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a b s t r a c t

This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural net-
work controllers for photovoltaic systems. The two maximum power point tracking controllers receive
solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle cor-
responding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels
SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power opera-
eywords:
uzzy logic
eural network
hotovoltaic
PPT

imulation

tion of any photovoltaic array under different conditions such as changing solar radiation and PV cell
temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more
power than the neural network controller and can give more power than other different methods in
literature.

© 2010 Elsevier B.V. All rights reserved.
odelling

. Introduction

The maximum power point tracking (MPPT) is a controlled
c–dc inverter that monitors a photovoltaic panel (PVP) to oper-
te at its maximum power point (MPP) depending on the state of
oad, PVP generation, photovoltaic (PV) cell temperature (T) and
olar radiation (G) variations [1]. In such a direction, different tech-
iques and algorithms have been presented. The most encountered
ethod known as the incremental conductance is reviewed in [2].

n [3,4], an algorithm forcing the load conductance at the opti-
um value is provided. The duty cycle of the PWM signal that

ontrols the dc–dc converter connected to the PVP is therefore
ontinually adjusted depending on the load current and voltage.
n [5] and [6] an MPPT using sliding mode current controller for
VP system is also proposed, yielding an algorithm principle con-
isting in varying the load voltage until attempting the power or
he current derivative by the voltage reaches zero. Furthermore,
ntelligent methods as artificial neural networks (NN), genetic algo-

ithms and fuzzy logic (FL) have been also adopted to estimate the
oltage and the current values of the load. And then to vary the
uty cycle of the dc–dc converter so as to place the PVP system

n its MPP at any given G, T, and load conditions [7,8]. For more

∗ Corresponding author.
E-mail address: chokribs@yahoo.fr (C. Ben Salah).

378-7796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2010.07.005
details on these methods and some related applications on solar
energy, PVP, etc. the riders can refer to [7–12] and the references
therein.

In all cases, the proposed MPPT algorithms ensure MPP from
PVP. However, since these methods determine the optimum
values of load voltage and current by moving the functioning point
along the I–V curve of the PVP, they cannot deliver fast decision
face to climate disturbance or load fluctuation. Hence, an overall
system delay is consequently observed. Many researches have
estimated the MPPT by FL and by NN methods. [13,14] calculated
the MPP of the PVP by the FL controller. The FL controller in
[13,14] uses the outputs current I and voltage V from PV array,
the calculation of the change of output current I(k) − I(k − 1) and
the change of output voltage V(k) − V(k − 1), which increases the
complexity of the algorithm and complicates the implementation.
[15,16] estimated the MPP of the PVP by the NN methods, in these
papers the determination of the MPP needed the acquisition of
the weather parameters G and T which are the inputs of the NN
controller to estimate the MPP, the acquisition of the outputs
current and voltage of the PVP, respectively, I and V to calculate
the MPP with the module power, these two estimated MPPs are
the inputs of the control algorithm to calculate in its output the

error of MPP which is the input of the Digital analogic converter
(DA) and driving circuits to generate the duty cycle correspond to
the MPP to control the dc–dc inverter. This method proposed in
[15,16] needed many electronic stages to implement it, stage of
data acquisition, stage of NN controller, stage of control algorithm,

dx.doi.org/10.1016/j.epsr.2010.07.005
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:chokribs@yahoo.fr
dx.doi.org/10.1016/j.epsr.2010.07.005
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Fig. 1. Equivalent circuit of a photovoltaic cell.

nd DA and driving stage. These many stages complicate the
mplementation of this method and present a high cost.

In order to solve this problem of complexity and high cost and
o improve the stability of the MPPT controller, two MPPT con-
rollers use a FL and NN algorithms of the PVP behaviour when
unctioning in its experimental optimum conditions are proposed.
hese two controllers use the climatic parameters T and G in the
nputs and estimated the optimum duty cycle (˛opt) correspond
o the maximum power (Pmax) in the outputs to control the dc–dc
nverter, which gives simplicity and low cost to implement it. The
L is appropriate for non-linear control and does not use complex
athematics. Behaviours of FL depend on the shape of membership

unctions and rule base. There is no formal method to determine
ccurately the parameters of the controller. However, choosing
uzzy parameters to yield optimum operating point and a good
ontrol system depends on the experience of the designer and the
easured test.
The benefits of using NN are that there is no requirement

or knowledge on internal system parameters, less computational
ffort and they provide a compact solution for multivariable prob-
ems. Since the ˛opt is directly obtained by using NN, the proposed

ethod does not need complex algorithms and advanced power
lectronic control units.

