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Abstract—Ship detection on spaceborne images has attracted
great interest in the applications of maritime security and traffic
control. Optical images stand out from other remote sensing im-
ages in object detection due to their higher resolution and more
visualized contents. However, most of the popular techniques for
ship detection from optical spaceborne images have two short-
comings: 1) Compared with infrared and synthetic aperture radar
images, their results are affected by weather conditions, like clouds
and ocean waves, and 2) the higher resolution results in larger data
volume, which makes processing more difficult. Most of the previ-
ous works mainly focus on solving the first problem by improving
segmentation or classification with complicated algorithms. These
methods face difficulty in efficiently balancing performance and
complexity. In this paper, we propose a ship detection approach
to solving the aforementioned two issues using wavelet coeffi-
cients extracted from JPEG2000 compressed domain combined
with deep neural network (DNN) and extreme learning machine
(ELM). Compressed domain is adopted for fast ship candidate
extraction, DNN is exploited for high-level feature representation
and classification, and ELM is used for efficient feature pooling
and decision making. Extensive experiments demonstrate that, in
comparison with the existing relevant state-of-the-art approaches,
the proposed method requires less detection time and achieves
higher detection accuracy.

Index Terms—Compressed domain, deep neural network
(DNN), extreme learning machine (ELM), JPEG2000, optical
spaceborne image, remote sensing, ship detection.

I. INTRODUCTION

SHIP detection in spaceborne remote sensing images is of
vital importance for maritime security and other applica-

tions, e.g., traffic surveillance, protection against illegal fish-
eries, oil discharge control, and sea pollution monitoring [1].
Vessel monitoring from satellite images provides a wide visual
field and covers large sea area and thus achieves a continuous
monitoring of vessels’ locations and movements [2]. It is also
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known that optical spaceborne images have higher resolution
and more visualized contents than other remote sensing images,
which is more suitable for ship detection or recognition in the
aforementioned applications.

However, optical spaceborne images usually suffer from two
main issues: 1) weather conditions like clouds, mists, and ocean
waves result in more pseudotargets for ship detection, and
2) optical spaceborne images with higher resolution naturally
lead to larger data quantity than other remote sensing images,
and thus, optical spaceborne images are more difficult to be
tackled for real-time applications.

Previous works have established some basic ship detection
frameworks. Lure and Rau [3] and Weiss et al. [4] proposed
hybrid detection systems based on ship tracks in Advanced
Very High Radiometer (AVHR) imagery. The works in [5]–[7]
presented several approaches in ship detection and recogni-
tion from airborne infrared images with sky–sea backgrounds.
Burgess [8] introduced vessels detecting algorithm in Satel-
lite Pour l’Observation de la Terre (SPOT) Multispectral and
Landsat Thematic Mapper images. Also, Wu et al. [9] analyzed
the characteristics of different satellite remote sensing images.
These works cannot solve the first issue well even though they
have low complexity.

On the other hand, some other methods achieve better ship
detection performance with the price of high computational
complexity. Corbane et al. used a neural network to classify
small ship candidates from SPOT-5 High Resolution Geometric
5-m images [10] and presented a complete processing chain
for ship detection [2]. Morphological filtering is combined with
wavelet analysis and radon transform to better distinguish ships
from surrounding turbulence. Bi et al. [11] presented a statis-
tical salient-region-based algorithm, and multiresource regions
of interest are extracted to improve the ship–sea segmentation.
Zhu et al. [1] adopted an ensemble learning algorithm, in which
multiple high-dimensional local features (679 dimension) are
extracted from potential targets using a support vector machine
(SVM). Each of these techniques improves a specific procedure
in either preprocessing or classification and achieves better
performance than classical methods. However, the aforemen-
tioned second issue has not been fully addressed. In real-time
applications with limited resources, e.g., satellite-based object
detection/recognition, the performance and computational com-
plexity should be equally taken into account.

Unlike the previous works which usually focus on one of the
two issues, our approach aims to solve both issues. As for the
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first one, deep neural network (DNN) is applied to obtain high-
level features and overcome the limitations of existing ship
detection methods. According to the recent works in [12]–[18],
deep architecture has multiple levels of feature representation,
and the higher levels represent more abstract information. From
a concept point of view, DNN trains multiple hidden layers
with unsupervised initialization, and after such initialization,
the entire network will be fine-tuned by a supervised back-
propagation algorithm [12], [14]. Practically, DNN can be
implemented with autoencoder, which reconstructs the input
by using the corresponding output of the network [12]. In
addition, learning sparse representations from original image
pixels leads to better classification performance than using
raw pixels or nonsparse representations obtained by principal
component analysis. Moreover, by exploiting the sparsity of
wavelet features, feature detectors localized in both time and
frequency domains can be obtained [19], [20].

