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a b s t r a c t

Controlled human experiments are adopted in this paper to investigate the impact of supply

uncertainty on buyers’ inventory management. The experiments aim at assessing the impact of one

specific source of supply chain uncertainty, namely stochastic lead times, on inventory holdings and the

extent of the bullwhip effect. Three experimental treatments are run within the framework of the beer

game manipulating variability in demand and in lead times. Results confirm that the bullwhip effect

arises in all experimental treatments and that the variance of orders is higher under stochastic lead

times. Analysis of players’ behaviour in the course of the game suggests that players react to higher

uncertainty by holding fewer inventories, a behaviour consistent with the predictions of some

psychological models of choice under ambiguity.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

An increasing degree of complexity characterises the supply
chains of many sectors (Esposito and Passaro, 2009). Among the
causes of such a trend are outsourcing, the enlargement of supplier
networks, increased dependence on supplier capabilities, shorter
product life-cycles, and international market and production expan-
sion (Wagner and Neshat, 2010). Further, as firms try to reduce
costs through the rationalisation and reduction of the supply base,
the aim to secure a stable flow of materials has become more
difficult to achieve (Harland et al., 2003). As a consequence of both
higher complexity and leaner supply chains, the instability of supply
chains and supply uncertainty have increased (Geary et al., 2006).

A paradigmatic representation of supply chain instability is the
Bullwhip Effect (BWE). The BWE is generally triggered by demand
uncertainty (Forrester, 1958), and it entails that, as external
demand passes through the SC from the downstream to the
upper levels of the chain, the variance of orders is amplified. This
behaviour can imply substantial costs in terms of stock-out as
well as inventory holding and obsolescence costs, thus worsening
the performance of the SC.

While the impact of demand variability on SC instability and
performance has been explored in several studies (Croson and
Donohue, 2006; Steckel et al., 2004; Gupta et al., 2002; Sterman,
1989), the impact deriving from supply-side sources of uncertainty
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has received less attention, in spite of the fact that some authors have
posited that a reduction in SC instability is best enabled via
implementation of the principles of smooth material flow, and by
decreasing actual or perceived shortage risk (Geary et al., 2002, 2006).

A small number of numerical simulations (Chatfield et al.,
2004; Truong et al., 2008) has investigated the effects of supply
uncertainty on the extent and consequences of SC instability by
making supply uncertainty operational through stochastic lead
times, one of the most relevant supply-side sources of uncer-
tainty. These studies have shown that, generally, stochastic lead
times contribute to worsen SC instability.

While numerical simulations can throw light on how rational
and optimising agents can react to SC uncertainty, they cannot
fully account for deviations from rationality or limited cognitive
abilities of SC managers. In this direction, experimental research
on human subjects in neighbouring disciplines to Operations
Management has shown that decision makers apply heuristics
in processing tasks characterised by uncertainty (Kahneman and
Tversky, 1974), and that they may use these heuristics as a way
‘‘to live with risk’’ (Gigerenzer, 2002). Further, decision makers
exhibit biases in processing probabilistic information, since they
distort probabilities of outcomes even when they are objectively
known (Kahneman and Tversky, 1979) and, according to the
domain of outcomes (costs vs. revenues), they might dislike/
prefer uncertainty (Ellsberg, 1961; Wakker, 2010).

Controlled human experiments have gained importance as a
methodology for the study of SC instability since Sterman’s (1989)
finding that the BWE is a problem arising as a consequence of
human decision making and stemming from the amplification of
unanticipated changes in demand, and from a biased perception
of the flows in transit through the SC pipeline.
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In the face of varying types and degrees of SC uncertainty,
managers’ risk mitigation actions depend on their individual
attitudes, on their perceptions of the likelihood of supply disrup-
tions, and on the degree of confidence they assign to available
risk information (Ellis et al., 2010). Thus, there are grounds for
positing that under supply uncertainty heuristics and biases used
in assessing probabilities of outcomes affect either the size of the
BWE, or inventory holdings and inventory policies, or both, in
ways which might be at odds with the predictions of numerical
simulations. Further, since heuristics may develop through time
in repeated tasks, it is relevant to provide insight into the way
individuals adapt their decisions as they experience a highly
variable environment. This analysis can hardly be carried out in
the field because of lack of sufficient control, thus suggesting that
human experimentation may prove a useful tool to explore the
effects of supply uncertainty on the BWE formation and SC costs
(Bendoly et al., 2006; Ancarani and Di Mauro, 2011).

To the best of our knowledge, a test of the impact of supply
uncertainty on SC performance using human subjects is still
lacking. In this paper, we apply human experiments with the
aim to study the behaviour of members of a SC in the face of lead
time uncertainty, and contrast the performance of a SC with
stochastic lead times with that of a SC with deterministic lead
times. We carry out the study within the framework of the beer
distribution game, which reproduces a serial supply chain with
four echelons (retailer, wholesaler, distributor, and factory).

Two research questions are investigated:
1.
 What is the impact of supply uncertainty on supply chain
instability, as measured by the BWE, and on supply chain
performance, as measured by SC costs?
2.
 How do SC managers react to supply uncertainty in terms of
ordering decisions and inventory holdings?

Our results show that supply uncertainty, in terms of stochas-
tic lead times, gives rise to a higher variance of orders at every
echelon of the supply chain. More intriguingly, we find that, when
the SC is characterised by both demand uncertainty and stochas-
tic lead-times, buyers hold fewer inventories, a behaviour that we
attribute to an uncertainty loving attitude.

The paper is organised as follows: Section 2 reviews the
relevant branches of the literature underpinning the hypotheses
tested through the experiment, Section 3 presents the experi-
mental design, while Section 4 develops benchmarks for beha-
viour in the experiment by means of numerical simulation.
Section 5 presents the results of the human experiment. Section
6 discusses the main findings, and highlights implications for SC
management and future research. Section 7 concludes the paper.
2. Factors investigated and hypotheses tested

2.1. The beer game and the bullwhip effect with stochastic lead

times

The BWE has been widely studied in the context of the so-
called ‘‘beer game’’. In the classic beer distribution game
(Forrester, 1958) the supply chain consists of four echelons
(retailer–wholesaler–distributor–factory). Inventory is managed
according to the periodic review inventory model (order-up-to).
During the game each i-participant, i [1,y,4], at each t-period,
t [1,..,T], places orders, Oi,t, to the immediate upstream supplier
and fills downstream customer’s order, Di,t. Typically, at each
echelon, when a buyer places an order a delay of 1 week (Lead
Time of Information—LTI) occurs before this latter is known to
the upstream supplier, Di,t¼Oi�1,t�1; a 2 weeks lead time (Lead
Time of Distribution—LTD) is requested to ship orders to the
downstream echelon and the same happens to the factory when
beer is produced (Lead Time of Production—LTP). At each echelon,
goods received at time t, Ri,t, correspond to those shipped by the
upstream supplier 2 weeks before, Siþ1,t�2. During the game
the inventory balance is such that: Ii,t¼ Ii,t�1þRi,t�Si,t, where Ii,t is
the on hand quantity (Ii,tZ0); customer orders are filled com-
pletely if Ii,t�1þRi,tZDi,t otherwise Si,toDi,t and backorders occur,
Bi,t¼Bi,t�1þDi,t–Si,t.