The present paper will be organized as follows. Section 2 gives
he PVP model. The system configuration, the proposed approach
nd the FL and NN controllers are exposed in Section 3. Section
proposed the PVP simulation result, the validation of the pro-

osed approach is provided in Section 5. Finally, Section 6 gives the
onclusion.

. PVP model

For convenience and completeness of the paper we will explain
ereafter the PVP modelling. A photovoltaic cell is basically a p–n
emiconductor junction diode which converts solar light energy
nto electricity. Its equivalent circuit is shown by Fig. 1.

A PVP is composed of np parallel modules each one including ns

hotovoltaic cell serial connected. The fundamental equation for
VP model is given by Eq. (1) [4,17].

= npIph − npIrs

[
exp

(
q
(

Vg + IRs
)

kTAns

)
− 1

]
− Vg + IRs

Rsh
(1)

here I and Vg are respectively the PVP output current and volt-
ge, Iph the generated photocurrent (A), Rs and Rsh respectively the
erial and the parallel resistances of the PV cell (�), q is the electron
harge, k the Boltzmann’s constant, A is the p–n junction ideality
actor, T is the cell temperature and Irs is the cell reverse saturation
urrent. Irs is related to the temperature T as follows:[

T
]3 (

qE
[

1 1
])
rs = Irr
Tr

exp G

kqA Tr
−

T
(2)

here Tr is the cell reference temperature, Irr is the reverse
aturation current at Tr and EG is the band-gap energy of the semi-
onductor. Similarly, the photocurrent Iph depends on the solar
Fig. 2. System configuration.

radiation and the cell temperature as follows:

Iph = [Isc + ki(T − Tr)]
G

1000
(3)

where Isc is the PVP short-circuit current at reference temperature
and radiation, G is the solar radiation and ki the temperature coef-
ficient for short-circuit current. The PVP power is then calculated
as

P = IVg (4)

3. Methodology

Fig. 2 shows the MPPT connecting the PVP module to the dc
load. The MPPT consists of boost dc–dc inverter with the output
filter and the control system (FL or NN controllers). The MPPT drives
the operating point of the PVP to the Pmax detected by the control
system.

The control unit switches the power transistor ON and OFF to
carry out the Pmax from the PVP. When the transistor is switched
ON, the current in the boost inductor increases linearly, so the diode
is in the OFF state. However, when the transistor is switched off,
the energy stored in the inductor is released through the diode to
the load. The pulsating current produced by the switching action
is smoothed by the capacitive filter and a dc voltage is provided to
the load.

The boost converter transfer function is obtained by considering
its steady state operation as follows:

V

Vg
= 1

1 − ˛
(5)

where ˛ is the duty cycle given by the control unit, V is the output
voltage and Vg is the output PVP voltage.

Our work consists to command a boost converter to obtain the
MPPT directly from the climatic data such as G and T. Our approach
is to build a FL and NN MPPT controllers based on a practice data
base measured by a PVP, a variable resistor, an acquisition chain, a
temperature sensor and solar radiation sensor.

To release the relationships I = f(V) and P = f(V) of the panel, we
proceed through varying rapidly the resistance for fixed G and T. We
start with a very large resistance value (∼M�) which corresponds
to an open circuit voltage Voc and to a zero current until we reach a
resistance of 0 � corresponding to the short-circuit current Isc and
zero voltage.

Next, observing the graphical realizations P = f(V) and I = f(V), the

maximum power points are read directly from the first curve. Vopt

is the X-coordinate of Pmax. The optimal current Iopt is then obtained
from the curve I = f(V).