As for the second issue, compressed domain is adopted
to improve detection efficiency and utilize sparse features
from both space and frequency domains. Instead of reducing
processing time by passively cutting an image into tiles or
scaling to a low-resolution version, extracting wavelet features
from JPEG 2000 codec can impressively increase the detection
efficiency. In addition, discrete wavelet transform (DWT) has
its unique advantages: multiresolution analysis and singularity
detection. The human visual system detects objects over two
fundamental properties: 1) observation is performed simultane-
ously in space and frequency and 2) images are perceived in
a multiscale manner so that different elements can be focused
with different scales [21]. After 2-D DWT, the original image is
decomposed into a low-frequency subband (denoted as LL) and
several horizontal/vertical/diagonal high-frequency subbands
(denoted as LH, HL, and HH). Different subbands describe
different sparse features of input images. In our work, wavelet
domain sparsity is further exploited for DNN-based feature
extraction.

Until recently, few works have been done on object detection
in JPEG 2000 compressed domain. Xiong and Huang [22]
extracted wavelet-based texture features from compressed do-
main. Delac et al. [23] analyzed image compression effects
in face recognition systems and proposed a face recognition
method in JPEG 2000 compressed domain with independent
component analysis and principal component analysis [24].
Ni [25] developed the concept of information tree and proposed
a novel tree-distance measurement for JPEG 2000 compressed-
domain image retrieval. Teynor et al. [26] presented a nonuni-
form image retrieval method using color/texture features and
modeling wavelet coefficient distribution with Gaussian mix-
ture densities. Zargari et al. [27] exploited packet header infor-
mation for JPEG 2000 image retrieval, including the number of
nonzero bit planes, the number of coding passes, and the code
block length.

However, the aforementioned approaches face difficulty in
handling ship detection under various conditions, and partic-
ularly high-frequency subbands are not effectively utilized. In
the proposed work, low-frequency subband and high-frequency
subbands are exploited for feature extraction using two DNNs.
The singularities of LL are extracted to train the first DNN;

as LH, HL, and HH describe the image details in different
orientations (horizontal, vertical, and diagonal), these subbands
are combined before training the second DNN. Then, the out-
puts of the two DNNs are pooled for final decision making
by extreme learning machine (ELM) [28], [29]. ELM is a
novel and efficient training algorithm for the single-hidden-
layer neural network. Compared with traditional neural network
or SVM methods, ELM can be trained hundred times faster
since its input weights and hidden node biases are randomly
generated and the output weights are analytically computed.

The contributions of the proposed work are threefold: 1) a
new compressed-domain framework is developed for fast ship
detection; 2) DNN is employed for hierarchical ship feature
extraction in wavelet domain; compared with existing feature
descriptors, the proposed learning-based features are more ro-
bust under variant conditions; and 3) a new training model, the
ELM, is adopted for feature fusion and classification, and thus,
faster and better ship detection is achieved.

Using these novel techniques, the proposed framework is
more suitable for ship detection than the aforementioned ap-
proaches with the following advantages.

1) Faster detection. Compressed domain achieves much
faster detection than pixel domain.

2) More reliable results. High-level feature representations
are extracted by hierarchical deep architecture to ensure
more accurate classification.

3) Better utilization of information. Two DNNs are trained
with multisubbands coefficients to make full use of the
wavelet information.

The remainder of this paper is organized as follows.
Section II overviews the proposed framework; Section III
describes the preprocessing method for coarse ship locating;
Section IV explains the ship feature representation in detail,
including the selection of the inputs of autoencoders, fine
tuning, and ELM-based decision making for deep networks;
Section V demonstrates the simulation results comparing the
proposed method and other relevant state-of-the-art ship detec-
tion methods; and Section VI concludes this paper.

II. PROPOSED METHOD

The typical JPEG 2000 compression is shown in Fig. 1.
To clearly illustrate the proposed approach, it is necessary to
define compressed domain in advance. According to the work
in [23], the compressed domain is anywhere in the compression
or decompression procedure, after transform or before inverse
transform. Therefore, object detection can be conducted in
compressed domain from points 1 to 6 in Fig. 1.

Unlike the other points, entropy coding (points 3 and 4 in
Fig. 1) will obviously change the spatial distribution of the
object features and destroy the structure information. Hence,
points 1, 2 and 5, 6 are more suitable for ship detection.
Furthermore, as points 5, 6 are symmetry to points 1, 2 in codec
implementation, only points 1, 2 are discussed hereinafter.

At the encoder side, DWT is first performed (point 1 in
Fig. 1). Then, the resulting coefficients are mapped to different
bit planes by quantization (point 2 in Fig. 1). The bit-plane
encoding will not obviously change the properties of wavelet
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Fig. 1. JPEG2000 image compression.

Fig. 2. Proposed ship detection framework.

features [30], and thus, the detection accuracy will not be
severely affected. Based on this analysis, point 1 is viewed as
the ideal place for ship detection.

The block diagram of the proposed framework is depicted in
Fig. 2. It can be decomposed into two main steps: image pre-
processing (for coarse ship locating), and feature representation
and classification (for ship object detecting).