If the external demand distribution is non-stationary and/or
unknown, larger oscillations of orders occur moving upstream the
SC, giving rise to the BWE. When the demand distribution is both
stationary and known, then no BWE arises if a simple base-stock
inventory policy is used, whereby individuals place orders equal
to the orders they receive (Chen, 1999).

Most of the extant literature on the BWE has focused on the
effect of uncertainty in customer demand, while ignoring the
potential impact of supply-side sources of uncertainty on the
BWE. More recently, a few papers have addressed the problem of
the BWE and of SC performance relaxing the assumption of
deterministic lead times. Stochastic lead times complicate the
picture of the standard beer game, because in every period the
volume of shipments received by the buyer is probabilistic.
Further, if shipments in every period are independent draws,
order cross-over may occur.

Chatfield et al. (2004) use simulation to investigate the effects
of stochastic lead times in a k-node SC. In particular, through a
factorial design, the effect of various degrees of lead time
variability is crossed with that of four different levels of informa-
tion quality, and with the absence/presence of information shar-
ing. A normally distributed customer demand is assumed. The
first information level refers to the situation in which there is no
updating of policy parameters during the game, whereas the
other three levels involve some form of updating based on
demand and/or lead time historic information. Generally, updat-
ing of policy parameters occurs if the distributions of demand and
lead times are unknown. When demand and lead time distribu-
tions are known, the optimal order-up-to quantity can be chosen
in advance. In this instance, stochastic lead times do not generate
BWE. However, there is evidence that buyers may use historical
information also with known lead times (Chatfield et al., 2004).
Updating of policy parameters worsens the BWE, as the variance
of lead time increases. In particular, the amplification of order
variances is highest when historical information on both demand
and lead times variances are used to update inventory para-
meters, while it is lowest when lead time information is not used,
because of misperception of the variability or the belief that lead
time variation is not important. Comparable results are confirmed
by Truong et al. (2008) assuming either an AR(1) or an ARMA(1,1)
model for customer demand.

Kim et al. (2006) present a model with stochastic lead time in
which the case of information sharing (customer demand is
common knowledge for all echelons of the chain) is contrasted
with that of no sharing. Results show that the variance of orders
increases nearly linearly in echelon stage with information shar-
ing, and exponentially without information sharing. One manage-
rial implication of this result is that the sharing of information on
customer demand by all echelons is an effective way to reduce
BWE also under conditions of supply uncertainty. However,
information sharing per se does not eliminate BWE.

Heydari et al. (2009) isolate the impact of lead time uncer-
tainty from that of demand uncertainty by simulating a four-stage
SC in which customer demand is constant. Results show that
uncertainty in lead time increases the variance of orders at each
echelon but does not worsen BWE. Further, order variance is
positively correlated to the variance of inventory levels and the
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size of stock-outs. Results of this study are not directly compar-
able with those already discussed, since Heydari et al. (2009)
assume that if the supplier holds insufficient inventory to satisfy
an order, the unavailable quantity will be lost. Similarly, all
delayed orders will be lost. Further, the uppermost level of the
chain does not face stochastic lead times.

To conclude, under the assumption of fully rational agents,
most models reviewed conclude that without ex ante knowledge
of the lead time distribution or if the buyer makes use of historic
information on lead times and demand, stochastic lead times
enhance the variance of orders at each echelon. However, to the
best of our knowledge, these results have not been put to
empirical test through human experimentation. The above dis-
cussion suggests the following hypothesis:

Hypothesis 1. In the presence of both customer demand uncer-
tainty and stochastic lead time, if the buyer updates the inventory
policy parameters on the basis of demand and/or lead time
variance information, then the BWE is higher than in the case
when only demand uncertainty is considered and the lead time is
deterministic.

2.2. Supply uncertainty and inventory decisions: a behavioural

perspective

Most decisions within organisations are made in the presence
of uncertainty about their outcomes. Uncertainty can take the
form of risk, which is present when there are multiple possible
outcomes that could occur with well-defined probabilities
(Bernoulli, 1738). Uncertainty can also refer to ambiguity, i.e. a
situation in which there are multiple possible outcomes whose
probabilities are vague or unknown (Knight, 1921).

According to the normative theory of individual behaviour
under uncertainty, Subjective Expected Utility (SEU) theory
(Savage 1954), even if probabilities are not objectively well-
defined (i.e. externally given probabilities are not available),
decision makers assign their own subjective beliefs to probabil-
ities, which thus they perceive as defined and known to them.
Hence, according to SEU theory, the distinction between risk and
ambiguity is meaningless, and decision makers should not display
any specific reaction in the face of probabilistic vagueness, as
individuals are always acting ‘‘as if’’ probabilities were known.

However, behavioural analyses have shown that decision
makers behave at odds with the predictions of SEU theory and
that they exhibit biases in processing probabilistic information.
For instance, they distort probability of outcomes even if they are
objectively known (Kahneman and Tversky, 1979), and process
decisions characterised by ambiguity differently from those with
known probabilities (Ellsberg, 1961; Camerer and Weber, 1992;
Wakker, 2010). According to Ellsberg (1961) the perception of
ambiguity depends ‘‘on the type, amount, reliability and unani-
mity of information’’, and gives rise to ‘‘one’s degree of confidence
in an estimate of relative likelihoods’’ (p. 657).

A common reaction in the face of both risk and ambiguity is
‘‘pessimism’’, i.e. people tend to overestimate the less favourable
outcomes. Also, people often tend to prefer well-defined probabil-
ities to vague probabilities, and thus they exhibit greater pessimism
under ambiguity. The difference in pessimism between ambiguity
and risk reflects an individual attitude called ambiguity aversion
(Abdellaoui et al., 2010). Whereas risk aversion is measured by the
willingness of the decision maker to accept a sure sum lower than
the expected value of a bet, ambiguity aversion is reflected by the
willingness to assign a greater value to a bet whose probability
distribution is considered to be more reliable. As an illustration of
the difference between risk and ambiguity aversion, a risk averse
decision maker strictly prefers getting 50 euro for sure rather than
betting 100 euro on a fair coin landing head, whereas an ambiguity
averse decision maker prefers to bet on a fair coin landing head
rather than on a thumbtack landing head.

The attitude toward ambiguity may be of relevance in several
decision domains. For instance, entering new markets or making
venture investments may be modelled as a decision problem
under ambiguity, insofar the probability of success associated
with these decisions is not objectively known. While entrepre-
neurs are typically characterised as agents with low risk aversion
(and thus showing a preference for a less likely but larger return
over a highly likely but smaller one, when these options offer the
same expected value), they may still be ambiguity averse. This
means that given the same expected value, they strictly prefer the
investment option in which the likelihood of possible returns is
known (Rigotti et al., 2011).

Evidence on the practical implications of distinguishing between
risk and ambiguity attitudes can be found in the field of product
selection. Muthukrishnan et al. (2009) show that ambiguity aversion
leads consumers to systematically prefer established brands even
when these products are dominated on all attributes, and that risk
aversion does not play any role in explaining the choice of brand. In
the same vein, Hazen et al. (2012) show that there is a direct
relationship between the level of tolerance for ambiguity and the
customer willingness to pay for remanufactured products. Thus, in
order to get higher prices in the marketplace, producers of remanu-
factured products should not focus on risk reduction measures (for
instance through the provision of a warranty on defective products)
but should rather work to reduce the level of ambiguity associated
with their processes.

