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Abstract

Most on-line shopping search engines are still largely
depend on knowledge base and use key word matching as
their search strategy to find the most likely product that con-
sumers want to buy. This is inefficient in a way that the de-
scription of products can vary a lot from the seller’s side to
the buyer’s side.

In this paper, we present a smart search engine for on-
line shopping. Basically it uses images as its input, and tries
to understand the information about products from these im-
ages. We first use a neural network to classify the input im-
age as one of the product categories. Then use another neu-
ral network to model the similarity score between pair im-
ages, which will be used for selecting the closest product in
our e-item database. We use Jaccard similarity to calculate
the similarity score for training data. We collect product
information data (including image, class label etc.) from
Amazon to learn these models. Specifically, our dataset
contains information about 3.5 million products with image,
and there are 20 categories in total. Our method achieves
a classification accuracy of 0.5. Finally we are able to rec-
ommend products with similarity higher than 0.5, and offer
fast and accurate on-line shopping support.

1. Introduction

The on-line retail ecosystem is fast evolving and on-line
shopping is unavoidable growing around the world. A dig-
ital analytics firm eMarketer shows that on-line retail sales
will continue double and account for more than 12% of
global sales by 2019. As reported in the result of the Nielsen
Global Connected Commerce Survey (2015)1, 63% of re-
spondents who shopped or purchased the travel products or

1The Nielsen Global Connected Commerce Survey was conducted be-
tween August and October 2015 and polled more than 13,000 consumers in
26 countries throughout Asia-Pacific, Europe, Latin America, the Middle
East, Africa and North America.

services category, for example, in the past six months say
they looked up the product on-line.

However, the explosive growth in the amount of avail-
able digital information has created the challenge of infor-
mation overload for on-line shoppers, which inhibits timely
access to items of interest on the Internet. This has in-
creased the demand for recommendation systems. Though
almost every e-commerce company nowadays has its own
recommendation system that can be used to provide all sorts
of suggestions, they are mostly text-based and usually rely
on knowledge base and use key word matching system.
This requires on-line shoppers to provide descriptions of
products, which can vary a lot from the sellers’ side to the
buyers’ side.

With the rapid development of neural network these
recent years, we can now change the traditional search
paradigms from text description to visual discovery. A
snapshot of a product tells a detailed story of its appear-
ance, usage, brand and so on. While a few pioneering works
about image-based search have been applied, the applica-
tion of image matching using artificial intelligence in the
on-line shopping field remains largely unexplored. Based
on this idea, here we build a smart recommendation system,
which takes images of objects instead of description text as
its input.

The input to our algorithm is an image of any object that
the customer wants to buy. We then use a Convolutional
Neural Network(CNN) model to classify the category that
this object probably belongs to, and use the input vector of
the last fully connected layer as a feature vector to feed in a
similarity calculation CNN model to find the closest prod-
ucts in our database. More concretely, the two functionali-
ties that we want to achieve in the recommendation system
are:

1. Classification: given a photo of the product taken by
the customer, find the category that this product most
likely belong to. We have 20 categories in our data
set in total. The details of these categories are shown
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in the Datasets and Features section. For example, a
image of iPhone(s) will be classified as “Cell Phones
& Accessories”.

2. Recommendation: given the features of the photo and
the category that this product belongs to, calculate sim-
ilarity scores and find the most similar products in our
database. Ideally, people looking for iPhones should
be recommended iPhones.

2. Related Work
Paper [6] presented an idea of combining image recom-

mendation and image recommendation decades ago. In this
project, we use Amazon product dataset, which is used to
build typical recommender system using collaborative fil-
tering in [4] and [8]. In the field of image recommendation,
[5] tends to recommend images using Tuned perceptual
retrieval(PR), complementary nearest neighbor consensus
(CNNC), Gaussian mixture models (GMM), Markov chain
(MCL), and Texture agnostic retrieval (TAR) etc. CNNC,
GMM, TAR, and PR are easy to train, but CNNC and GMM
are hard to test while PR, GMM, and TAR are hard to gen-
eralize. Also, since data consists of images, the neural net-
work should be a worth trying method.

Paper [7] presented AlexNet model that can classify im-
ages into 1000 different categories. In adddition, paper [9]
presented VGG neural network that classify images in Im-
ageNet Challenge 2014. In our first part of project, we use
both models to classify the categories of the products. How-
ever, both papers did not present a method for image recom-
mendation.

Although there are papers that studies image similarity
such as [12] and [11], most of them are based on category
similarity, i.e. products are regarded as similar if they are in
the same category. However, products that come from the
same category can still vary a lot. Thus, one reliable strat-
egy is to first classify target image into a certain category
and then recommend images from this classified category.

