
Expert Systems with Applications 42 (2015) 135–145
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Imperialist competitive algorithm with PROCLUS classifier for service
time optimization in cloud computing service composition
http://dx.doi.org/10.1016/j.eswa.2014.07.043
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: amin.jula@gmail.com, aminjula@ftsm.ukm.my (A. Jula), za-

linda@ftsm.ukm.my (Z. Othman), elan@ftsm.ukm.my (E. Sundararajan).
Amin Jula a,⇑, Zalinda Othman a, Elankovan Sundararajan b

a Data Mining and Optimization Research Group, Centre for Artificial Intelligence, UKM Bangi, 43600 Selangor, Malaysia
b Centre of Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, 43600 Selangor, Malaysia
a r t i c l e i n f o

Article history:
Available online 4 August 2014

Keywords:
Cloud computing
Service composition
Service selection
Service time
Quality of service
QoS
Imperialist competition algorithm
Clustering
Proclus
a b s t r a c t

Aiming to provide satisfying and value-added cloud composite services, suppliers put great effort into
providing a large number of service providers. This goal, achieved by providing the ‘‘best’’ solutions, will
not be guaranteed unless an efficient composite service composer is employed to choose an optimal set of
required unique services (with respect to user-defined values for quality of service parameters) from the
large number of provided services in the pool. Facing a wide service pool, user constraints, and a large
number of required unique services in each request, the composer must solve an NP-hard problem. In this
paper, CSSICA is proposed to make advances toward the lowest possible service time of composite ser-
vice; in this approach, the PROCLUS classifier is used to divide cloud service providers into three catego-
ries based on total service time and assign a probability to each provider. An improved imperialist
competitive algorithm is then employed to select more suitable service providers for the required unique
services. Using a large real dataset, experimental and statistical studies are conducted to demonstrate
that the use of clustering improved the results compared to other investigated approaches; thus, CSSICA
should be considered by the composer as an efficient and scalable approach.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In an era where computation complexity is growing dramati-
cally and achieving desired results depends on the processing of
big data, the computation world has no choice but to recognize
the use of cloud computing (Armbrust et al., 2010; Hayes, 2008).
Choosing each of the deployment models of cloud computing (pub-
lic, community, private, and hybrid clouds (Dillon, Chen, & Chang,
2010; Peter Mell, 2011)) would provide required service models
(Ellinger, 2013) with different security policies (Takabi, Joshi, &
Gail-Joon, 2010; Wei et al., 2014; Zissis & Lekkas, 2012). According
to a widely accepted classification, each service can belong to one
of the three categories: software as a service (SaaS), platform as a
service (PaaS), or infrastructure as a service (IaaS), which can pro-
vide more effective functionalities in cooperation and combination
of other services.

Nevertheless, the increasing tendency of applicants to receive
services from the cloud has led to an unprecedented increase in
the number of providers who want to present their services in a
cloud service pool. Hence, we are faced with a large number of
unique services provided with similar functionality and different
quality of service (QoS) (Jula, Sundararajan, & Othman, 2014).

On the other hand, due to the availability of complicated and
varied services, a distinct simple service is unable to meet the pre-
vailing functional prerequisites for several real-world cases. A set
of simple atomic services that are able to work together is neces-
sary to perform a complicated service. We also encounter hanging
customer requirements from simple services into complicated
services, along with a set of constraints, priorities, and QoS require-
ments (e.g., service time). Therefore, cloud suppliers must provide
a package, referred to here as the composite service composer (CSC),
which is a set of components that searches for the best composi-
tion of pre-provided unique services in the service pool based on
customer requirements and constraints. Because of the immense
variety of unique services and large number of service providers,
as well as the importance of customer-defined requirements and
constraints, CSC is faced with an NP-hard problem referred to as
cloud computing service composition (CCSC) (Fei, Yuanjun, Lida,
& Lin, 2013; Li, Cheng, Ou, & Zhang, 2010; Wada, Suzuki,
Yamano, & Oba, 2012) when seeking the optimal response to any
request for a composite service.