In the preprocessing, CDF 9/7 wavelet coefficients are ex-
tracted from JPEG 2000 codec. The wavelet coefficients in
different subbands tend to reflect different properties of the
original image [31]. Generally speaking, the low frequency con-
tains most of the global information, while the high frequency
represents local or detail information. In the proposed model,
the low-frequency subband LL is exploited for the extraction of
the regions of ship candidates.

On the other hand, the low-frequency coefficients and high-
frequency coefficients (HFCs) are individually processed for
feature extraction by two DNNs, which are to be discussed
in Section IV. Moreover, to fully exploit the information of
the original image in wavelet domain, the resulting features
from low and high subbands are further fused by ELM, for
more accurate feature classification (i.e., higher ship detection
accuracy). The detailed implementations are listed as follows.

1) Wavelet singularities of LL are detected to train a stacked
denoising autoencoder (SDA) 1. Note that SDA is one

of the implementation strategies of DNN and will be
introduced in Section IV-A.

2) The combination of the wavelet coefficients in high-
frequency subbands (i.e., LH, HL, and HH) are used to
train an SDA2.

3) The weight matrices of the trained SDAs are consid-
ered as feature extractors for low- and high-frequency
subbands, respectively. The obtained features are then
combined to train an online sequential ELM (OS-ELM)
[28], [29], [32], [33].

It should be mentioned that the third step can be regarded
as decision pooling of SDA1 and SDA2, or training a high-
performance classifier of ship features. Since we are to make
our algorithm more robust to various environmental conditions,
online training is adopted to further improve the network’s per-
formance. The experiments in [29], [34], and [35] showed that
ELM is fast and more accurate in large class training and the
generalization performance of ELM turns out to be very stable.

III. COARSE SHIP LOCATING

As shown in Fig. 2, fast ship locating (i.e., ship candidate
extraction) is performed in LL subband, which includes image
enhancement, sea–land segmentation, and ship locating based
on shape criteria.
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Fig. 3. Coarse ship segmentation: (a) Input image, (b) top-hat-transformed
image, (c) binarized with the first threshold T , (d) corrected with the second
threshold T ′, (e) refined by morphology dilation and erosion, and (f) coarse
ship location.

A. Image Enhancement

In order to remove uneven illumination, a morphological op-
erator, i.e., top-hat transform (THT), is used for ship extraction
and background suppression. As ships are usually brighter than
their surroundings, the white THT is employed in the proposed
work [shown in Fig. 3(b)]. The mathematical definition of white
THT is as follows:

Tw(f) = f − f ◦ b (1)

where f is the input LL coefficients of the original image, ◦
denotes opening operation, and Tw is the enhanced image. In
the simulations, b is set as a circular structuring element with a
radius of 12.

B. Sea–Land Segmentation

Different from the traditional intensity histogram and maxi-
mum variance segmentation, here, a statistical Gaussian model
is adopted to adaptively estimate the probabilistic distribution
of the sea regions [36], and the algorithm is as follows.

1) Binarize the input image by the Otsu algorithm [37], and
then label the connected regions.

2) Find the geometrical center P of the largest connected
region R.

3) Use point P as the starting point; traverse R to obtain
another set of points P ′ satisfying that the A×A (empir-
ically set as 60 in the experiments) neighboring regions of
P ′ are inside the region R. Label the points P ′ as all-sea
region S.

4) Compute the mean μ and variance σ of S, and use them
as the statistical parameters of the Gaussian model.

The resulting μ and σ are used to compute a threshold (T )
for image binarization, as follows:

T = μ+ λσ (2)

where λ is the weight of variation (σ) and set as three according
to the Gaussian distribution.

The binarized image obtained by T [shown in Fig. 3(c)]
usually remains holes in large lands or clouds. In this case,
a new threshold (T ′) for the elimination of hole regions and
incorrectly marked lands is chosen as

T ′ = λ′σ (3)

where λ′ is a parameter to control the similarity of land and sea,
empirically set as four. After thresholding with T ′ [shown in
Fig. 3(d)], the median filtering (with size of [3 3]), morphology
dilation, and erosion (circular structuring element with a radius
of three) are applied to fill the isolated holes. Then, the masks
of land, cloud, and ship candidates are segmented [shown in
Fig. 3(e)]. In the following, ship candidates will be further
extracted by using the unique shape properties of ships. Note
that some of the pseudotargets may be included in the extracted
regions; however, they can be removed in the process of feature
fusion and classification in Section IV.

C. Ship Locating Criteria

In the previous section, several connected regions are ex-
tracted from the resultant masks by labeling the eight-connected
neighbors. Geometric properties of the connected regions are
then used for the locating of ship candidates, which are listed
as follows [37], [38].

1) Area: It equals the number of pixels in the corresponding
connected region. Area is used to cut off the lands, clouds,
and other obviously large/small false targets.

2) Major minor axis ratio: It is defined as

Rls =
LaxisL

LaxisS
(4)

where LaxisL and LaxisS are the length of long and short
axes of the bounding rectangle, respectively.