In paper [13], they considered using neural network to
calculate the similarities within category. However, the pa-
per only consider ConvNet, DeepRanking etc. Since we
have larger dataset, deeper convolutional neural network
such as AlexNet and VGG should outperform naive Con-
vNets. The idea could be also found in [3] and [10].

Paper [1] is also focusing on learning similarity using
CNN. However, it considers more on the case that multi-
product contained in a single image. In our project, we
assume that users are looking for a product and so image
would only contains one product.

Before we recommend, we need to answer What is the
measurement of similarity. The most nature answer is ei-
ther cosine similarity or L2 norm similarity. Another way
to measure the similarity is by introducing semantic infor-

mation. The paper [2] indicates that visual similarity and se-
mantic similarity are correlated. Thus, we introduce a new
model to calculate similarities between images based on se-
mantic information. Paper [15] and [14] share the same idea
as we do here.

3. Approach
There are two major problems that we want to solve in

our project. First, determine the category that a given image
belongs to; second, find and recommend the most similar
products according to the given image. Since our project
is mainly based on convolutional neural network, we would
first introduce common used convolutional neural network
layers.

3.1. CNN Layers

The most important step of CNN is Convolutional(Conv)
layer. As we can see from Figure 1 that conv layer would
translate small rectangle of input layer into a number of out-
put layer using matrix multiplication.

Figure 1. conv layer

Pooling layers are similar to convolutional layers except
that it would use non-parameter method to transform small
rectangle into a number. Max pooling are commonly used
in CNN, which would output the maximum number in the
rectangle of input layer.

Figure 2. pooling layer

3.2. Classification

In this step, we would like to classify an input image
into one of the 20 categories. We construct AlexNet and
VGG model for the classification task and compare them
with SVM model as a baseline model.

• Support Vector Machine: a linear classification
model, used as a baseline model here. This model
is basically a fully connected layer. We use Multi-
class Support Vector Machine (SVM) loss plus a L2
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norm term as the loss function. For an image i, we
use the RGB pixels as input features xi ∈ Rd, where
d = 224 × 224. We calculate the class scores for
n = 20 classes through a linear transformation

s = Wxi + b (1)

where W ∈ Rn×d is the weight matrix and b ∈ Rn is
the bias term. The SVM loss is given by

LSVM (W, b;xi) =
∑
j 6=yi

max(0, sj − syi
+ 1) (2)

where yi is the label for the true class.

• AlexNet: a deep convolutional neural network classi-
fication model proposed by [7]. As we can see, (Figure
3) AlexNet model first contains 2 convolutional layers
with max pooling and batch normalization; then there
are 3 convolutional layers with separated feature; one
max pooling before three fully connected layers.

Figure 3. AlexNet model

The original model was trained to classify images in
the ImageNet LSVRC-2010 content, where there were
1000 categories. Since our problem only contains 20
categories, we change the last fully connected layer to
4096×20. To save time, we use the pre-trained weights
of the first 5 neurons and train the last three fully con-
nected layers.

• VGG: a deep convolutional neural network classifica-
tion model proposed by [9]. As showed below (Figure
4), VGG contains 13 convolutional layers with max
pooling every 2 or 3 convolutional layers; then 3 fully
connected layers and softmax as the final layer.

The original model was trained to classify images
in the ImageNet ILSVRC-2014 content, where there
were 1000 categories. We change the last fully con-
nected layer to 4096 × 20. We also utilize the pre-
trained weights as initialization of parameters and to
train the last three fully connected layers. We also add
batch normalization layers after the activation func-
tions in the first two fully connected layers.

3.3. Recommendation

For the recommendation step, we use the last fully con-
nected layer in our classification model as feature vectors

Figure 4. VGG model

of images. For any images in the dataset, there will be one
corresponding feature vector. And this feature vector will
be the input for our recommendation model. The work flow
of this step is shown in the following bullets.

• Feature extraction: the classification model is used to
identify which category the target image belongs to.
Then we extract the input from last fully connected
layer of classification model as features.

• Input of the model: the feature vector of the target im-
age extracted in the above.

• Similarity calculation: using different measures to cal-
culate similarity scores between feature vector of tar-
get image and feature vectors of all images in the target
category to measure similarity between image pairs.
We have tried L2 distance, cosine distance and neural
network models to compute the similarity scores. For
two different images i and j, the L2 distance score is
defined as

sL2
= ‖vi − vj‖2 (3)

where vi, vj ∈ Rl are the two corresponding feature
vectors, and l = 4096 is the length of feature vectors.
The smaller the score sL2 is, the more similar the two
images are.