Many studies have been conducted and many different heuris-
tic and non-heuristic algorithms (Barney, 2012; Gutierrez-Garcia &
Sim, 2010; Kofler, Haq, & Schikuta, 2010; Kofler, ul Haq, & Schikuta,
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2009; Zhou & Mao, 2012) have been proposed to promote the qual-
ity of functionality of CSC and achieve an optimal solution for CCSC.
The application of particle swarm optimization (Kennedy &
Eberhart, 1995), genetic algorithms (Holland, 1992), game theory
(Scutari, Palomar, & Barbarossa, 2008), and memetic algorithms
(Jula & Naseri, 2011) has led to significant improvements in the
optimization of proper service selection for service composition
(Jula, Othman, & Sundararajan, 2013; Ludwig, 2012; Qi &
Bouguettaya, 2013; Wang, Sun, Zou, & Yang, 2013; Xia, Wan, Dai,
Luo, & Sun, 2012; Xiao & Zhang, 2012; Yang, Mi, & Sun, 2012; Ye,
Zhou, & Bouguettaya, 2011; Zhu, Li, Luo, & Zheng, 2012); however,
none of these approaches use the clustering of the service providers
to achieve improved performance (Jula et al., 2014).

Despite all the research conducted in the domain, one of the
main but almost neglected issues in facing very large search space
problems is the large number of available options for being
selected, and the limited number of solutions in the initialization
phase of the algorithm. In other words, a very small percentage
of potential solutions can be chosen as the first generation of solu-
tions. Because selection of members of the initial generation of
solutions is usually randomized, it is obvious that chance of select-
ing appropriate solutions is extremely low. Lack of providing
proper initial solutions will lead to improper evolution process in
execution of algorithm. Hence, it can be concluded that applying
non-blind selection techniques can significantly enhance the per-
formance of the algorithms. To reach this aim, two different
approaches can be followed, including proposing intelligent initial-
ization methods and operators, and search space clustering
techniques. What previously has been employed to address this
problem is restricted to the use of skyline operator to limit the
number of service providers (Qi & Bouguettaya, 2013; Wang
et al., 2013). What is the main challenge of using Skyline operator
in real-world CCSC is high time-complexity that increases expo-
nentially with the increase in the number of QoS parameters.

In this paper, PROCLUS (Aggarwal, Wolf, Yu, Procopiuc, & Park,
1999; Kurniawan et al., 1999) (as an appropriate clustering
algorithm for high-dimensional data) is used to categorize service
providers into three classes based on the time of their provided
services. Afterwards, the probability of selection of single services
from each category is calculated based on the average service time
of all assigned service providers in each category. Using selection
probability of the categories in initialization of first generation of
solutions has altered the blind production of the first set of solu-
tions and thus reduced the service time of the final solution.

But then imperialist competitive algorithm (ICA) as a very
young evolutionary algorithm (Atashpaz-Gargari & Lucas, 2007)
presents three attractive features to be used in solving CCSC. One
of the most important concerns in solving optimization problems
with very large search spaces is falling into trap of local optima.
ICA searching process is designed in such a way that the probabil-
ity of falling into the trap effectively reduced by frequent reloca-
tion of solutions in the search space using different well-
designed operators. Novelty of utilizing sociopolitical behavior of
countries in designing the algorithm, and extensive areas of inno-
vation because of being newer than most of proposed evolutionary
algorithms, are other two advantages of applying ICA.

In this study, for addressing Service Time Optimization in Cloud
Computing Service Composition (STOCCSC), Classified Search
Space Imperialist Competitive Algorithm (CSSICA) is proposed. In
CSSICA, along with applying classified search space and using
achieved probabilities in selection procedure, improvements in
the structure and functioning methods of the ICA are also adopted
to improve the algorithm’s performance.

The remainder of this paper is organized as follows. After the
introduction, descriptions of Service Time optimization in Cloud
Computing Service Composition (CCSC) and Imperialist Competi-
tive Algorithm (ICA) are presented in Section 2. A complete
description of the proposed algorithm, CSSICA, is provided in Sec-
tion 3. A detailed discussion of the experimental results obtained
using CSSICA and two other algorithms, ICA and Niching PSO,
including numerical and statistical investigations, is provided in
Section 4. Finally, our conclusions and potential topics for future
research are presented in Section 5.