Finally, ˛opt is deduced from Eq. (5) when letting Vg = Vopt and
V = 24 V.
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Table 1
Control rules.

T [◦C] G [W/m2]

Small Means Large Very Large

�Ai
(x0i) =

{
1 − |x − x0i|

εx0i

if |x − x0i| ≤ εx0i

0 otherwise

for the solar radiation G (6)
Fig. 3. Algorithm steps.

The procedure explained above is then repeated to yield a data
asis (G, T, Pmax, ˛opt) to be used as a building and validation for the
L and NN controllers.

Contrarily to some existing approaches [3,4], the computation
f the parameter ˛opt in the present work is based on a step-by-step
rocedure. Next, a building step which consists in testing the rela-
ionship ˛opt = f(T, G) on a FL and a NN controllers basis is provided.

e use as inputs the values of T, G and ˛opt furnished in step one.
he last step prepares for possible evaluation or prediction of the
arameter ˛opt for given T and G without cross-passing by step one.
ig. 3 hereafter summarizes these steps.

.1. Fuzzy logic MPPT controller

Fuzzy logic is one of the most powerful control methods. It is
nown by multi-rules-based resolution and multivariable’s consid-
ration [9]. Compared to other methods such as neural networks
nd genetic algorithms, it provides fast results using the expert
nowledge and measured data base. Hence, fuzzy logic method
as been selected as a management tool for the present system.
his selection is judicious considering that it fulfills well the sys-
em requirements. Since the MPPT controller approach uses fuzzy
ogic, its algorithm is based on three steps: the knowledge base of
he expert, the fuzzification, the inference diagram and the defuzzi-
cation [9,18].

.1.1. The knowledge base of the expert
The approach handles a multi-criteria resolution for which three

uzzy partitions are judged necessary:

According to solar radiation: the fuzzy partition of solar radiation
is composed of Ns = 4 fuzzy subsets.

Ai = (Small, Means, Large, Very large) is the ith fuzzy subset,
i = {1, 2, 3, 4}. These subsets cover the fuzzy domain x = [0, 1200]
and verify Vx1 = Gi ∈ x,

∑Ns

i=1�Ai
(x) = 1, where Gi is the solar

radiation value and �Ai
is the membership function.

According to PV cell temperature: the fuzzy partition of PV cell
temperature is composed of Ns = 4 fuzzy subsets.

Bj = (Small, Means, Large, Very large) is the jth fuzzy subset,
j = {1, 2, 3, 4}. These subsets cover the fuzzy domain y = [0, 1200]
and verify Vyj = Tj ∈ y,

∑Ns

i=1�Bj
(y) = 1, where Tj is the solar
radiation value and �Bj
is the membership function.

According to optimum duty cycle ˛opt: the fuzzy partition of solar
radiation is composed of Ns = 4 fuzzy subsets.

Ck = (Small, Means, Large, Very large) is the kth fuzzy subset,
k = {1, 2, 3, 4}. These subsets cover the fuzzy domain z = [0, 1200]
Means Means Means Large Small
Large Means Large Large Very Large
Very Large Small Means Very Large Very Large

and verify Vzi = ˛opt k ∈ z,
∑Ns

i=1�Ck
(z) = 1, where ˛opt k is the

solar radiation value and �Ck
is the membership function.

The control rules are indicated in Table 1 with radiation G and
temperature T as the inputs and duty Cycle ˛opt as the output. These
two input variables and the control action duty Cycle ˛opt for the
tracking of the maximum power point.

3.1.2. The fuzzification
The determined fuzzy partition leads to the calculation of the

membership functions �Ai
, �Bj

and �Ck
considering the symmet-

ric triangular type (Fig. 4). These membership functions are to be
expressed as
Fig. 4. Fuzzy logic membership function of (a) solar radiation, (b) PV cell tempera-
ture, and (c) optimum duty cycle.
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function of activation is of linear type.
Here Nh designates the number of hidden neurons. The con-

nection weight values and the thresholds of the NN are selected
randomly at the starting of the training process and then dur-
6 C. Ben Salah, M. Ouali / Electric Po