The cosine distance score is defined as

scosine =
v>i vj
‖vi‖‖vj‖

(4)

The larger the score scosine is, the more similar the two
images are.
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The data-driven approach to calculate the similarity
score is to train the following 3-layer neural network:

h1 =f(v ·W1 + b1)

h2 =f(h1 ·W2 + b2)

smodel =sigmoid(h2 ·W3 + b3)

(5)

where v = [v1, v2] ∈ Rl×2 is obtained by concatenat-
ing two feature vectors. f(x) = max(0.01x, x) is the
leaky ReLU function. The first layer can be treated as
a 1-d convolution layer with Leaky ReLU as the acti-
vation function and W1 ∈ R2 and b1 ∈ R as parame-
ters. The second layer is a fully-connected layer with
Leaky ReLU as the activation function and W2 ∈ Rl

and b2 ∈ R as parameters. The output layer is a linear
transformation with the sigmoid function as activation
function. The larger the score smodel is, the more sim-
ilar the two images are. There is no easy way to define
similarity score purely based on the image pixels. For-
tunately, the input images has a corresponding title de-
scribing the product. To characterize how similar two
images are, we use the Jaccard similarity of two sets
of tokens in the titles of two images as the similarity of
two images. The Jaccard similarity of two set A and B
is defined as

sJaccard =
|A ∩B|
|A ∪B|

(6)

which is a number between 0 and 1. This is also the
reason that we use the sigmoid function as the activa-
tion function for the last layer. We train this model by
minimizing the L2 loss ‖smodel − sJaccard‖22.

• Output: top k images (products) that are most similar
to the target image.

4. Dataset and Features
For building the recommendation system, we use Ama-

zon product image data, spanning May 1996 July 2014,
which includes 9.4 million products. Excluding the ones
that lack images, we collected a dataset of 3.5 million prod-
ucts, with 20 categories in total. Figure 5 shows the dis-
tribution plot of all the labels of the dataset. The detailed
information of each image contains:

• asin - ID of the product, e.g. 0000031852

• title - name of the product

• price - price in US dollars (at time of crawl)

• imUrl - url of the product image

• related - related products (also bought, also viewed,
bought together, buy after viewing)

• salesRank - sales rank information

• brand - brand name

• categories - list of categories the product belongs to

Figure 5. Label distribution of the dataset.

Considering the imbalance across different classes and
due to the limitation of the machine memory, we randomly
sample 500 images in each class and collect 10000 images
for the classification task. Then we split the dataset into
7:2:1 for training, validation and testing respectively. Each
image in the dataset has 300×300 pixels. We use raw pixels
of images as the input for our classification neural network
model. Examples of the data are shown in Figure 6. For the
convenience of tuning hyper-parameters, we resize images
into 224× 224× 3 using “scipy.misc” for VGG, and resize
into 227× 227 for AlexNet.

Figure 6. Examples of the data. These are three products from
category “Computers & Accessories”.

5. Experiment
5.1. Data preprocessing

The raw images need pre-processing before being used
as inputs of the classification models. An original image
is first resized into the standard input size of either VGG
model (224× 224) or AlexNet model (227× 227). Then it
is demeaned in each channel (Figure 7).

For the recommendation model, the ground truth similar-
ity is defined using the Jaccard similarity (6) of sets of to-
kens in the title of two images. (title information is attached
to each image in the dataset.) However, we care more about
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Figure 7. Preprocessing of the input image. The left is the original
input image (960× 1280 pixels). The middle is the resized image
(224× 224 pixels). The right is the demeaned image.

the pair of images that are similar. If we use all the data, the
majority of the pairs will have similarity scores close to 0.
Therefore, instead of using all the pairs, we only consider
pairs within the same category. Moreover, we particularly
want to find image pairs that have relatively large Jaccard
similarity. We find those pairs with similarity scores above
0.5 and there are around 800 such pairs. We also sample
1000 pairs with similarity scores equal to 0. We use these
pairs as training examples.

5.2. Evaluation

We split the dataset into 7 : 2 : 1 for training, validation
and test respectively. To evaluate the models, we run our
models on the test dataset and compare the output with the
ground truth.

For classification problem, we evaluate the model by cal-
culating classification accuracy:

Accuracy =
#correctly classified images
#images in validation dataset

. (7)

For the recommendation task, we evaluate the model us-
ing the root mean square error (RSME).