2. Problem and algorithm description

2.1. Service time optimization in cloud computing service composition
(STOCCSC)

An increase in the number of available services will lead to an
increase in the number of similar operating services on various
servers. Because these similar services are to be found in various
places and have definite QoS parametric values, the CSC should
employ suitable methods to select a unique service among the var-
ious similar services that are available on distinct servers. Applying
the appropriate method will enable the best quality of service to be
attained based on the requirements and priorities of the end user.
In view of fundamental changes in cloud environments, accessible
services, and end-user requirements, the CSC must be powerfully
designed with automatic functional capabilities.

Thus, one of the most significant problems in service composi-
tion is the selection of suitable simple services to be merged
together to produce an ideal combination that is able to meet the
functional and QoS requirements of the end user.

This paper assumes that every composite service (CS) within a
cloud is comprised of n unique services (USs), all of which have
service time (ST) as a QoS parameter. A combination of exclusive
services must correspondingly act in an ordinal workflow (wf) to
terminate a CS. However, if wfk is the workflow of CSk, then ST(wfk)
can be defined to denote the ST value of the workflow k, where-
upon the ST vector of the workflow can be expressed as (1).

STðwfkÞ ¼ ðST1ðwfkÞ; ST2ðwfkÞ; . . . ; STnðwfkÞÞ ð1Þ

The competency value (CV) of wfk is the total service time of wfk

and is obtained using (2). The optimal solution for STOCCSC is the
solution with the lowest ST and thus with the lowest CV.

CVðwfkÞ ¼
Xn

i¼1

STiðwf Þ ð2Þ
2.2. Imperialist competitive algorithm

In the field of evolutionary computation, the novel ICA is
founded on human social and political advancements (Atashpaz-
Gargari & Lucas, 2007; Bahrami, Faez, & Abdechiri, 2010; Zarandi,
Zarinbal, Ghanbari, & Turksen, 2013), unlike other evolutionary
algorithms, which are based on the natural behaviors of animals
or physical events. ICA starts with an initial randomly generated
population, in which the individuals are known as countries. Some
of the best countries are considered imperialists, whereas the other
countries represent the imperialist colonies. To solve an optimiza-
tion problem with n dimensions, a country is formed as an 1 � n
array as follows:

Country ¼ ½p1;p2; . . . ;pn� ð3Þ

The power of a country i is calculated using the objective func-
tion f, which is a function of the variables (p1, p2, . . ., pn), yielding
the following equation:

PowerðCountryiÞ ¼ f ðCountryiÞ ¼ f ðpi1;pi2; . . . ;pinÞ ð4Þ
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The ICA begins with m countries, and the nimp most powerful of
these countries are chosen as the imperialists. The other countries
are called imperialist colonies, and every non-imperialist country
will belong to an empire. A simple procedure is used to disperse
the non-imperialist countries among the imperialists. An imperial-
ist country is randomly selected for each non-imperialist country,
and the latter is then allotted to that empire.

During the execution of the algorithm, each imperialist country
will attract its colonies according to the total power of the empire
and that of the colonies. The total power of each imperialist is
ascertained by the power of the empire added to a coefficient that
is multiplied to obtain the average power of the imperialist colo-
nies. The total power of each imperialist country is calculated as

TPn ¼ cn þ ða� Averagefpowerðcolonies of empirenÞgÞ ð5Þ

where TPn is the total power of the nth empire, cn is power of impe-
rialist n and a is a positive random number less than one.

During the movement of a country, a colony moves a length of x
units toward its imperialist country. As illustrated in Fig. 1, the
Fig. 1. Direction of colony movement to related imperialist (Atashpaz-Gargari and
Lucas, 2007).

Fig. 2. KNIME 2.8.2 environment
direction of the movement can be regarded as a vector from the
colony to its related imperialist, where d is the distance between
the imperialist country and colony and x is a random value that
can be determined using a uniform distribution as follows:

x � Uniformð0;b� dÞ ð6Þ

where b is greater than one and is close to 2.
There is a very significant operator in the ICA known as the

imperialistic competition; this operator is a function decreases the
power and number of colonies of the weakest empire until it is
destroyed; it can be applied in various forms depending on the
design requirements of the algorithm.
3. Proposed algorithm

To search large-scale spaces more efficiently, evolutionary algo-
rithms can reduce the scale of the space by targeting more appro-
priate candidates in the selection phase. In the STOCCSC,
eliminating blind service selection in the first step of the evolution-
ary algorithm is expected to lead to more effective results because
there are very large-scale service pools in which thousands of
unique services are presented by hundreds of service providers.
Such improvements should not significantly increase in execution
time of the algorithm and thus reduce its performance.