�Bj
(y0j) =

{
1 − |y − y0j|

εy0j

if |y − y0j| ≤ εy0j

0 otherwise

for the PV cell temperature T (7)

�Ck
(z0k) =

{
1 − |z − z0k|

εz0k

if |z − z0k| ≤ εz0k

0 otherwise

for the optimum duty cycle ˛opt (8)

.1.3. Inference diagram
By means of the obtained membership function, a rule base

s established, according to Mamdani [1], using the general rule
ormat:

ijk if (xi is Ai and yj is Bj) then zk is Ck (9)

here xi is the solar radiation (G) vector and Ai its linguistic value,
j the PV cell temperature (T) and Bj its linguistic value, zk the
ptimum duty cycle and Ck its linguistic value.

Since the decision is taken (which case to consider), Eq. (9) is
herefore computed for i = 1, 2, 3, 4; j = 1, 2, 3, 4; to generate a rules
ase composed of 4 × 4 = 16 rules. The rules’ aggregations are given
y computing the minimum norm conjunction implication of fuzzy
ubset of the optimum duty cycle ˛opt.

C ′
k

= min(wk, �Ck
) (10)

C ′
k+1

= min(wk+1, �Ck+1
) (11)

here wk is the minimum norm fuzzy conjunction between the ith
uzzy subset of the solar radiation and jth fuzzy subset of the PV
ell temperature:

k = min(�Ai
, �Bj

) (12)

nd wk+1 is the minimum norm fuzzy conjunction between the
i + 1)th fuzzy subset of the G and (j + 1)th fuzzy subset of the T.

k+1 = min(�Ai+1
, �Bj+1

) (13)

Using the maximum t-conorm rule aggregation, the member-
hip function for an operating point of the option ˛opt is given
y

C = max(�C ′
k
, �C ′

k+1
) (14)

.1.4. Defuzzification
Since the rules are aggregated, the defuzzification consists in

alculating the real value z0k of ˛opt using the centroid method (z0k
s the centre of �C):

0k =
∫ 1

0
zk�C dzk∫ 1

0
�C dzk

(15)

.1.5. The management algorithm

Acquire: Gi, Tj {read G and T}
Fuzzification: Compute �Ai

, �Bj
and �Ck

{the membership func-
tion}

Inference diagram: Compute Rijk: if (xi is Ai and yj is Bj) then zk
is Ck {the rules base}; Calculate �C {the membership functions of
the operating points}
Defuzzification: Compute z0k the centers of �C {using the centroid
method}
Fig. 5. Matlab windows of the fuzzy logic Controller.

3.1.6. The Matlab windows
Fig. 5 presents the fuzzy logic Matlab simulink windows which

composed the MPPT controller, his inputs T and G, her output ˛opt

and the different parameters of the fuzzification, implication the
aggregation and the defuzzification.

3.2. Neural network MPPT controller

NN can generally be thought of as black box devices that accept
inputs and produce outputs. The neural systems function as paral-
lel distributed computing networks, the MPPT controller approach
uses neural network are presented in the paper [15,16].

The NN controller is used to estimate the optimum duty cycle
˛opt which corresponds to Pmax at any given solar radiation G and
PV cell temperature T. Fig. 6 shows the NN controller.

In our application, we elaborated a recursive multi-layer net-
work where calculations occur only in one direction conducted
from inputs to outputs. As shown in Fig. 6, the NN controller con-
sists of three layers. The input layer is composed of two nodes in
inputs that are; the PV cell temperature T and the solar radiation G.
The hidden layer composed of seven nodes whose function of acti-
vation is sigmoid. The output layer is composed of one node that is
the optimum duty cycle ˛opt which corresponds to the Pmax whose
Fig. 6. The neural network architecture.
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Table 2
Electrical characteristics of the 50 W single-crystalline photovoltaic module SM50-
H.

