.
In [8] the amplitude and the phase of the states are transformed
into slowly varying signals where the accuracy is improved by
finding a series of averaged models which necessitate the use
of numerical approach. In extended describing function each
non-linear elements are replaced by describing function and
the states are approximated by its first harmonic sinusoids [9],
[10]. In contrast the sampled data modelling methods can be
employed without any approximation and hence it is capable
of describing the circuit accurately [11]. In this methods the
modelling is carried out by solving piece-wise linear time
invariant state equations by use of the switching boundary
conditions. Then by performing the perturbation and lineari-
sation, a small signal model is accurately analysed. Due to the
complexity in the analysis the converter models using sampled
data modelling method are so far reported only in numerical
solutions.

In this paper the audio susceptibility transfer function of
SRC is obtained analytically by using the sampled data mod-
elling approach. The paper also proposes a simple method to
handle the resonant tank and output filter state variables of the
SRC while formulating the combined state space equation for
the switching period Ts. The resulting model provide physical
insights into the system, dynamic response in terms of SRC
circuit parameters. It is shown from the analysis that it is
possible to have a resonant peak in audio susceptibility transfer
function of the SRC. From the derived transfer function, gain
and open-loop bandwidth offered by SRC to variations in
input frequency are derived. Due to the capability of extracting
physical insight from the derived model an operating region
is also formulated that connects quality factor Q and ratio of
switching frequency to resonant frequency F with the audio
susceptibility gain. From this, an operating condition can be
identified for SRC where for any input ripple frequency fin978-1-4673-8888-7/16/$31.00 c©2016 IEEE



(a) (b) (c)

Fig. 1. Circuit models used for the converter (a) Series Resonant Converter (b) Equivalent circuit diagram with constant dc output (c) Equivalent circuit
diagram of the output stage with input modelled as current source.

the gain offered by SRC is always less than unity. This region
can also be used for the design of SRC component parameters
for better input voltage disturbance rejection performance.
Gain plot and the region of operation for less than unity
gain obtained from the small signal model are compared with
the time domain simulation results, which indicate the good
accuracy of the analytical model.

II. DISCRETE STATE SPACE MODEL OF SRC

The circuit components involved in SRC and their names
referred in the analysis are shown in Fig. 1(a). The state
variables chosen are resonant capacitor (Cr) voltage vc(t),
resonant inductor (Lr) current iL(t) and output capacitor
(Co) voltage vo(t). Turning ON of switch S1 and S2 at
t = 0 indicates the starting of first switch configuration in
the operation of SRC out of the four switch configurations
present in Ts shown in Fig. 2. First switch configuration ends
and second switch configuration starts when iL(t) reaches zero
from negative polarity at time T1. When switch S1 and S2 are
turned OFF at time Ts/2 second switch configuration ends and
third switch configuration starts [2]. Third switch configuration
ends at time T3 when iL(t) reaches zero from positive polarity
and fourth switch configuration continues until S1 and S2 are
again turned ON. The input ripple frequency fin are chosen
from 100Hz to 10kHz. The operating frequency of SRC, fs,
considered in the analysis are in the range of 100kHz. Table I
gives the values of various SRC parameters considered for the
time domain simulation for verifying the analysis.

A. Sampled data modelling

In this analysis state space model of SRC are derived using
sampled data modelling [12]. It assumes that the states of

Fig. 2. Switching sequence of SRC.

TABLE I
NOMINAL VALUES OF SRC PARAMETERS

Parameters Values
DC input voltage 700V

DC input ripple frequency 100Hz − 10kHz

Output power 10kW

DC output voltage 10kV

DC output voltage ripple 0.1%

SRC resonant frequency 100kHz

Range of F 1.01− 1.5

Range of Q 0.5− 10

the system are represented by linear time invariant differential
equations and continuous from one switch configuration to the
next. Hence the states at the end of one switch configuration
form the initial condition for the next switch configuration. If
x [kTs] is the initial condition of the state at kth sample and
u(t) is the input between kth sample and time kTs + t, then
states,

x [kTs + t] =eA([kTs+t]−kTs)x [kTs] +
kTs+t∫
kTs

eA([kTs+t]−τ)Bu(τ)dτ
(1)

where, A, B are the state matrices derived from dynamic
equations valid between kTs and kTs+t [12]. Initial conditions
of the states x [kTs] = [IL Vc Vo]

T and input u [kTs] = [Vin],
where Vo and Vin represents the nominal dc output and
input voltage respectively. The term eAt computed using
L−1

(
[sI −A]

−1
)

.