Clustering can be applied to the categorization of service pool
service providers as a convenient and effective solution to this
problem, with the aim of producing better solutions in the first
phase of the algorithm. PROCLUS, which is the most appropriate
clustering technique for large-scale search spaces in terms of cal-
culation time (Widia Sembiring, Mohamad Zain, & Embong,
2010), is selected for use in CSSICA to solve STOCCSC.
after PROCLUS is executed.



Table 1
PROCLUS results and calculated probabilities.

Number of
allocated servers

Average service time Calculated
probability

High-Recommended 176 3,971.6145 0.4455
Recommended 101 4,484.1619 0.3946
Low-Recommended 62 11,066.1211 0.1599
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3.1. Missing value replacement and normalization

Missing value happens when there is no data to be stored for an
attribute in an observation. Facing missing values is a prevalent
incidence in using real-world datasets and can dramatically affect
on results and achievements of processing the data. Validity of
research may be undermined due to missing values (Allison,
2002; Di Nuovo, 2011). Hence, it is essential to prepare accurate
normal data that do not contain missing values before starting
the clustering procedure to ensure the accuracy and reliability of
the results. Mean Substitution is selected to replace missing values
because there are many values in the columns of the datasets and
to avoid the destructive impacts of missing value replacement. Use
of Min–Max Normalization could also help to preserve data rela-
tionships (Gan, 2007) and allow QoS parameters to be aggregated
in the calculations (Jula et al., 2013; Wang et al., 2013).

3.2. Applying PROCLUS

To ensure data clearance, CSSICA applies PROCLUS to the data
using KNIME 2.8.2 (Berthold et al., 2008) before starting the search
process to divide the servers into three distinct categories. The first
category is called High-Recommended and includes those servers
that are most likely to achieve the minimum service time. Recom-
mended is the second category and includes servers that are less
likely to provide the minimum service time. The third category,
called Low-Recommended, includes servers that are least likely to
obtain the minimum service time. Thus, a server from the third cat-
egory should only be considered with a low probability. A sche-
matic of the designed KNIME workflow for missing value
replacement, the normalizing procedure, and PROCLUS clustering
is presented in Fig. 2, and the results are presented in Fig. 3.

Obtaining the selection probability of a category among the
three categories for taking a service provider for each requires ser-
vice is of utmost importance. To obtain this probability the proba-
bilities should be calculated based on the direct proportion of the
number of servers in each category and the inverse proportion of
the average of all service times of all servers associated with each
category. Table 1 presents the PROCLUS results and the calculated
probabilities.
Fig. 3. KNIME results for
When calculating the probabilities, it is important to consider
the fact that the highest probability value should be assigned to
the category with the lowest average value, and vice versa.
Thus, it is necessary to include the inverse of the average
service times. Then, the demanded probabilities will be
calculated by a simple first-order equation and three multiplica-
tion operations, as shown in (7), where A, B, and C are the
average service times of the three categories; A’, B’, and C’ are
inverses of A, B, and C, respectively; and P(high-recom),
P(recom), and P(low-recom) are the probabilities of the
High-Recommended, Recommended, and Low-Recommended
categories, respectively.

If A ¼ 3;971:6145) A0 ¼ 1
3;971:6145

; ð7Þ

if B ¼ 4;484:1619) B0 ¼ 1
4;484:1619

;

If C ¼ 11;066:1211) C 0 ¼ 1
11;066:1211

;

A0 þ B0 þ C 0
� �

x ¼ 1) x ¼ 1
5:6516e� 4

) x � 1;769:4111;

Pðhigh� recomÞ ¼ A0x � 0:4455;

PðrecomÞ ¼ B0x � 0:3946;

Pðlow� recomÞ ¼ C 0x � 0:1599:
PROCLUS clustering.
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3.3. Applying the ICA

In the first phase, a set of countries called World (see Fig. 4) is
generated randomly but with respect to the obtained probabilities
and includes CountryNo countries in which each country repre-
sents a solution for the STOCCSC. A random generated number
between zero and one is employed to determine which of the three
categories should be used to select one of its servers. The pseudo-
code of this process is shown in Fig. 5, illustrating how a server is
selected randomly from a probability-based selected category.