To conclude, risk and ambiguity attitudes are different cogni-
tive phenomena which are not necessarily correlated (Wakker,
2010), and thus require distinct analytical formalization
(Schmeidler, 1989; Tversky and Wakker, 1995).

Although individuals are generally averse to ambiguity, there
is evidence that, according to the decision context, individuals
may be ambiguity seeking rather than ambiguity averse
(Abdellaoui et al., 2010), i.e. they might exhibit ‘‘optimism’’ in
the face of vagueness in probability. In particular, psychological
models (Einhorn and Hogarth, 1985, 1986; Hogarth and Einhorn,
1990) posit that, when ambiguity concerns the occurrence of a
loss, ambiguity seeking behaviour prevails when the expected
probability of that loss is high, while ambiguity aversion should
be observed when the expected likelihood is low. Conversely,
when ambiguity concerns the probability of a gain, ambiguity
aversion prevails at high expected probabilities, while ambiguity
seeking prevails at low expected probabilities.

In experimental research, ambiguity seeking behaviour has
been reported more frequently when the decision is framed as a
loss (Cohen et al., 1985; Viscusi and Chesson, 1999; Di Mauro and
Maffioletti, 2004). For instance, in the insurance industry (where
insurance purchasers are called to incur a lower sure cost in order
to reduce higher potential costs in the future), consumers
have shown a lower willingness to pay to cover against losses
if probabilities are perceived as ambiguous (Hogarth and
Kunreuther, 1985, 1989). Therefore, understanding the character
of attitudes toward ambiguity is important to better understand
and predict what precautionary self-protecting measures indivi-
duals and organisations will adopt in response to uncertainty.

Focusing on inventory management, where decisions are often
characterised by risk and ambiguity, analytical models have
investigated the impact of the decision maker’s risk aversion
(Jammernegg and Kischka, 2009), while the role of ambiguity
attitude has not been taken into consideration yet.

In the beer game, ambiguity arises if the likelihoods of one or
more relevant variables (demand, shipment, stock-out) are not
well-defined. Elaborating on Ellsberg (1961), the ambiguity
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perceived in the beer game increases as buyers’ degree of
confidence in an estimate of relatively likelihood of demand
and/or shipment diminishes. The increase in ambiguity stems
either from the fact that the probability distributions of these
variables are unknown, or from the fact that the decision maker
cannot calculate well-defined probabilities because of computa-
tional limitations. These limitations, for instance, may be at the
root of the finding that decision makers consider situations
characterised by known but compound probabilities more ambig-
uous than situations in which simple probabilities are involved
(Halevy, 2007). Following this line of reasoning, consider for
instance the case of two beer game models having the same
demand distribution but differing in the fact that in the first lead
times are constant while in the second lead times are stochastic.
Assume further that the probability distribution of lead times in
the second model is known and has a mean value equal to the
constant lead time of the first model. We expect that the decision
maker considers the latter model more ambiguous than the
former. The first reason is that even if the probability distribution
of lead times is known, the amount received at each period is
difficult to calculate, especially for the downstream echelons of
the SC. This effect is exacerbated if the realisation of lead times of
each echelon is an independent draw, and order cross-over is
possible. Next, the risk of a stock-out becomes ambiguous
because it is cognitively cumbersome to compute, especially if
buyer and supplier do not share inventory information and
several inter-related layers of buyer–supplier relationships are
involved.

Likewise, assume we compare two beer game models sharing
the same stochastic distribution of lead times, but differing
because one has constant external demand and the other exhibits
stochastic external demand. We expect the latter to be perceived
as more ambiguous than the former, especially for the uppermost
echelons which have to form subjective beliefs about the dis-
tribution of the demand of the downstream echelon.

When confronting ambiguity, an ambiguity averse buyer will
protect against the risk of running out of stock by holding more
inventory with respect to a situation with no ambiguity or
relatively less ambiguity. Intuitively, the ambiguity averse deci-
sion maker’s beliefs are pessimistic, i.e. more weight is put on a
late delivery of stock or an unexpected increase in demand.
Conversely, an ambiguity seeking buyer has optimistic beliefs
and overweighs the probability of an early delivery, thus holding
fewer inventories.

Inventory holding is a risk mitigation strategy, thus akin to
buying insurance coverage: increasing inventories entails a lower
but sure cost now vis-a-vis a potential benefit from avoiding the
higher cost of a stock-out. Therefore, we may conjecture that,
under ambiguity, the same behaviour observed in insurance
settings applies to inventory management. Specifically, ambiguity
preference is likely to prevail, i.e. when comparing inventory
holdings in two environments characterised by different degrees
of ambiguity, inventories will be lower in the more ambiguous
environment. Although counter-intuitive, this behaviour is con-
sistent with psychological models (Einhorn and Hogarth, 1985)
and with the experimental evidence on behaviour in insurance
settings discussed above (Hogarth and Kunreuther, 1985, 1989).
Thus, we formulate the following hypothesis:

Hypothesis 2. Decision makers in the beer game will hold fewer
inventories in settings characterised by more ambiguity.

3. Experimental design

In order to explore how human players react to supply and to
demand uncertainty, three experimental treatments were run
using human participants. The treatments were obtained by
manipulating stochastic vs. known lead times and constant vs.
variable demand. All three treatments can be assumed to mimic a
non-integrated supply chain in which each buyer has a single
supplier; no information sharing about actual demand, inven-
tories, backlogs, and own lead time, is allowed among SC
participants.

The first treatment (SBG hereafter) reproduced a beer game
with four echelons (i¼1,y,4), i.i.d. normally distributed external
demand with parameters known to all echelons (m¼100, s¼20),
known and constant lead times equal to one period for informa-
tion lead times (LTI¼1) and to two periods for distribution lead
times (LTD¼2). This design differs from Sterman’s experiments,
in which the retail demand is completely unknown and non-
stationary and is represented by a simple step-function whereby
demand starts at 4 units and jumps to 8 units after the eighth
game period. However, subsequent studies by Croson and
Donohue (2006) have shown that even with stationary and
known demand distributions, the BWE arises. Thus, we expect
the BWE to arise also in our setting.

In the second treatment (SLT henceforth) players face both
demand and supply uncertainty, since demand is normally dis-
tributed as in the first treatment, and the LTD of all suppliers in
the chain (including the factory’s brewery) is uniformly distrib-
uted in the interval (1, 2, 3) periods. Thus, although the mean lead
time is the same in both SBG and SLT, in the latter treatment both
delays and anticipated deliveries with respect to the mean lead
time are possible. In the SLT treatment, because of stochastic lead
times, the possibility of order cross-over arises. The LTI remains
constant and equal to 1, as in the first treatment.

A third treatment (CD_SLT) was implemented with the aim to
isolate the impact of lead time uncertainty from that of demand
uncertainty. In CD_SLT external demand was constant and equal
to 100 pieces per period, while transportation lead times were
stochastic and equally distributed in the interval 1–3 periods, like
in SLT.

Comparison among the alternative treatments is meaningful
insofar differences in players’ behaviour and performance can
clearly be attributed to a specific factor. Thus, the comparison
between SBG and SLT (change in lead times variability given the
same distribution of demand) allows isolating the impact of lead
time uncertainty in a context where demand uncertainty exists,
while the comparison between SLT and CD_SLT (change in
demand variability given the same distribution of lead times)
allows isolating the impact of demand variability in a context
characterised by supply uncertainty. A direct comparison
between SBG and CD_SLT is not granted by the experimental
design, since the uncertainty created by demand variability in
SBG is not equivalent to that determined by supply uncertainty in
CD_SLT.