B. Non-linear state equations of SRC

The state equations of SRC can be formulated with 3 state
variables for the analysis of audio susceptibility. It is carried
out in two steps.

1) Step 1: Since fin is one order less than fs, the variation
in vin(t) and vo(t) at frequency fin are neglected in a
switching period Ts. This simplifies the circuit to 2 state
variables x (t) = [iL(t) vc(t)]

T and input u (t) = [Vin Vo]
T .

The dynamic equations from the simplified equivalent diagram
shown in Fig. 1(b) gives the state matrices related to the four



switch configurations represented by suffix from 1 to 4 given
by,

A1=A2=A3=A4=

 0 −
1

Lr
1

Cr
0

 , B1=−B3=

 1

Lr

1

NLr
0 0


(2)

B2=−B4=

 1

Lr
−

1

NLr
0 0


Substituting (A1, B1) from (2) and input u (t) in (1), the
state at the end of first switch configuration x [kTs + T1]
at t = T1 can be derived which is the initial condition
for the second switch configuration. The state at the end
of second switch configuration x [kTs + (Ts/2)] is derived
using the state matrices (A2, B2) given in (2) and input u (t).
This continues until the state at the end of switching period
x [kTs + Ts] are derived given by,

x [kTs + Ts] =

[
a11 a12
a21 a22

]
x [kTs] +

[
a13 b11
a23 b21

]
u [kTs]

where x [kTs] =
[
IL Vc

]T
, u [kTs] =

[
Vo Vin

]T (3)

The elements a13 and a23 are defined in this manner to aid
the development of the state space model of the overall system
as explained in section II-C. The elements in the matrices are
given in Appendix A.1.

2) Step 2: iL(t) is considered as an input current source
for the estimation of the state variable vo(t) for the period Ts
where iL(t) is updated in Step 1 in each Ts. This simplifies the
circuit to one state variable x (t) = [vo(t)] and input u (t) =
[iL(t)]. The dynamic equations from the simplified equivalent
diagram shown in Fig. 1(c) gives the state matrices related to
four switch configurations represented by suffix from 1 to 4
given by,

A′1=A′2=A′3=A′4=

[
−

1

RoCo

]
,

B′1=−B′2=−B′3=B′4=

[
−

1

NCo

] (4)

The input u (t) for each switch configuration can be found
from the solution of the state iL (t) for each switch con-
figuration derived in Step 1. Substituting (A′, B′) matrices
given in (4) and u (t) in (1), the states for each switch
configuration can be derived. Using the state at the end of
each switch configuration as an initial condition for the next
switch configuration the state at the end of Ts is given by,

x [kTs + Ts] =
[
a33
]
x [kTs] +

[
a31 a32 b31

]
u [kTs]

where x [kTs] =
[
Vo
]
, u [kTs] =

[
IL Vc Vin

]T (5)

The elements in the matrices of (5) are given in Appendix
A.2. Even though the input u(t) = [iL(t)], the waveform for
iL(t) depends on the initial conditions of vc(t) and vin(t).
This results in u [kTs] = [IL Vc Vin]

T given in (5).

C. Discrete state space model of SRC

The discrete domain state space model is obtained by
combining the 2 state variables model in step1 and 1 state
variable model in step2 given in (3) and (5) respectively. The
complete discrete domain state space model of SRC is given
by,

x [kTs + Ts] = Adx [kTs] +Bdu [kTs] (6)

Ad=

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , Bd=

b11b21
b31

 ,
x [kTs] =

[
IL Vc Vo

]T
, u [kTs] =

[
Vin
] (7)

From (6) SRC can be completely described by states, input
and various time durations. Hence (6) can be described by,

x [kTs + Ts] = f (x, u, Ts, T1, T3) (8)

This is a state space model of a discrete-time non-linear
system. It can be linearized after identifying the equilibrium
operating trajectory for the system.

III. SMALL SIGNAL MODEL OF SRC

The SRC under steady state have waveforms that are
periodic with period Ts. The steady state values of the x [kTs]
are derived as follows.