The structure of each of the countries, as shown in Fig. 3, con-
sists of d distinct attributes that are used to save the assigned serv-
ers for d required unique services and a field for storing the total
service time for the current generated solution. In the second
phase, the total service time for the required composite service
must be calculated based on the selected servers in each country
to obtain a proper value for evaluating and comparing the initial-
ized countries. The total service time of each country that is actu-
ally the power of the country is calculated using (8), where
Service_Time (i) is the service time of required service i presented
by the current country.

Total Service Time ¼
Xd

i¼1

Service TimeðiÞ ð8Þ

The third phase involves sorting the countries of the world
based on their service time in ascending order. This sorting
Fig. 5. Pseudocode of the Ser

Fig. 4. Country structu
procedure helps the algorithm to reach the best-generated
solutions at the top of the list of countries. The optimal solutions
are then located at the top of the list, and the first ImperialistNo
of countries would be selected as the imperialists and the
remaining CountryNo-ImperialistNo countries would be known as
their colonies. Colonies are assigned to the imperialists randomly
so that an equal number of colonies are allocated to each of the
imperialists. Hence, the number of colonial countries of each
imperialist can be calculated by (9)

ColonialNo ðIMPiÞ ¼
CountryNo� Im perialistNo

Im perialistNo
ð9Þ

where IMPi represents imperialist i.
The fourth phase, which involves moving colonies toward their

related imperialist, plays an important role in the process of ICA.
The movements in the CSSICA are designed as follows. The first step
is to calculate the distance between the imperialist and colony in
all dimensions separately using (10).

DistdðIMPk;CountryiÞ ¼ IMPk:Service½d�
� Country½i�:Service½d� ð10Þ

where Distd(IMPk , Countryi) is the distance between country i and
its imperialist k in dimension d. A random integer number between
zero and the calculated distance is generated to determine the dis-
placement of the country in each specific dimension. The index of
the new assigned service in the specific dimension will be smaller
verSelection procedure.

re and the World.
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or greater than the previous index if the distance is negative or posi-
tive, respectively, allowing the colony to move toward its related
imperialist. The countries should be displaced in all dimensions.

In the fifth phase, the new total service time of the services
must be calculated due to the change in assigned servers to some
required unique services. Then, if the calculated total service time
for the colony is smaller than the total service time of its related
imperialist, their positions should be exchanged.

In the sixth phase, the imperialists compete with one another;
namely, they attempt to overcome the other imperialists and
oblige the weakest imperialist to surrender its weakest colony to
the conqueror imperialist. To avoid hasty decisions, CSSICA pro-
vides all imperialists with 15 iterations to have sufficient opportu-
nity to empower their empires before entering into the
competition. In other words, imperialist competition takes place
only once after each 15 iterations. If the weakest imperialist has
no colony, the imperialist surrenders itself to the conqueror and
its empire disappears. Thus, after a sufficient number of iterations,
only one imperialist will remain; this situation can be considered a
condition for the termination of the algorithm. After each imperi-
alist competition, the CSSICA sorts current imperialists in ascending
order instead of sorting all countries. Due to the lower number of
imperialists comparing to the total number of countries, this sort-
ing technique plays an important role in significant decrease in
executing time of the algorithm. In this phase, the algorithm also
saves the current best solution, and then returns to the fourth
phase again to execute the next iteration.

At the end of sixth phase, the termination criteria must be
investigated before continuing the next iteration. The algorithm
Fig. 6. Comparison of the total service time obtained for problem A, (a) CSSICA vs. ICA in
PSO for 1,500 iterations, (d) CSSICA vs. ICA and Niching PSO for 6,300 iterations.
can be terminated after a specified number of iterations, after
reaching a predefined total service time, or after the disappearance
of the penultimate imperialist.