In all treatments, an order placed with the supplier can be
partially fulfilled with a continuous distribution, depending on
the supplier’s inventory availability. Each role incurs unit inven-
tory holding costs of h0.50 and unit backlogging costs of h1.00 per
period (Sterman, 1989).

The information set available to each player includes the
histories of incoming demands, of past shipments and of past
purchases. From this information, outstanding orders and the
history of lead times can be worked out.

Behaviour was observed for a number of periods (T), from a
minimum of 36 up to 50. Players were not informed of the final
period of the game to avoid end-of-game behaviour that might
trigger over- or under-ordering.

Each echelon began with an initial inventory level
Ii(t¼1)¼300 which allowed to deplete inventories by satisfying
mean demand within the mean lead time, outstanding orders
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Oi(t¼0, �1)¼100 for the previous two periods, and an incoming
shipment Si(t¼2, 3)¼100 in the following two periods. All
experiments also used the same random number seed to generate
demand, i.e., Dit, t¼1, y, T was identical across groups. This
allowed us to isolate variations due to ordering behaviour from
variations due to different demand streams.

The beer game is a complex game with many feedbacks and
loops. Many experiments use first time players and therefore, it
could be conjectured that the BWE observed is a mere conse-
quence of lack of adequate training. To keep account of this, we
build on Wu and Katok (2006) who find that both hand-on
training and communication must be provided to beer game
players in order to obtain improvements of SC performance. To
this end, each player participated in two different repetitions of
the same beer game treatment, the second taking place about one
month after the first. In our view, the long lag between the two
repetitions should allow for a more effective internalisation and
exchange of knowledge, which can be considered an essential
component of learning, especially in complex tasks (Holsapple
and Singh, 2001). Although participants were not told that they
would be asked to play the same game a second time, we expect
that after the first session they engaged in reflection and thinking
over their actions in the game, as well as in exchange of views
with other participants. This was confirmed by verbal commu-
nication we had with the participants.

In the second repetition, each player kept the same role he/she
had been assigned in the first game but was assigned to a
different chain, in order to avoid that members of a chain during
the first session agreed on a specific strategy for the next. This
would have obviously changed the SC from a non-integrated
chain to a coordinated one. Results of the first repetition were
considered as a form of hand-on training and are not reported in
this paper.

Participants in all treatments were graduate students who had
attended at least one course in Operations Management. This was
done in order to enhance the chances that the experimental
subjects may be considered ‘‘tomorrow’s inventory professionals’’
(Croson and Donohue, 2006). A total of 124 students participated
in the second repetitions of experiments that are reported in this
paper. Median age was 24 years old, participants were equally
split between males and females. Participants were randomly
assigned to one of the treatments upon signing up. Once seated,
they were oriented to the rules and objectives of the game by
means of a tutorial lasting about 30 min. During the game,
communication was strictly forbidden.

Table 1 summarises the distribution of players across the
different cells of the experiment.

The incentive used in the game was both monetary and in
terms of coursework grades. Participants were instructed that the
members of the supply chain team with the lowest total costs
(inventoryþbacklog costs) shared a final prize of h77. In addition,
the members of the winning chain received an extra course grade
(out of a total of 30 grades).
Table 1
Participants in the different treatments.

Constant external
demand

Stochastic external
demand

Constant lead time – SBG

11 chains

Stochastic lead time CD_SLT SLT

10 chains 10 chains
The version of the beer game here adopted was developed in a
Googledocss software application which enables an Excels
spreadsheet to be shared by different SC players.
4. A numerical simulation of the beer game scenarios

Before we analyse the data to examine the effects of our
manipulations, we coupled the human experiments (SBG, SLT and
CD_SLT) with a simulation model in order to compute perfor-
mance benchmarks corresponding to our treatments. Given the
complexity of feedbacks and interactions in the beer game, we
thought of little use to compare human behaviour with a
theoretical benchmark consisting of a fully optimising, perfect-
foresight agent. Rather, we envisaged a bounded rational buyer
(Simon, 1957) who uses all the information provided during the
game but has limited computational ability. We further assume
that such a player minimises total costs of inventory related
management (inventory holding costs plus backlog costs) and
that she does not exhibit any cognitive bias in her perception of
probabilities of the events and in her valuation of the pay-offs of
the game, thus this player can be defined as risk and ambiguity
neutral. In this sense, this buyer can provide plausible benchmark
values for the standard deviations of orders and ensuing inven-
tory holding and backlog costs, which can be compared with
those obtained by humans who may display cognitive biases,
including ambiguity aversion/preference.

With reference to the modelling of material flow, in all
simulated scenarios, orders are filled from stock in a FIFO manner,
with backordering used when stock-outs occur. Partial replenish-
ments are permitted when there is not enough stock to fill an
order completely. With stochastic lead times, the simulation
model accommodates order crossover.

With reference to the information flow, supply chain nodes
possess only local information and are ‘‘blind’’ to what is going on
outside their level. Each node’s supply chain knowledge-base is
derived from the incoming demand flow from the downstream
partner (Di,t) and the outgoing flow of orders being placed with
the upstream partner (Oi,t). We assume that each inventory
manager (i) takes an ordering decision observing three variables:
end of period inventories (Ii,t), downstream demand (Di,t), and
upstream replenishment (Ri,t).

Consistently with the human experiment, virtual players in the
simulation are endowed with a starting inventory equal to three
times the expected period demand of the external customer.
Thus, starting inventory is higher than the equilibrium one, and
inventory management must be performed by using an unsteady
state model requiring a continuous control of the current inven-
tory, and aimed at reaching a target inventory availability level.
This latter differs from a policy based on mean demand, and it is
based on the period by period comparison between upstream
replenishment (Rit) and downstream demand (Dit). This policy
allows managing the transition from the starting inventory to the
target availability. At the end of each period, each buyer places
replenishment order Oi,t to raise or lower the inventory position
to a target safety stock (SSi,t) level. This target safety stock is
meant to guarantee that Ri,tZDi,t for a proportion of periods
corresponding to the expected level of service (LS).