3) Compactness: Compactness measures the degree of cir-
cular similarity, and it is defined as

Compactness =
Perimeter2

Area
. (5)

By using these shape criteria, we can obtain the coarse loca-
tions of ship candidates [shown in Fig. 3(f)]. In the experiments,
the size of testing images is 2000 × 2000 (in pixels) with a
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resolution of 5 m. The size of ship candidates is supposed to be
smaller than 100 × 100 (or larger than 10 × 10). In this case,
the regions with area larger than 10 000 (or smaller than 100)
would be removed. Moreover, as the long axis of ship should be
longer than the minor one, the major minor axis ratio is selected
as 1.5. Compactness is set as 40 to exclude the regions which
are obviously irregular.

It is also worth to note that, compared with original images,
using a low-frequency subband (LL) for coarse ship locating
would decrease the detection accuracy by 0.32% (in statistical
average), but the detection speed is improved by more than 60%.

IV. SHIP FEATURE REPRESENTATION

AND CLASSIFICATION

The state-of-the-art ship detection approaches extract com-
plicated features and combine them with learning-based
classification. These feature operators or descriptors, e.g., scale-
invariant feature transform [39], speeded up robust features
[40], histogram of gradient [41], local multiple pattern (LMP)
in [1], and shape/texture features in [11], are engineered to be
invariant under certain rotations or scale variations and chosen
for some specific vision tasks.

Features extracted by these methods generally have some
fundamental limitations in practical applications. For example,
they may have poor performances when the images are cor-
rupted by blur, distortion, or illumination, which commonly
exist in the remote sensing images. Relatively, learning features
from image would help to tackle these issues. Recent works
in [42] and [43] have shown that the features extracted by
the unsupervised learning outperform those manually designed
ones on object detection or recognition.

However, ship detection is usually under complicated en-
vironmental conditions, and the processed images may con-
tain various pseudotargets, e.g., islands, clouds, coastlines, etc.
Bengio et al. [44]–[46] indicated that traditional machine learn-
ing algorithms, e.g., SVM, may have difficulties in efficiently
handling such highly varying inputs. These learning schemes
usually use a few layers of computational units to establish the
training model. When dealing with highly variant conditions,
the computation is exponentially increased.

DNN, decomposing inputs into multiple nonlinear process-
ing layers, achieves better performance with much less param-
eters in each layer. For example, the d inputs require O(2d)
parameters to be represented by SVM with a Gaussian kernel,
O(d2) parameters for a single-layer neural network, O(d) pa-
rameters for a multilayer network with O(log2 d) layers, and
O(1) parameters for a recurrent neural network. In other words,
DNN would obtain much better feature representation than tra-
ditional learning methods using the same amount of parameters.

With the aids of pyramid-like hierarchical architecture,
sparse features can be extracted by DNN. Since the higher
hidden layer is more sparse than the lower one, high-level rep-
resentations are obtained by this layer-by-layer extraction. The
works in [12]–[18] have shown that DNN achieves excellent
performance in vision and other applications.

Hence, our ship detection is based on deep architecture.
Since, in wavelet domain, different subbands contain different

information of the original image, the features of low and high
frequencies are learned using two DNNs, respectively. The
resultant features are then fused by ELM [28] at the top level,
and the reason for selecting ELM as the final pooling layer is to
be discussed in Section IV-D.

A. Introduction of SDA

As shown in Fig. 2, the SDAs [14] are used for training ship
feature extractors in wavelet domain. In this section, we first
briefly overview the concepts and theories of SDA.

SDA used in our work is one of the implementation strategies
of DNN, and related research studies have gained great traction.
It is based on the traditional autoencoder but uses the corrupted
inputs rather than the original ones. The work in [14] has proved
that, by using corrupted inputs, SDA can achieve better learning
accuracy than that of the original autoencoder. Practically,
denoising autoencoder is used as the building block of SDA, by
feeding the latent representation of the layer below. Each level
has a representation of the input pattern that is more abstract
than the previous one [47].

The denoising autoencoder maps the input vector x∈ [0, 1]d

to a higher level representation and then uses latent represen-
tation y∈ [0, 1]d

′
through a deterministic mapping y=fθ(x)=

s(Wx+ b), parameterized by θ={W, b}, where s(·) is the acti-
vation function, W is a d′×d weight matrix, and b is a bias vec-
tor. The resulting latent representation y is then mapped back to
a reconstructed vector z∈ [0, 1]d in the input space z=gθ′(y)=
s(W ′y+b) with θ′ = {W ′, b′}. The reverse weight matrix W ′

mapping can optionally be constrained by W ′=WT, and in this
case, the autoencoder is said to have tied weights.

Each training sample x(i) is mapped to a corresponding y(i)
and a reconstruction z(i). The objective function of autoen-
coder is as follows:

θ∗, θ∗
′
= argmin

θ,θ′

1

n

n∑
i=1

L
(
x(i), z(i)

)

= argmin
θ,θ′

1

n

n∑
i=1

L
(
x(i), gθ′

(
fθ

(
x(i)

)))
(6)

where L is a loss function, and it can be the traditional squared
error L(x, z) = ‖x− z‖2.