4. Experimental results

4.1. Experiment setup

The CSSICA consists of two independent components. The first
component is data clearance and clustering, which is executed
via KNIME 2.8.2. The second component is the ICA; the applied
changes in the ICA have been implemented in Visual C#.Net
2012 to solve different service time optimization problems of dif-
ferent sizes for CCSC. Due to the importance of using a reliable
dataset to evaluate the proposed algorithm, WSDream-QoSData-
set2 (Zibin, Yilei, & Lyu, 2010) was used because it is a large dataset
in which real-world service times were collected from 339 servers
for 5,825 web services. The improved ICA and Niching PSO, which
are described in Section 3 and (Liao, Liu, Wang, & Zhu, 2012; Liao,
Liu, Zhu, Xu, & Wang, 2011), respectively, are also implemented
and executed to solve similar problems to evaluate and compare
the performance of CSSICA.

The investigated problems were randomly generated once and
solved by the three aforementioned algorithms. To ensure the
accuracy and reliability of the obtained results, each algorithm
was independently executed 40 times for every problem and the
average of the results was used in the evaluation. In addition to
the comparison of the results obtained from implementing the pro-
posed algorithms and their related charts, well-known statistical
1,500 iterations, (b) CSSICA vs. ICA in 6,300 iterations, (c) CSSICA vs. ICA and Niching
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tests are presented to provide further analysis and comparison of
the algorithms. Due to the random nature of evolutionary algo-
rithms, the use of such statistical assessments increases the reli-
ability of the obtained results.

There are four randomly generated service time optimization
problems for CCSC: Problems A, B, C, and D, in which the number
of required unique services to be combined are 100, 200, 300,
and 400, respectively. Five-hundred countries were considered
for the ICA and CSSICA, and 10 imperialists were used as an initial
setting. Thus, there were 50 countries that included an imperialist
at the beginning of the run. The termination condition was the
elimination of all but one imperialist. The algorithm required
approximately 6,300 iterations to reach this condition. Thus, the
number of the iterations was fixed at 6,300 for all 40 executions
of each algorithm. To provide the same conditions for the
execution of the algorithms, the number of particles and execution
iterations considered for Niching PSO were also 500 and 6,300,
respectively.

The three algorithms were executed on a PC with an Intel Core
i7–3.40 GHz processor and 8 GB of RAM under identical conditions.
The averages of the results obtained from each algorithm, as
described before, were plotted to analyze and compare the results.

The first generated service time optimization problem of CCSC is
a problem with 100 required unique services. Thus, to generate the
problem, 100 distinct services were selected randomly among the
5,825 services in the dataset. The second, third, and fourth prob-
lems were generated in a similar manner and included 200, 300,
and 400 required unique services, respectively.
Fig. 7. Comparison of the total service time obtained for problem B, (a) CSSICA vs. ICA in
PSO for 1,500 iterations, (d) CSSICA vs. ICA and Niching PSO for 6,300 iterations.
4.2. Discussion

4.2.1. Comparison of the total service time
To more accurately analyze the results of the algorithms and

obtain a better understanding of their executing process, two
obtained solutions for each of the above problems were considered
for comparison, the first one at iteration 1,500, called the first
proper solution (fps), and the other after termination of the algo-
rithms at iteration 6,300, called the final solution (fs). Using fps, it
is possible to compare the speed and performance of the
algorithms in exploration of the search space in a finite time-slot.
The fs allows the capability of the algorithms in searching the
search space over a longer period of time to be analyzed.

As mentioned in Section 4.1, four different-sized service time
optimization problems were investigated using the ICA, CSSICA,
and Niching PSO, applying WSDream-QoSDataset2 as a very large
QoS dataset. From Fig. 6a, the best-obtained fps using CSSICA has
a lower total service time than the fps obtained with the ICA. Part
a of Figs. 6–9 demonstrate that CSSICA can always reach a better fps
than the ICA. Thus, utilizing CSSICA in comparison with the ICA will
be more useful for cloud suppliers who have pursued Appropriate
Solution at the Lowest Time (APLT) policies.