As a consequence of this approach, the buyer considers
Ri,t�Di,t as a random variable whose average value and standard
deviation are as follows: ERi,t�Di,t�0; sRi,t�Di,t

2
¼sDi,t

2
þsRi,t

2 .
Independency of Ri,t and Di,t is assumed, either because of the

stochastic replenishment lead time and the allowed order cross-
over, or because the virtual buyer lacks the cognitive ability to
estimate the covariance matrix.
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Fig. 1. Virtual player’s standard deviations of orders (100 replications).
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Fig. 2. Virtual player’s total inventory costs (100 replications) (For interpretation of the references to colour in this figure, the reader is referred to the web version of this

article.).
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The inventory policy is an order-up-to level with review
period, r, equal to 1, and target availability, TAi, calculated as
TAi,t¼ERi,t�Di,tþSSi,t, where SSi,t¼K(LS)sRi,t�Di,t, and K(LS) denotes
the generic factor which corresponds to the expected level of
service. Further:
–
 Ai,t¼ Ii,tþ
Pt�1

k ¼ 1 Oi,k�
Pt�1

k ¼ 1 Ri,k is availability at the end of
period t, before the replenishment order Oi,t is placed; where
Ii,t¼ Ii,t�1þRi,t�Si,t is on-hand inventory which takes positive
values;

Pt�1
k ¼ 1 Oi,k is the sum of placed orders until the decision

making period;
Pt�1

k ¼ 1 Ri,kis the sum of received replenish-
ments from upstream level at the end of t period; Sit is the
quantity shipped at each period:

Si,t ¼Di,tþBi,t�1 if Ii,t�1þRi,t�Di,t�Bi,t�1Z0,

otherwise Si,t ¼ Ii,t�1þRi,t

Bi,t ¼ Bi,t�1þDi,t�Si,t is the backlog quantity at time t;

Oi,t ¼maxð0,TAi2Ai,tÞ:

To estimate ERi,t�Di,t and sRi,t�Di,t
2 at each node, we assume that

the virtual player uses all the historical information available
(Chatfield et al., 2004). Finally, we assume that the decision maker
optimises by choosing the level of service that minimises cumu-
lated total costs. Such a level of service has been determined by
means of a Monte Carlo simulation process by treatment (SBG,
SLT, CD_SLT).

Fig. 1 report the effects of alternative levels of services (ranging
from to 0.5 to 0.90) on the standard deviation of orders in each
echelon (R¼retailer, W¼wholesaler, D¼distributor, F¼factory). We
adopt the simplifying assumption that all echelons of the chains
choose the same LS. Median standard deviation of orders resulting
from 100 replications of 36 periods each are shown. Standard
deviations per echelon decrease in the LS, but for the retailer.

Keeping the expected LS constant, standard deviations per
echelon are only slightly higher in SLT. Since lead times in SLT are
symmetrically distributed with mean equal to the distribution
lead time in SBG, the standard deviations of orders by role end up
being fairly similar in the two treatments. With constant demand
and variable lead time (CD_SLT) standard deviations are lower
than in the other two treatments for the three lower echelons of
the chain, while they are of comparable magnitude to SBG for the
Factory.

Fig. 2 displays the total costs in the three treatments, by LS and
role. The curves corresponding to the cost minimising level of
service are marked in red, and costs corresponding to this service
level will be compared to experimental costs later in the paper.

In SBG costs are minimised for LS¼0.67, implying that it is
optimal to weight equally backlog and inventory holding costs
over periods (following the assumption that unit backlog costs are
double than unit inventory holding costs). With stochastic lead
times (SLT and CD_SLT), cost minimisation requires an expected
LS equal to 0.9, due to the player’s imperfect ability to account for
the complexity of the system created by stochastic lead times for
all upstream echelons. In all treatments costs increase in echelon
level, except in the case of LS¼0.5 for SLT and CD_SLT. In fact,
such a low LS brings about high backlog costs that are suffered
especially by the downstream echelons of the chains. The mini-
mised overall costs over a time horizon of 36 periods are fairly
close in the three treatments for the Factory (3483 in SLT, 3410 in
CD_SLT, and 3247 in SBG), due to the fact that the supplier of the
Factory has always enough inventory availability to fulfil orders.

Fig. 3 reports the virtual player’s cumulated orders by period
and by role. For each treatment, the curves refer to the cost
minimising levels of service. In all echelons the cumulated orders
made by the virtual player in SBG are always lower than the
corresponding cumulated orders in SLT, and the differences tend
to increase moving upstream the SC. In CD_SLT the cumulated
orders are always slightly lower than SLT. Thus, the numerical
simulations imply that the cost minimising player should order
more in the presence of stochastic lead times.
5. Results of human experiments

5.1. Evidence of bullwhip effect

We measure the bullwhip effect by the increase in the
standard deviation of order quantities at each node (Chatfield
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Fig. 3. Virtual player’s cumulated orders by period and role (100 replications).

Table 2
Mean and median (in italics) standard deviation, by role and treatment.

SBG SLT CD_SLT

R 19.8 41.1 34.3

18.5 42.2 23.9

W 40.3 53.4 51.9

36.2 39.0 47.0

D 47.7 90.6 59.5

44.3 81.0 53.8

F 62.2 108.0 68.5

62.1 76.8 51.8

Table 3
Wilcoxon test on amplification of standard deviations, and treatment.

W vs. R D vs. W F vs. D Overall

SBG �2.395 �1.478 �2.497 �2.803

0.017 0.139 0.013 0.005

SLT �1.600 �2.490 �0.978 �2.578

0.110 0.013 0.328 0.01

CD_SLT �0.764 �0.663 �0.866 �1.886

0.445 0.508 0.386 0.059
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et al., 2004). Table 2 summarises the results, by reporting mean
and median standard deviation by role, in each cell of the
experiment.

The BWE is clearly visible in all experimental treatments,
including the one with constant demand (CD_SLT), in spite of
the fact that players had acquired experience of the game in the
warm-up session. In SBG mean and median standard deviations
increase monotonically in echelon, with the ratio of the standard
deviation of the factory to that of the retailer roughly equal to 3.
With stochastic lead times the rate of increase of median values
from one echelon to the next is smaller, with the median standard
deviation of the factory being about twice that of the retailer (1.82
in SLT, 2.17 in CD_SLT). Table 3 reports the results of a Wilcoxon
non parametric test of the statistical significance of variability
amplification between contiguous echelons of the chains (R vs. W,
W vs. D, and D vs. F) and the overall effect (R vs. F). The test shows
that a significant overall effect of variance amplification is at play
in SBG and SLT, although—as in other experiments, the difference
between contiguous echelons is not always statistically signifi-
cant (Croson and Donohue, 2006; Wu and Katok, 2006).

Comparison of standard deviations across treatments shows
that the standard deviations of orders in SLT are statistically
larger than in SBG for the retailer (po0.018) and the distributor
(po0.031). Standard deviations in CD_SLT are larger than in SBG
although the difference is not statistically significant. In summary,
standard deviations in CD_SLT tend to be in between those in SBG
and SLT.

These results are in line with the extant literature and with
Hypothesis 1. Standard deviations are highest when variable
demand is coupled with stochastic lead times, since players in
this case find it more difficult to engage in the mental effort
needed to compute outstanding orders and this gives rise to more
chaotic behaviour. This conjecture is reinforced by the compar-
ison of experimental standard deviations (Table 2) with those
obtained from the numerical simulation (Fig. 1) which shows that
with stochastic lead times human behaviour largely diverges from
that of the virtual player, while the difference between predicted
and observed standard deviations is smaller in SBG.

5.2. Orders, inventory holdings and SC performance

Several papers that study the supply chain through the beer
game confine their analysis to the measurement of variance
amplification of orders at each echelon, on the assumption that
variance is directly correlated with SC costs. In actual facts, costs
are also dependent on the dynamics of ordering behaviour
throughout the game. For this reason, it is worthwhile to explore
the pattern of orders through time in the different experimental
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treatments, and to compare ensuing inventory holding costs and
backlog costs, in order to gain insight into how players manage
inventory in the presence of different types of uncertainty
(demand vs. supply).