Parameter (at STC) Abbreviation Value

Band-gap energy EG 1.12 eV
Ideal factor A 1.5
Maximum power Pmax 50 Wp
Rated current IMPP 3.15 A
Rated voltage VMPP 15.9 V
Short-circuit current Isc 3.35 A
Open circuit voltage V 19.8 V
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In this section, experimental tests are provided based on the-
oretical concepts previously exposed. The measures were realized
on the PVP module previously modelled. Hence, since the model is
established and validated, it is used to compute, for a given tem-
oc

Temperature coefficient of Isc ki 1.2 mA/◦C
Normal operating cell temperature NOCT 45 ± 2 ◦C
Cell serial modules ns 33

ng training they are fixed so as to make minimum square error
etween estimated and training data. A great number of the
rocesses of training are available. In our case, we used the retro-
ropagation method which is the most known and the most used.
he training algorithm consists of minimizing the total error E
efined by the following equation [11,18]:

= 1
2

∑
(On − tn)2 (16)

here On is the nth measured output read by the network and tn

s the nth target (the estimated output). Hence each input/output
air constitutes a training sample. The retro-propagation algorithm
alculates the error E and distributes it back from output towards
nput neurons through the hidden neurons using following formula
12]:

wn = ı�wn−1 − �
∂E

∂w
(17)

here w is the weight between any two neurons, �wn and �wn−1
re the changes of these weights for n and n − 1 iterations, ı is
he speed term and � is the training rate. The training rate deter-

ines the size of the changes of the weights caused by the effect
f the total error. The speed term avoids the oscillations of weight
uring the training iterations and also accelerates the training on
rror surface. The selected number of neurons in the hidden layer
etermines the training degree. This number is calculated by the
mpirical following formula [9]:

h = 1
2

(NI + NO) +
√

NE (18)

here NI is the number of input neurons, NO is the number of output
eurons and NE is the size of training sample.

For the size of the training sample of the neural network is
E = 37. These parameters yield, using Eq. (8), a number of nodes in

he hidden layer is seven nodes. We just recall here that the exact
alue deduced from Eq. (8) is Nh = 7.58. So, the nearest values are 7
nd 8. A comparison between them yields good results for a choice
f Nh = 7.

. PVP simulation result

Based on the fact that PVP outputs depend on solar radiation
nd ambient temperature as in Eqs. (1) and (4), their simulations
eliver two types of curves.

For this goal we use two parallel Siemens SM50-H PV mod-
les. The parameters of the developed model are given in Table 2
ereafter. Such parameters are considered at the Standard Test

2
ondition (STC): 1 kW/m (1 Sun) at spectral distribution of AM
.5 and cell temperature of 25 ◦C.

Furthermore, using the derivative procedure of each PVP power
urve, a new maximum power characteristic is extracted to indicate
he optimal functioning points for the PVP (Iopt, Vopt) for different
Fig. 7. Simulated P/V characteristics of PVP model at constant temperature T = 25 ◦C.

solar radiation and ambient temperature. Figs. 7 and 8 plot P = f(V)
and I = f(V) curves respectively for different solar radiation G and
with constant temperature T = 25 ◦C. Figs. 9 and 10 present the same
parameters curves for different temperature T but with constant
solar radiation G = 100 W/m2.

As it is shown in Figs. 7 and 8, the current, due to the cutoff cir-
cuit is positively varying with solar radiation. However, the voltage
in the open circuit remains quasi constant. Furthermore, maximum
power points are situated around a critical value of 16 V. The charge
regulator, the MPPT, will not be perturbed enough by the solar
radiation when searching the maximum power points.

Figs. 9 and 10 show that the affect of temperature is slightly
significant, and it needs important choice in panel and systems
conception. The temperature has a negligible effect on the cutoff
circuit current. However, the open circuit voltage decays rapidly as
the temperature increases.

5. System experimental validation
Fig. 8. Simulated I/V characteristics of PVP model at constant temperature T = 25 ◦C.
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ig. 9. Simulated P/V characteristics of the PVP model at constant solar radiation
000 W/m2.

erature and irradiation, the duty cycle which controls the dc–dc
nverter to track the maximum power.