Against APLT, Optimal Solution at the Appropriate Time (OSAT), in
which waiting is acceptable for only a brief window of time, with
the goal of achieving near-optimal solutions, can be adopted. To
compare the ICA and CSSICA in terms of satisfying this policy, the
fs should be considered, shown in part b of Figs. 6–9. These figures
illustrate that applying clustering in CSSICA obtains a solution that
1,500 iterations, (b) CSSICA vs. ICA in 6,300 iterations, (c) CSSICA vs. ICA and Niching



Fig. 8. Comparison of the total service time obtained for problem C, (a) CSSICA vs. ICA in 1,500 iterations, (b) CSSICA vs. ICA in 6,300 iterations, (c) CSSICA vs. ICA and Niching
PSO for 1,500 iterations, (d) CSSICA vs. ICA and Niching PSO for 6,300 iterations.
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is closer to the optimal than that obtained with the ICA for prob-
lems of all sizes.

The performance quality of CSSICA is also evident when
compared with Niching PSO, which was one of the most effec-
tive approaches that have been used previously. Parts c and d
of Figs. 6–9 illustrate this comparison. There are significant
differences between the solutions obtained with CSSICA and
Niching PSO when adopting either the APLT or OSAT. Although
Niching PSO has a comparative advantage in the early iterations
of all executions, it eventually falls into the trap of local
minima due to the large size of the search space. Accordingly,
CSSICA is superior in terms of exploring the search space in
the later iterations. The results of the first few iterations are
not shown in the figures because of the similarity of the results
of the three algorithms in those iterations.

4.2.2. Comparison of the time-consumption percentage (TCP)
Another convenient method for evaluating and comparing

the investigated algorithms is the time-consumption check
(TCC), in which one of the algorithms is chosen as the basis
of the time-consumption percentage (TCP) and the other algo-
rithms are compared with the basis. Based on the mathematical
definition in (11), the TCP can be calculated by dividing the
best-obtained total service time of one of the algorithms with
the best-obtained total service time of the basis and multiplying
by 100.

TCPð%Þ ¼ BestðAÞ
BestðbasisÞ � 100 ð11Þ
where Best(A) and Best(basis) are the best-obtained total service
time by algorithm A and the basis, respectively. A larger difference
between Best(A) and Best (basis) indicates a higher quality of A.
The TCC was used to compare the ICA, CSSICA, and Niching PSO
results for the four above-mentioned problems using Niching PSO
as the basis. Fig. 10 presents the optimality calculated in four sepa-
rate categories, each related to one of the problems. CSSICA has
achieved more optimality than the ICA and Niching PSO in all cate-
gories. Furthermore, the optimality rate of CSSICA increases with
increasing problem size. The effect of applying clustering in gener-
ating the first generation of the countries is evident when using the
ICA as the basis for TCC. Fig. 11 illustrates that applying clustering
has led to an improvement in the results for all problem sizes.
The improvements are more evident in the fs than fps. Furthermore,
the very low time reduction (0.77%) should be neglected consider-
ing the similar impact of clustering on the fps of all problems.
Regardless, the overall improvements will be significant for the sup-
plier and permanent users due to the large number of requests for
composed services.

4.2.3. Statistical performance comparison
Statistically evaluating and comparing the results that were

obtained with the previous algorithms can provide more informa-
tion regarding the algorithm functionality and performance. To
this end, different statistical tests were performed using IBM SPSS
STATISTICS version 22.

A repeated measures analysis of variance, with the Greenhouse-
Geisser correction (Abdi, 2010), was conducted to investigate the
difference in mean total service time obtained by the three algo-



Fig. 10. Time-consumption percentage of the three algorithms based on Niching PSO.

Fig. 9. Comparison of the total service time obtained for problem D, (a) CSSICA vs. ICA in 1,500 iterations, (b) CSSICA vs. ICA in 6,300 iterations, (c) CSSICA vs. ICA and Niching
PSO for 1,500 iterations, (d) CSSICA vs. ICA and Niching PSO for 6,300 iterations.
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rithms. The result of repeated measures analysis of variance indi-
cated that the mean service times of the three investigated algo-
rithms were statistically significant for all four problems (see
Table 2).
Pairwise comparisons with the Bonferroni correction (Cabin &
Mitchell, 2000; Holm, 1979; Nakagawa, 2004) also revealed that
CSSICA obtained a significantly lower mean total service time than
that of ICA and Niching PSO in all four problems. Furthermore, the



Table 2
Results of repeated measures anova.

df Mean square F Sig.