An alternative loss, i.e., average reconstruction cross-
entropy, is as follows:

LH(x, z) =H(Bx‖Bz)

= −
d∑

k=1

[xk log zk + (1− x) log(1− zk)] (7)

where H denotes the cross-entropy and B represents the prob-
abilities of training samples [14].

Combining (6) with L = LH , the final objective function that
we optimized can be written as

θ∗, θ∗
′
= argmin

θ,θ′
Eq0(X)L

(
x(i), gθ′

(
fθ

(
X(i)

)))
(8)

where q0(X) denotes the distribution associated with n train-
ing samples and E denotes the expectation operator. This
optimization can be solved by an algorithm called stochastic
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Fig. 4. Visualization of feature representation in different levels.

gradient descent. Stochastic gradient descent is a widely used
optimization method for minimizing an objective function
[like the one in (8)] that could be written as a sum of differen-
tiable functions. Generally, the stochastic gradient descent can
avoid local minima of the training error and thus achieves good
classification performance.

B. Inputs of SDAs

As mentioned in Section II and shown in Fig. 2, the low-
frequency (LL) and high-frequency (LL, LH, and HH) sub-
bands are trained by two SDAs, respectively.

Singularities represent the sparse structures of LL, and there-
fore, they are extracted to train the SDA1. As the LH, HL,
and HH already reflect the sparseness of the image, they are
combined and used as the inputs of SDA2.

Before training, the input data need to be initialized by a
zero-mean or z-score normalization [48]

Z =
M − mean(M)

std(M)
(9)

where M denotes the input feature matrix and mean and std
denote the 2-D mean and standard deviation, respectively. The
z-score obeys the standard normal distribution that each of the
dimensional data has zero mean and standard deviation, and
it helps to correct outlier data points and remove light effect,
which may significantly improve the training performance.

1) SDA1—Low-Frequency Module: DWT provides local-
ized information about the variation of the image around a
certain point or its local regularity. Therefore, irregularities
will be sharpened after DWT. More exactly, the existence of
discontinuities in the original image will result in local maxima
in the wavelet domain [21]. It has also been demonstrated that
finding wavelet modulus local maxima is an effective way to
detect the singularities [31].

The singularities and irregular structures often contain the
most important information, and thus, they are particularly
meaningful for object recognition. Moreover, the characteristics
of singularities are suitable for ship detection with its unique
intensity distribution compared with that of the background.

Based on the aforementioned analysis, we use the local
maxima of LL as the inputs of the SDA1.

2) SDA2—High-Frequency Module: The HFCs contain var-
ious object details, e.g., edgelike lines and distinct points,

in different orientations. They reflect the sparse features of
the original image. Hence, the coefficients of high-frequency
subbands are utilized for training the SDA2.

Practically, the high-frequency subbands are combined as
follows:

IH = α · LH + β · HL + γ · HH
s.t. α+ β + γ = 1 (10)

where α, β, and γ denote the weight parameters of different
subbands. These parameters are set equally to avoid artificially
intervening the weights of each subband. Please note that, here,
symmetric even-order wavelet decomposition filters are used,
where CDF 9/7 wavelets are applied.

C. Pretraining and Fine Tuning

In this section, we introduce the details of SDA training for
ship feature extraction in low and high frequencies. Generally
speaking, SDA-based feature extractor involves two main steps:
pretraining and fine tuning.

The unsupervised layer-by-layer pretraining can help to
achieve good generalization and low variance of testing error.
Each layer is trained as a denoising autoencoder by minimizing
the reconstruction of its input (which is the output code of the
previous layer).

Based on the recent works in [49]–[51], some additional
parameters are set to further improve the performance of the
SDA. Before training, the coefficients are scaled to [0, 1]d, and
the learning rate is set as 0.1. The number of training batches
depends on the size of data set, usually between [10, 100].
Different training batches should contain different classes of
training samples to achieve better performance. Compared with
5% noise that is typically used in SDA [14], the simulations in
[51] indicated that it is better drop out 20% inputs combined
with 50% hidden units.

Once all of the layers are pretrained, the network needs
a second stage of supervised training called fine tuning. The
supervised fine tuning is used to minimize the prediction error.
Practically, a logistic regression layer is added on top of the
pretrained network.

Fig. 4 shows the different feature representations in different
levels. It can be seen that each layer’s mapping feature is more
meaningful than that of the previous one. The resultant feature
in the low frequency contains more implicit information of the
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ship, while the high-frequency one contains more edges and
structures. Their combination reflects the full representation of
a ship, and it has certain semantic meaning.

D. Feature Fusion With ELM

After the two SDAs have been trained, ELM is used for the
fusion of ship features obtained from low and high frequencies,
and the fused 100-dimensional feature vector is then utilized for
classification and final decision making (i.e., ship detection).