The model of test composing of two parallels connected photo-
oltaic modules SM50-H, a variable resistor, an acquisition chain, a
emperature sensor and solar radiation sensor (Fig. 11). With this
est model we proceed through varying rapidly the resistance for

and T fixed. We start with a very large resistance value (∼M�)
hich corresponds to an open circuit voltage Voc and to a zero

urrent until reaching a resistance of 0 � corresponding to the
hort-circuit current Isc and zero voltage. The procedure explained
bove is then repeated to yield a data basis (G, T, Pmax, ˛opt) to be
sed as a building and validation for the FL and NN controller.

The FL and the NN algorithms have been implemented in the
ystem shown in Fig. 1. A FL and a NN models were established
n the basis of a data base of measures taken in advance on the
ystem (see Table 3). This data base contains different values of
V cell temperature T, solar radiation G, and measured duty cycle

sing the test model Fig. 11. The obtained FL and a NN models are
onsequently used during function to determine the optimum duty
ycle ˛opt of the PWM signal which controls the dc–dc inverter so
s to track the MP from the PVP.

ig. 10. Simulated I/V characteristics of the PVP model at constant solar radiation
000 W/m2.
Fig. 11. The model of test.

Fig. 12 shows the measured and the FL and the NN estimated
optimum duty cycle ˛opt for different solar radiations. It is shown
that the estimated curves of the FL method and the NN method fit
well the measured one.

Next, Fig. 13 shows the measured and the estimated Pmax values
for different climate data G and T.

It is clear that the estimated and the measured powers equally
follow the climatic parameters (T, G) even for a fast variation of the
solar radiation.

As it is shown in Figs. 12 and 13 the measured and estimated
curves fit well. This fact is also confirmed by the following table
(Table 4) which gives the relative errors between the estimated
and the experimental series.

FL gives power with minimum total error compared to NN
method. This shows that the best method is FL among the NN.

From these figures, it is clear that the FL and NN controllers
accurately estimate the MPPT at any solar radiation and PVP cell
temperature.

The performance of the MPPT can be detected according to the
efficiency [16,19]. The efficiency calculated by the following equa-
tion: ( )

Efficiency = 1 − Measured Pmax − Estimated Pmax

Measured Pmax
× 100

(19)

Fig. 12. Measured and estimated duty cycle.
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Table 3
Data base.

G [W/m2] T [◦C] Measured Fuzzy ˛opt Neural ˛opt Measured Pmax Fuzzy Pmax Neural Pmax

360 37.3 0.4489 0.4417 0.3756 32.0130 31.6543 34.6443
460 36.7 0.4381 0.4833 0.4400 38.1818 41.2485 41.1256
730 36 0.4447 0.4792 0.5650 61.1567 65.0052 51.2251
810 41 0.4683 0.4938 0.5770 66.1623 69.4059 55.3830
861 36 0.46 0.4167 0.5818 80.3150 74.7367 58.1004
943 44 0.495 0.5042 0.5862 75.5789 76.9609 63.1513
970 44 0.495 0.5396 0.5871 72.2440 79.1683 64.8192

1000 47 0.4952 0.5083 0.5879 81.6837 79.5896 66.7674
1040 44 0.495 0.5188 0.5887 80.9350 84.8913 69.2297
1088 39.7 0.4951 0.4208 0.5894 101.2237 88.6506 72.1910

validation results.

fi
a
9

Fig. 13. System
The efficiency of FL and NN controllers are shown in Fig. 14. The
gure shows that the FL controller can generate up to 99% of the
ctual maximum power and the NN controller can generate up to
2% of it.

Fig. 14. Efficiency of FL and NN MPPT.

Table 4
The normalized errors of measured and predicted values.

Method Optimum duty cycle error Maximum power Pmax error
Fuzzy logic 2.7087 0.0761
Neural network 17.1539 0.5381

6. Conclusion

Two new MPPT methods based on the FL in the first and on the
NN in the second were proposed and investigated. FL and NN can
model dynamical complex systems that change with time following
non-linear laws. These proposed algorithms in FL and NN consist
in commanding a boost dc–dc inverter to obtain the MPPT directly
from the climate data solar radiation and PV cell temperature. In
addition these two MPPT give a simplified system and low cost to
implement it. The results of the experiment have shown that the
MPPT controller by using FL has provided more power than the NN
one.
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