Fig. 4 shows median cumulated orders up to period t in each of
the three treatments and for each echelon. The figure allows
assessing the impact of uncertainty, either in demand or in
supply, on orders. To isolate the impact of demand variability,
given stochastic lead times, we compare orders in CD_SLT with
those in SLT. This comparison shows that orders are markedly
higher in CD_SLT for all echelons except for the retailer, who
observes the external demand and thus faces the lowest degree of
demand uncertainty inside the chain. Since the only difference
between the two treatments is demand variability, this result
implies that uncertainty in demand leads to lower orders.

In order to identify the impact of stochastic lead times, we
compare human behaviour in SLT and SBG. In SBG, orders are
clearly higher than in SLT in most periods of the game. Total
orders in SLT exceed those in SBG only in the very last leg of the
game (after period 30) for the two uppermost layers of the chain.
This change in behaviour can be attributed to the fact that, as
backlogs build up, players react by ordering higher volumes. In
fact, a plot of median backlog costs (across chains) by role in
every period of the game (Fig. 5), shows that backlogs costs are
steadily close to zero for all echelons of the chain in SBG, while
they rise significantly in the second part of the game in SLT. The
rise in backlogs is what induces players in SLT to increase orders
in the last leg of the game.

Finally, Fig. 6 shows median inventory holding costs, back-
logging costs, and total costs (backlog plus inventory holding) by
role. Experimental values are shown by solid lines, whereas the
two dashed lines represent minimised backlogging and inventory
holding costs for a virtual player as obtained from the simulated
models, and corresponding to the cost minimising service level of
0.67 in SBG and of 0.9 in SLT and CD_SLT. Higher total costs in SLT
than in SBG are due to higher backlog costs in SLT. Total costs in
SLT are also higher than in CD_SLT, but for the wholesaler.

Consistently with what already shown by the pattern of orders in
Fig. 4, inventory holding costs in the three treatments suggest that an
increase in uncertainty leads players to hold fewer inventories. In
particular, when SLT and CD_SLT are compared, inventory holding
costs are higher with constant demand, but for the Factory. Similarly,
comparison between SLT and SBG shows that the addition of lead
time uncertainty to a supply chain with variable demand leads the
median player to hold fewer inventories. A Mann–Whitney non-
parametric test comparing inventory holding costs in the various
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Table 4a
Dynamic panel—Retailer.

SBG_ SLT_

Coef. Std. err. P4z Coef. Std. err. P4z

O(T�1) 0.102 0.061 0.097 0.166 0.061 0.007

O(T�2) �0.059 0.054 0.281 �0.002 0.057 0.969

O(T�3) �0.001 0.045 0.980 �0.008 0.055 0.889

I(T) �0.195 0.024 0.000 �0.114 0.021 0.000

BKL(T) �0.009 0.067 0.893 0.097 0.027 0.000

D(T) 0.182 0.042 0.000 0.262 0.091 0.004

T2 �15.946 2.973 0.000 4.735 5.844 0.418

T3 �26.619 3.765 0.000 8.063 7.651 0.292

Constant 114.787 14.377 0.000 62.682 13.88 0.000

Wald w2(8) 308.69 136.98

Prob.4w2 0.0000 0.0000

Table 4b
Dynamic panel—Wholesaler.

SBG_ SLT_

Coef. Std. err. P4z Coef. Std. err. P4z

O(T�1) 0.045 0.060 0.448 0.125 0.056 0.025

O(T�2) �0.021 0.051 0.682 0.039 0.049 0.423

O(T�3) �0.162 0.043 0.000 �0.003 0.046 0.936

I(T) �0.287 0.033 0.000 �0.141 0.024 0.000

BKL(T) 0.392 0.118 0.001 0.092 0.016 0.000

D(T) 0.137 0.136 0.314 0.292 0.057 0.000

T2 �11.907 5.733 0.038 4.442 5.632 0.430

T3 �18.342 6.156 0.003 �5.601 7.609 0.462

Constant 133.559 18.811 0.000 59.527 10.721 0.000

Wald w2(8) 218.80 264.93

Prob.4w2 0.0000 0.0000

Table 4c
Dynamic panel—Distributor.

SBG_ SLT_

Coef. Std. err. P4z Coef. Std. err. P4z

O(T�1) 0.191 0.063 0.002 �0.112 0.056 0.046

O(T�2) �0.199 0.052 0.000 0.001 0.053 0.995

O(T�3) �0.093 0.041 0.023 �0.239 0.050 0.000

I(T) �0.178 0.028 0.000 �0.083 0.054 0.127

BKL(T) 0.332 0.099 0.001 0.235 0.031 0.000

D(T) 0.2975 0.056 0.000 0.594 0.128 0.000

T2 �3.520 5.591 0.529 �11.503 14.796 0.437

T3 �24.552 7.079 0.001 23.501 18.095 0.194

Constant 124.530 19.919 0.000 62.885 23.473 0.007

Wald w2(8) 425.11 177.03

Prob.4w2 0.0000 0.0000

A. Ancarani et al. / Int. J. Production Economics 142 (2013) 61–73 69
treatments shows that inventory holding costs are statistically lower
in SLT than in SBG for the retailer and the distributor (R¼�4.691,
po0.00; D¼�3.798, po0.00). Differences between inventory hold-
ing costs in SLT and CD_SLT are never statistically significant.

5.3. Panel regression

In order to deepen our understanding of inventory manage-
ment in the presence of stochastic lead times and to search for
sound support for the result that players react to increases in
ambiguity by holding fewer inventory, we built and estimated a
dynamic panel model to track the determinants of orders in two
of the experimental manipulations, namely SBG and SLT, which
are directly comparable. Panel analysis allows capturing the
richness of the longitudinal dimension of the data set (within
player variations), while permitting to keep the heterogeneity
among participants into account (between players variations).
A different equation was estimated for each role of the chain.

In each equation, the dependent variable is current orders at
time t, Ot, and the explanatory variables are current demand (Dt),
current inventory (It), backlog pending at time t (Bt), past orders at
times t�1, t�2, and t�3 (Ot�1, Ot�2, Ot�3), and two dummy
variables, the first referring to periods 13–24 of the game (T2),
and the second to orders taking place in the final leg of the game,
i.e. periods 25–36 (T3).

We expect the coefficient of demand to be positive. In
particular, if individuals place orders equal to the orders they
receive, then the coefficient of the demand variable should equal
1 (Croson and Donohue, 2006). Inventory on hand and backlogs
are introduced in the equation as two separate variables, although
clearly non-zero inventory implies zero backlog and vice versa.
The lagged dependent variables, Ot�1, Ot�2, and Ot�3, allow
estimating the effect of orders still outstanding. Pending orders
was not explicit information in both treatments, and players had
to work it out for themselves using available data. Although
outstanding orders do also depend on the backlogs of upstream
suppliers, it is likely that players looked at past orders in order to
estimate goods in transit. In SBG, Ot�1 and Ot�2 represent goods
still in transit and thus the sign of their effect on current orders
should be negative. If players underestimate the amounts in
transit in the pipeline, as posited by Sterman (1989), we expect
these coefficients to be not significantly different from zero. Thus,
players may place orders in one period, but may not keep them
into account when placing future orders. In SBG, Ot�3 corresponds
to the amount received at the beginning of the period and thus
should lead to lower orders, whereas it may represent goods still
in transit in SLT.