ELM is a training algorithm for single-hidden-layer feed-
forward neural networks, and the input weights and hidden-
layer bias are randomly set and need not to be tuned. ELM not
only learns extremely fast but also achieves good generalization
performance [28], [29]. In addition, when the training data are
one by one or chunk by chunk, OS-ELM [32], [33] is preferred
since retraining is not required whenever a new chunk of data
is received.

In the following, we will introduce the ELM and OS-ELM
algorithms in detail.

1) ELM Training: Given a training set N = {(xi, ti)|xi ∈
Rn, ti ∈ Rm, i = 1, . . . , L}, where xi is the feature vector
extracted above and ti represents the class label of each sample.
G(·) denotes the activation function, and L is the number of
hidden nodes. The ELM training algorithm can be summarized
as follows [28].

1) Randomly assign hidden node parameters, e.g., input
weight wi and bias bi, i = 1, . . . , L.

2) Calculate the hidden-layer output matrix H .
3) Calculate the output weight β

β = H†T (11)

where T = [t1, . . . , tN ]T, H† is the Moore–Penrose gen-
eralized inverse of matrix H [29].

The orthogonal projection method can be efficiently used in
ELM: H† = (HTH)−1HT, if HTH is nonsingular, or H† =
HT(HTH)−1, if HHT is nonsingular. According to the ridge
regression theory [29], it was suggested that a positive value
1/λ is added to the diagonal of HTH or HHT in the calcu-
lation of the output weights β. The resultant solution is more
stable and achieves better generalization performance. That is,
in order to improve the stability of ELM, we can have

β = HT

(
1

λ
+HHT

)−1

T (12)

and the corresponding output function of ELM is

f(x) = h(x)β = h(x)HT

(
1

λ
+HHT

)−1

T (13)

or we can have

β =

(
1

λ
+HHT

)−1

HTT (14)

and the corresponding output function of ELM is

f(x) = h(x)β = h(x)

(
1

λ
+HHT

)−1

HTT. (15)

2) OS-ELM: The sequential implementations of the least
squares solution of OS-ELM [32], [33] are as follows.

Step 1) Initialization:
Initialize the learning using a small chunk of

initial training data N0 = {(xi, ti)}N0
i=1 from the

given training set N = {(xi, ti)|xi ∈ Rn, ti ∈ Rm,
i = 1, . . . , L}.
a) Randomly generate the hidden node parameters

(ai, bi), i = 1, . . . , L.
b) Calculate the initial hidden-layer output

matrix H0

H0 =

⎛
⎜⎝

G(a1, b1, x1) . . . G(aL, bL, x1)
...

. . .
...

G(a1, b1, xN0
) · · · G(aL, bL, xN0

)

⎞
⎟⎠ .

c) Estimate the initial output weight β(0) =
P0H

T
0 T0, where P0 = (HT

0 H0)
−1 and T0 =

[t1, . . . , tN0
]T.

d) Set k = 0.
Step 2) Sequential Learning:

a) Present the (k + 1)th chunk of new observations:

Nk+1 = {(xi, ti)}
∑

j=0
k+1Nj

i=
∑

j=0
k+1+1

, where Nk+1

denotes the number of observations in the (k +
1)th chunk.

b) Calculate the partial hidden-layer output matrix
Hk+1 for the (k + 1)th chunk of data Nk+1.

c) Calculate the output weight β(k+1)

Pk+1 =Pk − PkH
T
k+1

(
I +Hk+1PkH

T
k+1

)−1
Hk+1Pk (16)

β(k+1) =β(k) + Pk+1H
T
k+1

(
Tk+1 −Hk+1β

(k)
)
. (17)

d) Set k = k + 1; go to step 2)-a).

V. EXPERIMENTS AND ANALYSIS

Extensive experiments are conducted in this section. Since
SDA-based feature extraction, ELM-based feature fusion, and
classification are adopted in this work, we term the proposed
method as SDA-ELM, which is compared with the relevant
state-of-the-art methods in [1] and [11]. In [1], multiple features
are fused by SVM (denoted as MF-SVM), while in [11], salient
regions are detected before SVM-based classification (denoted
as SA-SVM). In addition, another method (SDA-based feature
combined with SVM-based classification) is also tested (de-
noted as SDA-SVM).

In the following sections, to verify the effectiveness of each
component of the proposed method (i.e., ship locating, feature
extraction, feature fusion, and classification), the performance
of ship candidate segmentation is first tested; then, the proposed
SDA-based feature extraction is compared with other feature
representation methods; classification performance of ELM is
further evaluated against SVM, by using different combinations
of extracted ship features; and finally, the overall ship detection
accuracy is compared to demonstrate the advantages of the
proposed scheme under practical testing conditions.