Problem A Between Groups 1.024 5300.729 23497.724 <0.001
Error 6448.384 .226

Problem B Between Groups 1.009 66410.356 24353.190 <0.001
Error 6354.242 2.727

Problem C Between Groups 1.017 186689.322 34227.041 <0.001
Error 6406.163 5.454

Problem D Between Groups 1.009 1050096.130 89367.749 <0.001
Error 6358.801 11.750

Table 3
Results of Bonferroni pairwise comparisons.

(I) Algorithm (J) Algorithm Mean difference (J - I) Std. Error Sig.

Problem A CSSICA ICA 0.175 .001 <0.001
CSSICA Niching PSO 1.214 .007 <0.001
ICA Niching PSO 1.039 .007 <0.001

Problem B CSSICA ICA 0.666 .002 <0.001
CSSICA Niching PSO 4.285 .026 <0.001
ICA Niching PSO 3.619 .025 <0.001

Problem C CSSICA ICA .652 .004 <0.001
CSSICA Niching PSO 7.026 .036 <0.001
ICA Niching PSO 6.374 .036 <0.001

Problem D CSSICA ICA 0.965 .005 <0.001
CSSICA Niching PSO 16.348 .054 <0.001
ICA Niching PSO 15.382 .052 <0.001

Fig. 11. Time-consumption percentage of CSSICA and the ICA based on the ICA.
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ICA results are also significantly better than the results for Niching
PSO (see Table 3).

5. Conclusion

Blindly initialization of first generation of solutions in evolution-
ary algorithms reduces the probability of providing a successful
evolutionary process by which appropriate solutions are guaran-
teed. The wider the search space and the more dimensions the prob-
lem more prominent. Applying evolutionary algorithms in solving
CCSC as a very large search space optimization problem is also faced
such this problem. One of the strategies that can be proposed to
solve this problem is search space classification using high-dimen-
sional classification methods. In this paper, applying the PROCLUS
algorithm for classifying cloud service providers has led to the adop-
tion of a more realistic approach in generating the first generation of
solutions of the ICA and creating the novel algorithm CSSICA. Based
on service time values of all provided single services, the classifier
has divided service providers into three categories called high-
recommended, recommended and low-recommended providers
for selecting a service of which CSSICA uses different probability
values. The probability values are also calculated based on average
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service time values of all service providers that are assigned to each
class. In ICA part of CSSICA, to avoid from hasty decision in determin-
ing the weakest empire, 15 iterations is intended as an opportunity
time for empires to try to increase their power before entering into
imperialist competition. Experimental and statistical evaluation of
the results of CSSICA, the ICA, and Niching PSO demonstrated that
clustering the cloud service pool plays an important role in reaching
more appropriate solutions for STOCCSC. CSSICA is able to reduce
composite service time by 2.27%, 1.78%, 1.62% and 1.99% compared
to ICA for solving problems with 100, 200, 300 and 400 required sin-
gle services, respectively. This is done while total service time for a
composite service is reduced by 11.83%, 14.36%, 17.68% and 23.14%
compared to Niching PSO in solving four mentioned problems. Fur-
thermore, the fact that CSSICA achieved the best results in solving
different-sized problems indicates that CSSICA is a scalable and effi-
cient algorithm for finding optimal composite services.

With respect to the applied approaches and achievements of
the paper, reaching specific goals can form the skeleton of the
future research. Aiming to classify cloud computing service provid-
ers on the basis of 2 and more QoS parameters, it is indispensable
to apply PROCLUS for each parameter separately and propose a
model for making final decision about the class to which every ser-
vice provider actually belongs. Another imperative research goal is
to propose new techniques for generating first generation of ICA
countries in such a way that whole parts of wide search space of
the problem can be covered by the algorithm. Designing novel
operators for ICA to enhance its ability in looking more efficiently
for most proper solutions in the very large search spaces of CCSC,
makes it easier to escape from traps of local optimum solutions.
Eventually, admitted to the significant growth of mobile cloud
computing and serious QoS differences among mobile devices,
future research should be steered toward this progressive field.
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