Finally, the dummy variables T2 and T3 capture any time
trends present in the game and allow gathering further suppor-
tive evidence for the patterns observed in Fig. 4, i.e. a rise in
orders in the end leg of the game.



Table 4d
Dynamic panel—Factory.

SBG_ SLT_

Coef. Std. err. P4z Coef. Std. err. P4z

O(T�1) �0.048 0.059 0.418 �0.020 0.054 0.709

O(T�2) �0.400 0.055 0.000 �0.063 0.046 0.166

O(T�3) 0.097 0.037 0.009 �0.002 0.043 0.958

I(T) �0.259 0.044 0.000 �0.242 0.031 0.000

BKL(T) 0.432 0.068 0.000 0.249 0.033 0.000

D(T) 0.47 0.071 0.000 0.337 0.062 0.000

T2 �14.840 6.634 0.025 �9.980 14.298 0.485

T3 �32.895 8.035 0.000 �10.037 18.142 0.580

Constant 131.279 20.719 0.000 117.484 16.829 0.000

Wald w2(8) 541.34 390.19

Prob.4w2 0.0000 0.0000
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Estimation was achieved using the Arellano and Bond (1991)
Generalised Method of Moments estimator for dynamic panels.
Results are presented in Tables 4a–4d.

Estimates concerning retailers and wholesalers show that in
SBG past orders are never statistically significant, confirming that,
consistently with Sterman’s findings, retailers underestimate
goods in transit in the supply line. This is true, although to a
lesser extent in SLT, in which orders lagged one period affect
current purchases, consistent with a ‘‘recency’’ effect (Bostian
et al., 2008). Inventory and demand are significant determinants
of orders, but the coefficient of demand is well below 1, and
slightly higher in the SLT game. Also, the time trend dummies are
both negative and statistically significant in SBG but not in SLT,
pointing to the fact that in SBG orders decrease in time. Finally,
the constant term, which should indicate the optimal order-up-to
level (Croson and Donohue, 2006), is higher in SBG than in SLT.

For distributors and factories in the majority of cases past
orders have a significant impact on current orders (except for the
factory in SLT). The sensitivity of orders to current demand also
appears to be larger than that of downstream echelons. Again,
there is evidence that the optimal order-up-to level is larger
under deterministic than under stochastic lead times and that
orders decrease in the last leg of the game in SBG.

Summing up, our analysis suggests that the following simila-
rities exist between the two treatments: first, in both treatments
there is some degree of underestimation of the supply line, which
may be at the root of the observed BWE. This effect is on average
less present in SLT, where, because of the variability in lead times,
players tend to pay more attention to orders still outstanding.
Second, in none of the equations we find evidence of individuals
placing orders corresponding to current demand. Rather, it seems
that they have an optimal order-up to level of inventory, which in
the case of SBG is roughly equal to average demand plus one
standard deviation, while it is sensibly smaller in the case of SLT
(around 60 pieces, except for the factory). This latter result is in
line with the descriptive analysis of orders and inventory holding
costs discussed earlier in this section, thus confirming that
players in SLT do not use inventory as a mitigation strategy
for risk.
6. Discussion

The results of our study throw light on the way SC profes-
sionals may act in the face of supply uncertainty. Supply uncer-
tainty (either due to stochastic lead times, or to uncertain supplier
yield or to unexpected disruptions) is considered to be a challenge
that many firms must address (Tomlin, 2009). Although inventory
management is not the only response to supply uncertainty, it is
still one of the most important risk mitigation strategies to
counterbalance the possibility that a partial order is delivered or
a delayed shipment occurs. While formal models provide gui-
dance as to the normative response to such uncertainty, human
experiments can provide evidence of whether those formal
models are good predictors of observed behaviour, and whether
learning eventually occurs.

In this direction, this study has brought together two strands
of research, namely the investigation of the impact of supply
uncertainty on inventory management and BWE, and the beha-
vioural approach to operations management issues. In particular,
the study has used human experimentation to identify whether
behavioural biases exist in ordering and inventory decisions in a
four echelons serial supply chain characterised by demand and/or
supply uncertainty, and has tried to isolate the impact of human
behaviour by comparing experimental results with the predic-
tions of a simulated model. Here following, we discuss experi-
mental results in detail, with the aim to provide explanations for
their divergence from model predictions (if any), and to highlight
the potential implications for theory and management.

6.1. Result 1—The Bullwhip Effect increases under supply

uncertainty.

The numerical model predicts that the BWE should be only
slightly higher when players face both supply and demand
uncertainty (SLT) with respect to the case of demand uncertainty
but reliable supply times (SBG), and that order variability should
be lowest under supply uncertainty but constant demand
(CD_SLT). The findings of the human experiments run contrary
to this prediction. In fact, experimental order variability is
significantly higher in SLT than in SBG. Also, stochastic lead times
even with constant demand (CD_SLT) give rise to higher varia-
bility than in the SBG treatment.

According to the BWE literature (Chatfield et al., 2004), no
order oscillations should arise when the distributions of demand
and lead times are known, unless updating of policy parameters
occurs on the basis of historic information. Thus, the fact that
order amplification in SLT is higher than in SBG confirms
Hypothesis 1 and also lends support to the fact that humans
disregard the fact that they know the distribution of demand and
lead times, and rely on past information in order to manage
inventories.

Comparison between human behaviour and numerical simula-
tion further shows that experimental order variability is higher
than the predictions of the risk-neutral and ambiguity neutral
model. In particular, while the difference between experimental
and simulated standard deviations in SBG is fairly small, it
becomes larger in CD_SLT and especially in SLT. Hence, while
the model is a good predictor of order variability under low levels
of uncertainty, when uncertainty increases, managers find it more
difficult to identify the best inventory holding strategy, and end
up behaving in a more chaotic fashion.

Since higher order variability is matched by higher overall
inventory costs, the excess cost buyers suffer in SLT with respect
to SBG provides a rough estimate of the expenditure firms would
be willing to undertake in order to ensure the reliability of
suppliers and the respect of shipment agreements. Likewise, the
excess overall cost in SLT with respect to CD_SLT should indicate
the willingness to spend to protect against demand oscillations.

6.2. Result 2—Human players in the beer game react to greater

uncertainty by reducing orders

In a non-integrated SC, inventory buffers can potentially reduce
the risk that the customer faces a stock-out as a consequence of
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supply uncertainty. However, firms face every day several causes of
uncertainty in supply that often co-exist with demand volatility,
leading to complex scenarios to manage and to higher costs of
inventory management (Schmitt et al., 2010).

The combined analysis of the numerical simulation and of human
behaviour gives insight into whether and how inventory manage-
ment deviates from behaviour predicted by models, and into how
supply chain members react to higher degrees of uncertainty.

First, the comparison between purchases predicted by the
numerical model (Fig. 3) and actual experimental orders (Fig. 4)
within each treatment shows that the human player buys more
stock than the virtual player. Since the virtual player was
assumed to be risk neutral, this entails that human players
behave as risk averse, a feature that can be reconciled with the
psychological and economic literature (Rabin and Thaler, 2001).