A. Cyclic steady state model of SRC

SRC is reached cyclic steady state denoted by upper index
s if the following equations and constraints are satisfied [12].

xs [kTs + Ts] = f (xs, us, T ss , T
s
1 , T

s
3 ) =xs [kTs] ,

isL(kTs + T1) = 0, isL(kTs + T3) = 0,
(9)

Equations (9) represents the cyclic steady state conditions and
constrains for time T1 and T3 respectively. Using (6) in (9)
cyclic steady state of time T s1 and T s3 can analytically derived
to be constrained by,

fT1 = IL cosωrT
s
1 −

Vc − Vin − Vo

N

Zc
sinωrT

s
1 = 0 (10)

fT3 = IL cosωrT
s
3 −

Vc − Vin − Vo

N

Zc
sinωrT

s
3−

2Vo
NZc

sinωr(T
s
3 − T s1 )− 2Vin

Zc
sinωr(T

s
3 − Ts

2 ) = 0

(11)

B. Small signal model of SRC

Since the small signal analysis is restricted to audio sus-
ceptibility the switching period Ts of SRC is assumed to be
constant and a small variation for the input is applied about
its cyclic steady state. This result into a variation denoted by
the symbol˜ in states, input, and subinterval times given by,

ĩL [kTs] =IL [kTs]−IsL [kTs] ,

ṽc [kTs] =Vc [kTs]−V sc [kTs] ,

ṽo [kTs] =Vo [kTs]−V so [kTs] ,

ṽin [kTs] =Vin [kTs]−V sin [kTs] ,

t̃1,k=T1,k−T s1,k, t̃3,k=T3,k−T s3,k

(12)



By substituting (12) in (6) the variation in states at kTs + Ts
is,

x̃ [kTs + Ts] = x [kTs + Ts]− xs [kTs + Ts] (13)

Applying Taylor series around the steady-state operating point
in (8) and truncating the higher order non-linear terms gives
linearized small signal model as,

x̃ [kTs+Ts] =
∂f

∂x

∣∣∣∣
xs

x̃+
∂f

∂u

∣∣∣∣
us

ũ+
∂f

∂T1

∣∣∣∣
T s
1

t̃1+
∂f

∂T3

∣∣∣∣
T s
3

t̃3 (14)

Substituting (6) in (14) gives,

x̃ [kTs + Ts] = Adx̃ [kTs] +Bdũ [kTs] + Tdt̃k (15)

where,

Td=

[[
∂Ad
∂T1

∂Bd
∂T1

] [
x [kTs]
u [kTs]

] [
∂Ad
∂T3

∂Bd
∂T3

] [
x [kTs]
u [kTs]

]]
,

x̃ [kTs] =

ĩLṽc
ṽo

 , ũ [kTs] =
[
ṽin
]
, t̃k=

[
t̃1
t̃3

] (16)

Using (7) in (16) the elements tdpq of Td where (p, q) are
rows and columns are given in Appendix A.3.

1) Estimation of t̃k: Applying Taylor series around the
steady-state operating point in (10) and (11) and truncating
higher order non-linear terms, t̃1 and t̃3 can be represented in
terms of x̃ and ũ as,

t̃k=Tkxx̃ [kTs] + Tkuũ [kTs] (17)

The elements of Tkx and Tku are denoted by txpq and
tupq respectively where the suffix represents the row and
column numbers. These elements are given in Appendix A.4.
Substituting (17) in (15) gives the overall small signal model
of SRC in terms of states and input given by,

x̃ [kTs + Ts] = Asdx̃ [kTs] +Bsdũ [kTs]

where Asd = [Ad + TdTkx] Bsd = [Bd + TdTku]
(18)

This represents a system with states representing the incremen-
tal resonant capacitor voltage, resonant inductor current and
output voltage. The input for this model is the incremental
input voltage.

C. Simplified small signal model of SRC

The major assumption made for simplifying the small signal
model is T3 = (Ts/2) + T1. The practical assumptions made

are e
t

RoCo ≈ 1, ∀ 0 ≤ t ≤ Ts and 1
(RoCo)2

� ω2
r . This

implies that the output voltage decay is neglected over a
switching period, and the reciprocal of the output time constant
is much lower than the resonant frequency of the SRC. These

are applied for further simplification giving the A,B matrices
for small signal model as,

Asd=


1+

4ωrVo
NZcf ′T1

− sinωrTs
Zc

0

Zc sinωrTs 1
4

N

0 − 4

NZcCoωr
1

 , Bsd=
 0
−4
0

 (19)

Small signal transfer function between output and input in z-
domain can be found by substituting (19) in (18). The obtained
audio susceptibility transfer function in z-domain is given in
(20). The complex roots of denominator shows a resonance
for the frequency response and the possibility of high gain of
the SRC for input ripple. The s-domain resonant frequency
for input ripple can be found from the complex roots of
denominator given by,

ωin,r =
1

Ts
tan−1

(√
16

N2CoωrZc

)
(21)

The small signal analytical model for audio susceptibility
of a SRC given in (20) is compared with the time domain
simulations to verify the analytical model.