RSME =

√√√√ 1

N

N∑
i=1

(smodel − sJaccard)2 (8)

5.3. Classification

For the classification task, we have trained two Convo-
lutional Neural Networks (VGG16 and AlexNet) to classify
the categories of products images versus our baseline model
– linear classification model (SVM model).

Table 1 shows our best accuracy on training data, valida-
tion data and test data for these three models respectively.
For SVM model, we use learning rate 0.0005, regulariza-
tion coefficients 0.001. For AlexNet, we use mini-batch
size 128, regularization coefficient 0.01, learning rate 0.001
and dropout 0.62. For VGG model, we use mini-batch size

2A dropout coefficient of 0.6 in our model means at each layer, 0.4

100, regularization coefficient 0.01, learning rate 0.0007
and dropout 0.5. We can see from the result that our mod-
els suffer from the over-fitting problem. The training ac-
curacy of both AlexNet model and VGG model are almost
1.5 times of the accuracy for their validation set and test set.
That is why we need relatively higher regularization coef-
ficients(0.01). But as we increases the regularization coef-
ficient, the test accuracy does not go up any more. For the
same reason, the dropout fractions we choose for these two
models are also relatively large (0.6 and 0.5 respectively).
However, we still suffer from the over-fitting to some ex-
tent.

Model training validation test
accuracy accuracy accuracy

SVM (baseline) 0.2616 0.1807 0.2679
AlexNet 0.6484 0.4064 0.3946

VGG 0.8769 0.5110 0.5010

Table 1. Model accuracy results of AlexNet and VGG compared
with baseline

5.4. Recommendation

For the recommendation task, we trained a neural net-
work model described in section 3.2. We evaluate the model
using RMSE. Table 2 shows our best errors on training data,
validation data and test data. The model is trained with reg-
ularization coefficient 0.02, learning rate 0.001 and dropout
0.9. To avoid over-fitting, we have a add the regulariza-
tion term and choose a relatively large coefficient. Here the
dropout fraction is relatively small (0.1) because the number
of images within one category is limited, unlike the situa-
tion in classification task where we have image data in all
20 categories.

training validation test
error error error

0.1318 0.1448 0.1524

Table 2. RMSE of the neural network model for recommendation

There is no baseline similarity scores for two metrics L2

distance and cosine distance. We cannot provide a RMSE
for these two metrics.

Not many e-commercial platforms have the feature of
searching items by images. By now, we find that the Ama-
zon mobile App has such feature. Thus we compared our
recommendation results with theirs. Figure 8 shows two
examples of outputs using our recommendation system and
the Amazon App. We use the VGG model to predict the

fraction of the neurons’ values are set to 0. We denote 0.4 in this example
as dropout fraction. This applies to all the other dropout coefficient in our
report.
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category and extract features. Our recommendation is based
on the cosine similarity score, since we find out it outper-
forms the L2 similarity. The left column shows the input
images that the user took. The middle column shows the
top four similar products that our system recommends. The
right column shows the top four similar products that the
Amazon App recommends.

Figure 8. Examples of our recommendation system results, com-
pared with Amazon mobile App search results.

As we can see from the example results, one of the input
images is a mug. Our model recommends similar mugs or
a mug-shape-like pot; while the Amazon App recommends
either mugs or bottles. Results like this example give sim-
ilar recommendations between our model and Amazon’s.
The other input image is a laptop. Our model suggests we
might be searching for a Mac laptop (shown in the first two
images); while the Amazon App mostly recommends key-
boards/keyboard protectors. Results like this example im-
ply that our model may understand the content of images
better.

6. Conclusion

In this project we build a smart shopping recommender
for image search. We tried out different neural network
models for image classification and different ways to quan-
tify the similarity between two images. We are able to
achieve a classification accuracy of 0.5 and recommend
products with similarity score higher than 0.5. There is
over-fitting issue in our model, which can be one of the
things to do in future work.

As shown in the Dataset and Features section, though
we have a huge data set, due to the limitation on time and
machine memory, we only used 10,000 out of 3.5 million
images. In the next step, we can try to train our model on
a larger amount of data using batches. This can potentially
increase the accuracy of the model.

Currently we only use 20 categories when doing classi-
fication. However, products within category varies a lot,
which explains our low accuracy in classification. We
would try to find a more specific category information and
train our model on it.

Besides, We would also like to try deeper neural net-
works such as ResNet.

7. Appendices
7.1. UI

We build a user interactive App for our recommendation
system. On this UI, we can upload images or take pho-
tos and get the recommendation from our models. Figure 9
shows the interface of the UI given a watch image example.

Figure 9. Examples of our recommendation system results, com-
pared with Amazon mobile App search results.
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