For fair comparison, 4000 5-m-resolution SPOT 5 panchro-
matic images with the size of 2000 × 2000 (in pixels) are
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TABLE I
CLASSIFICATION SAMPLES

Fig. 5. Performance comparison of ship candidate segmentation. (a) Original
image. (b) Manually labeled ground truth (the white pixels indicate ship candi-
dates, while the black pixels represent land/sea regions). (c) Results by Chan–
Vese model in [1]. (d) Results by the proposed method.

prepared to build an image data set to compare the perfor-
mances of MF-SVM [1], SA-SVM [11], SDA-SVM, and SDA-
ELM, and 1600 training samples are extracted for feature
learning, shown in Table I. It should be emphasized that the
images for the extraction of 1600 training samples have not
been included in the testing images.

The testing hardware and software conditions are listed as
follows: Intel-i7 2.4 G CPU, 8 G DDR3 RAM, Windows 7,
Matlab R2012b, and Microsoft Visual Studio 2010.

A. Comparison of Coarse Ship Locating

The coarse ship locating is performed in the low-frequency
subband LL. Fig. 5 shows the comparison of segmentation
results of ship candidates, and one can see that the proposed
method achieves more accurate segmentation than the Chan–
Vese model in [1]. In addition, we also conducted objective
comparisons to evaluate the performances of different methods.
Three commonly used criteria were computed: false positive
rate (FPR), false negative rate (FNR), and false error (FE). They
are defined as follows:

FPR(SR,GT) =
#(SR ∩ GT)

#(GT)
∗ 100%

FNR(SR,GT) =
#(SR ∩ GT)

#(GT)
∗ 100%

FE (SR,GT) = (FPR + FNR) ∗ 100%

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT SEGMENTATION METHODS

Fig. 6. Visualized 2-D space distributions of the first two principal compo-
nents of different features. (a) Singularities of LL. (b) HFCs. (c) Shape/texture
features of SA-SVM [11]. (d) LMPs of MF-SVM [1]. (e) Proposed SDA-based
features. (f) Two-dimensional outputs of ELM pooling.

where SR denotes the segmentation results (ship candidates),
GT denotes the manually labeled ground truth, #(·) is the
number of pixels in the corresponding region, and GT and
ER denote the regions which are not included in GT and ER,
respectively.

The averaging comparison results of the proposed method
and Chan–Vese model in [1] are demonstrated in Table II. It is
shown that the proposed model has lower FPR, FNR, and FE
(better performance).

B. Comparison of Feature Representations

In this experiment, representation performances of different
features are compared, including the LL singularities (LLSs),
the HFCs, the LMPs in [1], the shape/texture features in [11],
and the proposed SDA-based features.

Principal component analysis [52] is used for visualizing
different features in 2-D space. Fig. 6 shows the first two
principal components of each feature, where the red points
represent ships and the green ones represent other subclasses
shown in Table I.

As can be seen, the distributions of LLS and HFC are
completely blended together. Relatively, the distances of the
feature points in [11] expand little in the Cartesian coordinates,
and still, a large amount of feature points are overlapped. LMP
outperforms the aforementioned features; nearly half of the
red points are separated from the green ones. The proposed
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Fig. 7. Classification comparison of different features and learning
algorithms.

SDA-based feature performs the best; almost all points are well
separated. Noted that the outputs are nearly converged after the
feature vector is clustered by ELM [in Fig. 6(f)].

The reason for the poor performances of LLS and HFC is
obvious; they are simply the raw DWT coefficients exacted
from the JPEG 2000 codec. As for the features used in SA-SVM
[11], the feature vector includes some simple and straightfor-
ward shape or texture information of the objects, such as size,
contrast, and energy. It is obvious that clouds and ships may
share similarities in shape (e.g., object size, major minor axis
ratio, etc.) and texture (e.g., contrast, energy, etc.). Unlike the
others, LMP obtains more precise information of the samples
by enlarging the dimension of its feature vector. The proposed
SDA-based features capture the unique characteristics of ship
by multilayer feature learning.

C. Comparison of Feature Fusion and Classification

In this section, the classification performance of ELM is
compared against that of SVM, by using different combina-
tions of extracted features. The classification accuracy of each
method is computed as

T =
Number of correctly classified samples

Number of tested samples
∗ 100%.

The experiments are based on k-fold cross-validation [53],
which provides a better Monte Carlo estimate than simply ran-
domly divided data set. First, the data set is randomly split into
k mutually exclusive subsets S1, S2, . . . , Sk of approximately
equal size. Then, the classifier is trained and tested k times;
for each testing t ∈ {1, 2, . . . , k}, it is trained on S without St

and tested on St. As our training data set has 1600 samples,
we select k = 4. The classification accuracy of each feature is
shown in Fig. 7.

Due to the high-dimensional (679) feature vector, MF-SVM
achieves better performance than SA-SVM by 4.5%. It is not
surprising that SDA-SVM and SDA-ELM perform better than
the other ones, since the features visualized in Fig. 6 are well
separated. The results further demonstrate the effectiveness of
the proposed SDA-based features. Moreover, ELM outperforms
SVM in terms of learning accuracy, and this is also consistent
to the conclusions obtained in [28] and [29].