Second, in order to measure the impact on human behaviour of
increases in the degree of uncertainty by separating at the same
time the effect of the source of uncertainty, we performed a
pairwise analysis of the three treatments. In particular, the
comparison between human behaviour in SLT and in SBG allows
isolating the impact of supply uncertainty, whereas the difference
between SLT and CD_SLT can measure the impact of demand
uncertainty. The numerical model suggests that when demand
uncertainty and supply uncertainty co-exist (SLT), cost minimisa-
tion calls for higher orders than in the case in which only demand
is stochastic (SBG). Also, orders are expected to be higher in SLT
with respect to deterministic demand and stochastic lead times
(CD_SLT). Our experimental results show that an increase in
supply uncertainty (from SBG to SLT) reduces orders. Likewise,
orders decrease when demand uncertainty increases (from
CD_SLT to SLT). Median orders in the human experiment are
lowest in SLT and this contrasts with the predictions of the
numerical model, in which orders should be highest in SLT and
lowest in SBG. As a consequence of human behaviour, backlog
costs in SLT are higher than in the other two treatments not only
because of the more pronounced BWE, but also due to the smaller
inventory buffer built by players. Intuition may suggest that in
SLT lower inventory holding costs are due to more frequent
backlogs and not vice versa: once nervousness starts seeping in
the system and the BWE gets ‘‘cascading’’ effects going, it
becomes difficult to replenish inventories. However, this argu-
ment only partially explains such behaviour. In fact, not only
cumulated purchases by role and by period show that in SLT
players order less than in SBG and CD_SLT for most periods,
indicating a deliberate choice to hold fewer inventories, but this
finding is also reinforced by regression analysis, which shows that
the order-up-to level is smaller in SLT for all echelons.

Taken together, these results confirm Hypothesis 2, and
suggest that there is a general bias in players’ decisions: indivi-
duals react to higher uncertainty by protecting relatively less,
whatever the source of the increase in uncertainty.

From a behavioural perspective our results can be reconciled with
an ambiguity loving attitude. Under either demand or supply
uncertainty, a buyer perceives inventory as an effective way to
protect against the risk of a stock-out, whereas in SLT her ability to
protect becomes vaguer because of the combined effects of down-
stream and upstream uncertainty. The decision problem becomes
ambiguous, and ambiguity makes it difficult for players to identify
reliable defensive strategies. In this setting, inventory holding costs
are perceived as certain costs with ambiguous benefits, and this ends
up reducing the perceived marginal benefit of investing in inventory
to protect against supply failures. As a consequence, ambiguity
induces players to ‘‘bet’’ on the possibility that a late delivery of
goods will not occur and to hold fewer inventories.

To recap, the net effect of human behaviour with respect to
model predictions is to hold higher safety stock with respect to
the benchmark, and to decrease stock in the face of higher
uncertainty.

Third, comparison of experimental costs with simulated costs
shows that while with deterministic lead times actual backlog
costs follow expected backlogs closely, the size of the divergence
is larger when lead times are stochastic, and especially when
stochastic lead times are coupled with stochastic external
demand. This is a direct consequence of the higher variability of
orders and inventories across periods in SLT, i.e. the BWE. Further,
in SLT the difference between experimental and predicted total
inventory costs increases in echelon. The implication of such
result is that the costs of the inability to handle demand and
supply uncertainty are mostly suffered by the two uppermost
echelons of the chain. Although the factory and the distributor are
subject to less supply uncertainty than the downstream layers,
they end up bearing the most of it. This is due to the model
assumption that the stochastic lead time happens at all four
echelons, so that for the factory it becomes relevant to keep into
account not only the deliveries of the internal supplier but also of
the downstream buyers. In fact, for the factory, the stochastic lead
time in the downstream echelons of the chain translates in an
increase in the variability of demand from the retailer upward.

Our results have relevant implications for SC management. If we
take the SBG and CD_SLT to represent routine SC management
problems and the SLT to stand for a non-routine or more turbulent
situation, our results imply that purchasing managers neglect their
chance to control for high turbulence, and that this effect is stronger
for the uppermost layers of the supply chain. Since the end result of
this behaviour is cost escalation, information sharing may be bene-
ficial in these settings especially for the upper echelons, which appear
to bear the greater share of cost increases.

Further, our results point out the importance of planning inven-
tory holdings timely in order to avoid stock-outs. In fact, both the
simulation and the human experiment show that when a stock-out
occurs under variable demand and stochastic lead times (SLT), this is
bound to persist for longer than in the other scenarios, because in a
non-coordinated SC the variability of orders tends to increase and the
system becomes chaotic. Thus, loss of control by managers represents
a further implication of the ambiguity seeking attitude and optimistic
bias it entails. This may suggest that managers should be trained to
discount their expectations of success by removing the optimistic bias
that leads to risk taking.

Although we did not test this finding rigorously, since the
variability in demand and the variability in supply are not strictly
equivalent, the comparison between CD_SLT and in SBG can
potentially provide interesting insight into how players react to
different types of uncertainty. The prediction of the numerical
model that orders are higher with stochastic lead times (CD_SLT)
than with stochastic demand (SBG) is confirmed by the experi-
mental results. This may entail that decision makers perceive the
need for higher protective investment against the risk of stock-
outs under supply uncertainty than under demand uncertainty.
However, as already discussed above, orders in SLT are fewer than
in SBG. One possible interpretation of these findings is that when
the degree of uncertainty is perceived to be manageable (being
confined to either demand or supply uncertainty), the decision
maker reacts by adopting standard defensive strategies (inven-
tory holdings), but when uncertainty becomes ‘‘deep’’, decision
makers prefer to run the risk of higher backlog costs, rather than
protecting by incurring higher inventory holding costs.
7. Conclusions

Supply uncertainty is a major issue for inventory management
in serial supply chains and lead-time uncertainty is one of the
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most prominent and common of its components. A potentially
fruitful approach to this issue is to bring together the results and
methodologies of two separate streams of literature. The first
comprises behavioural studies that have long demonstrated that
cognitive biases are pervasive in choice under uncertainty and
have identified systematic deviations such as aversion or pre-
ference for ambiguity. The second comprises numerical simula-
tion studies of the expected impact of supply uncertainty (and
lead time uncertainty in particular).

This paper has attempted to apply this approach and has
investigated the impact of uncertainty in lead times on the
formation of the BWE, inventory holding and SC performance
through a controlled human experiment, whose results have been
compared with those of a numerical model simulating a risk
neutral, ambiguity neutral player.

The paper positions itself among the contributions that aim at
studying the relevance that SC vulnerability plays in SC manage-
ment: in the experiment, lead time uncertainty in the presence of
a single supplier can be considered a proxy of the vulnerability of
the SC to stock-outs.

Although the experiment has not been carried out with
professional managers, the fact that participants were graduate
students with background in Operations Management makes it
reasonable to assume that these results may be descriptive of the
behaviour of actual purchasing managers.

The following limitations of the present study should be
underlined: uncertainty in supply has been made operational
through a specific distribution of lead-time, thus it is possible that
different levels of uncertainty or different distributions give rise
to different behaviour. In this vein, an interesting extension of the
research may consider introducing stochastic lead times at only
one echelon rather than at all four layers.

Next, the possibility to link inventory holding to the individual
ambiguity attitude has been restricted by the choice to manip-
ulate the presence/absence of stochastic lead times on a between
subject basis. However, the indubitable gain of the between
subject manipulation is that the observed differences between
players’ behaviour across treatments are free from potential
framing effects created by the comparative setting.

As part of our future research agenda we plan to address these
shortcomings and to gain sound support for the effect of various
facets of supply risk on SC performance.
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