IV. SIMULATION RESULTS

Conventionally SRC is designed based on two quantities
(i) F defined as the ratio of switching frequency fs to resonant
frequency fr of SRC (ii) Q defined as quality factor of SRC.
Hence to cover a wide range of SRC design analysis is carried
out based on F and Q where F ∈ [1.01, 1.5] and Q ∈ [0.5, 10].
Time domain simulation is carried out for the validation of
model in (20) where normalized gain is defined as,

Gain%R =
|ṽin/ṽ0|
|Vin/V0|

(22)

In Fig. 3(a) the input ripple frequency is varied from 100Hz
to 10kHz keeping the quality factor Q = 0.5. The gain plot in
Fig. 3(a) is produced for various values of F ∈ [1.01, 1.5]. The
peak Gain%R is found to be reducing as F increases. Also
from Fig. 3(a) the maximum Gain%R is 22 which occurs at
ωin,r of 3950Hz for F = 1.01. The decrease in Gain%R for
higher F is found to be consistent for other Q ∈ [0.5, 10].
Fig. 3(b) shows peak Gain%R for fin varied from 100Hz
to 10kHz keeping F = 1.01. The Gain%R is found to be
reducing as Q increases. The decrease in Gain%R for higher
Q is also found to be consistent for other F ∈ [1.01, 1.5].

The gain plot from simulation and analytical model in (20)
are compared in Fig. 3(c) for Q=3 and F=1.03 where gain is
defined as 20 log10(|ṽo/ṽin|). In Fig. 3(d) ωin,r given in (21)
are compared with simulation results ωin,r(s) for F = 1.01

vo (z)

vin (z)
=

16

NZcCoωr

{
(z − 1)− 4Vo

NZcf ′T1

}
(z − 1)

3 − 4Vo
NZcf ′T1

(z − 1)
2

+
16

N2ZcCoωr
(z − 1)− 64Vo

N3Z2
cCoωrf

′
T1

(20)
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Fig. 3. Gain versus fin from simulation (a) for Q = 0.5 and F ∈ [1.01, 1.5] (b) for F = 1.01 and Q ∈ [0.5, 10]. Comparison of small signal model with
simulation for (c) frequency response when Q = 3 and F = 1.03 (d) ∆ωin,r% for various Q and (e) F and Q for which audio susceptibility gain is unity
and for the region above the curve gain is less than unity.

and Q ∈ [0.5, 10] where ∆ωin,r% is defined in (23). Maximum
error ∆ωin,r% is found to be within ±2.5% which indicate
good match of the analytical audio susceptibility resonance
frequency prediction with simulation results.

∆ωin,r% =
ωin,r(s) − ωin,r

ωin,r(s)
100 (23)

From Fig. 3(a) for any fin, Gain%R is always less than unity
for Q = 0.5 and F ≥ 1.3. This shows there exists a set of
values for F and Q where audio susceptibility gain of the SRC
is always less than unity for any fin. Such values are plotted as
a region above the curves shown in Fig. 3(e). Such a region
obtained based on the analytical model (20) and simulation
are compared in Fig. 3(e). Design of the SRC using F and Q
values from this region is advantageous as it will have reduced
audio susceptibility with inherent ability to reject disturbance
in the input voltage.

V. CONCLUSION

The paper formulates a method to handle the 3 state
variables of a SRC using sampled data modelling approach.
From the non-linear state space model a small signal state
space model is derived. Considering practically observed
assumptions small signal model is simplified and the audio
susceptibility transfer function is derived. The analytical audio
susceptibility gain plot and maximum gain frequency are

validated using simulations. The paper also derived a desirable
SRC parameter selection region based on F and Q where the
gain offered to input ripple is less than unity at any input
frequency. This region is also validated using simulations.
This helps to design a SRC converters with superior audio
susceptibility performance.