To make full use of the information in low- and high-
frequency subbands, in the proposed framework, ELM is
adopted to achieve the fusion of features extracted by the

Fig. 8. Classification error of different features from low and high
frequencies.

TABLE III
CLASSIFICATION TIME COST USING DIFFERENT METHODS

TABLE IV
DETECTION PERFORMANCES OF DIFFERENT METHODS

corresponding two SDAs. An additional experiment has been
conducted to verify the effectiveness of the fused feature,
and the results are shown in Fig. 8. It can be seen that the
performance (in terms of classification error) of the proposed
method using both low-frequency coefficient and HFC (denoted
as (SDA1+SDA2)-ELM) outperform other methods using low-
frequency coefficient (denoted as SDA1-LOW-ELM) or HFC
(denoted as SDA2-HIGH-ELM).

Apart from classification accuracy, the feature extraction,
training, and testing time of SA-SVM [11], MF-SVM [1], SDA-
SVM, and SDA-ELM are compared, and the results are listed
in Table III. Due to the relatively tight feature vector extracted
in the wavelet domain, the extraction times of SDA-SVM and
SDA-ELM are much less than those of SA-SVM and MF-SVM.
The training time of SDA-ELM is less than those of SA-SVM,
MF-SVM, and SDA-SVM by 50%, and the testing time is less
than those by 30%. This advantage will be increasing when
larger data set is used. That is, our approach performs better in
extracting, training, and testing time, and these results benefit
from all aforementioned advantages: faster feature extraction
and higher learning efficiency of ELM.
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Fig. 9. Detection results of different methods under different experimental conditions. (Rows 1–4) Land, little clouds, cotton shaped cloud with mist, and
large area of floccus. (Column 1) Input images. (Column 2) Coarse location of ship candidates. (Column 3) Classification results of MF-SVM [1]. (Column 4)
Classification results of SA-SVM [11]. (Column 5) Classification results of our method.

D. Comparison of Overall Detection Performances

Finally, the detection performances of MF-SVM [1], SA-
SVM [11], SDA-SVM, and SDA-ELM are compared. For fair
comparison, the coarse ship locating described in Section III is
applied with MF-SVM, SA-SVM, and SDA-SVM algorithms.
The evaluation criteria are defined as [1]

Accuracy =
Number of correctly detected ships

Number of real ships
∗ 100%

Missing ratio = 100%− Accuracy

False ratio =
Number of falsely detected candidates

Number of detected ships
∗ 100%

Error ratio = Missing ratio + False ratio.

The results are shown in Table IV, and one can see that SDA-
ELM achieves the best performance. In addition, Fig. 9 shows
several detection results (SDA-ELM against the other two ex-
isting methods) of optical spaceborne images with various false
targets: island, small clouds, mist, large floccus, etc. One can
see that SA-SVM and MF-SVM cannot well adapt to the large
complicated area. SA-SVM eliminates part of pseudotargets but
also some ships in the salient region. MF-SVM detects some of
the ships with several false targets still remained. Compared
with SA-SVM and MF-SVM, the proposed approach achieves
the best results in various weather conditions.

VI. CONCLUSION

In this paper, we have proposed a compressed-domain
ship detection framework using DNN and ELM for optical
spaceborne images. Compared with the previous works, the
proposed approach achieves better classification by deep-
learning-based feature representation model with faster detec-
tion in compressed domain. After ship candidates are extracted,
the singularities in LL are detected to train the SDA1. Then,
the combination of high-frequency components (i.e., LH, HL,
and HH) is used to train the SDA2. The two SDAs are viewed
as feature extractors to obtain high-level features, and the
resultant features are fused by ELM to further improve the
classification results. ELM learns extremely faster and has
better generalization than other traditional learning algorithms.
Extensive experiments demonstrate that our proposed scheme
outperforms the state-of-the-art methods in terms of detection
time and accuracy.

As for the possible shortcomings of the proposed work, the
parameters in coarse ship locating should be more adaptive to
the image contents. In addition, due to the availability of image
data sets, the simulations in the proposed work are conducted
using panchromatic images, and other remote sensing image
could be further tested or verified in a future work.

Moreover, in the experiments, the images of resolution of 5 m
are used. In this case, the ships that we succeed to detect may
be larger than 50 m (10 × 10 pixels). However, the limitation
on the size of the detected ship is not induced by the proposed
framework; it is mainly due to the resolution of the original
images. In other words, when 5-m-resolution images are used
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for ship detection, it is not reasonable to detect smaller ships
(for example, 20 m), as very limited object details/features can
be extracted from such a small region (4 × 4 pixels).

Finally, since the object features are extracted and fused by
DNN and ELM, the extracted features are with high robustness.
Thus, the proposed framework is expected to work well for
multispectral or synthetic aperture radar images. Our future
work may focus on the use of the proposed work for ship
detection from multiple sensors.
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