APPENDIX

The elements of the matrices Ad and Bd are given in (A.1)
and (A.2) respectively. The elements of Td is given in (A.3)
where as elements of Tkx and Tku are given in (A.4).
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a11= cosωrTs, a12=− sinωrTs
Zc

, a21=Zc sinωrTs, a22= cosωrTs, a13=
sinωrTs+2 sinωr(Ts−T3)−2 sinωr(Ts−T1)

NZc
,

a23=
1− cosωrTs−2 cosωr(Ts−T3)+2 cosωr(Ts−T1)

N
, b11=

sinωrTs − 2 sinωr
Ts
2

Zc
, b21=2 cosωr

Ts
2
− cosωrTs − 1

where ωr = 1/
√
LrCr, Zc =

√
Lr/Cr

(A.1)

a31=G1

[
2e

T1

RoCo g′1(T1)− 2e
T3

RoCo g′1(T3) + e
Ts

RoCo g′1(Ts)−
1

RoCo

]
a32=

G1

Zc

[
2e

T3

RoCo g1(T3)− 2e
T1

RoCo g1(T1)− e
Ts

RoCo g1(Ts)− ωr
]

a33=− e
Ts

RoCo +
G1

NZc

[
2e

T1

RoCo g1(T1)− 2e
T3

RoCo g1(T3) + e
Ts

RoCo g1(Ts) + ωr + 4e
T3

RoCo g1(T3 − T1)

− 2e
Ts

RoCo g1(Ts − T1) + 2ωre
T1

RoCo + 2e
Ts

RoCo g1(Ts − T3) + 2ωre
T3

RoCo

]
b31=

G1

Zc

[
2e

T1

RoCo g1(T1)−2e
T3

RoCo g1(T3)+e
Ts

RoCo g1(Ts) + ωr + 4e
T3

RoCo g1(T3 − Ts

2 )− 2e
Ts

RoCo g1(Ts

2 ) + 2ωre
Ts/2
RoCo

]
where g1(·) =

1

RoCo
sinωr(·)− ωr cosωr(·), g′1(·) =

dg1(·)
dωr(·)

, G1 = − 1

NCo
e
− Ts

RoCo
1(

1
RoCo

)2
+ ω2

r

(A.2)

td11=
2ωrVo cosωr(Ts−T1)

NZc
,td12=−2ωrVo cosωr(Ts−T3)

NZc
,td21=

2ωrVo sinωr(Ts−T1)

N
,td22=−2ωrVo sinωr(Ts−T3)

N

td31=− 2IL cosωrT1
NCo

e
−(Ts−T1)
RoCo +

2Vc sinωrT1
NZcCo

e
−(Ts−T1)
RoCo +

GVo
NZc

[
2G2e

T1

RoCo sinωrT1 − 4ωre
T3

RoCo g′1(T3 − T1)+

2ωre
Ts

RoCo g′1(Ts − T1) +
2ωr
RoCo

e
T1

RoCo

]
− 2Vin sinωrT1

NZcCo
e
−(Ts−T1)
RoCo

td32=
2IL cosωrT3

NCo
e
−(Ts−T3)
RoCo −2Vc sinωrT3

NZcCo
e
−(Ts−T3)
RoCo +

GVoe
T3

RoCo

NZc

[
−2G2 sinωrT3+

2ωr
RoCo

+

4G2 sinωr(T3−T1)−2ωre
(Ts−T3)
RoCo g′1(Ts−T3)

]
+
GVine

T3

RoCo

Zc

[
−2G2 sinωrT3+

4g2(T3−Ts

2 )

RoCo
−4ωrg

′
2(T3−Ts

2 )

]
where g2(·) =

1

RoCo
sinωr(·) + ωr cosωr(·), g′2(·) =

dg2(·)
dωr(·)

, G2 =
(

1
RoCo

)2
+ ω2

r

(A.3)

tx11=
cosωrT1
f ′T1

, tx12=− sinωrT1
Zcf ′T1

, tx13=
sinωrT1
NZcf ′T1

, tx21=
cosωrT3
f ′T3

+
2Voωr cosωr(T3 − T1) cosωrT1

NZcf ′T1f
′
T3

tx22=− sinωrT3
Zcf ′T3

−2Voωr cosωr(T3−T1) sinωrT1
NZ2

c f
′
T1f

′
T3

,tx23=
sinωrT3−2 sinωr(T3−T1)

NZcf ′T3

+
2Voωr cosωr(T3−T1) sinωrT1

N2Z2
c f
′
T1f

′
T3

tu11=
sinωrT1
Zcf ′T1

, tu21=
sinωrT3−2 sinωr(T3−Ts

2 )

Zcf ′T3

+
2Voωr cosωr(T3 − T1) sinωrT1

NZ2
c f
′
T1f

′
T3

where f ′T1=
fT1

dT1
, f ′T3=

fT3

dT3

(A.4)


