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Considering qualitative behavior of a non-linear dynamical system often leads to first
simplifying the differential equations or finding their normal forms. A perturbation
technique for computing normal forms is presented. This technique, associated with the
method of multiple scales, can be used to systematically find a unique form for a given set
of differential equations. The technique is discussed in detail through the analysis of Hopf
bifurcation. It is shown that for Hopf bifurcation, the method only requires solving two
dimensional matrix systems for any higher order normal forms of a general n-dimensional
system. With the aid of the symbolic language Maple, this approach is straightforward, and
is computationally efficient and fast. Furthermore, a simple verification scheme is given for
verifying the normal forms and associated non-linear transformations obtained using any
methodology. Examples are presented to demonstrate the applicability of the perturbation
technique and the computation efficiency of the Maple program.
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1. INTRODUCTION

Non-linear vibrations have a relatively long history and continue to form a basis for the
study of more complex behavior patterns such as bifurcation and instability associated with
dynamical systems. One of the basic tools in the study of qualitative behavior of a
non-linear system near a bifurcation point is the theory of normal forms (e.g., see references
[1–4]). The basic idea of the method of normal forms is employing successive co-ordinate
transformations to systematically construct the simplest possible form of the original
differential equations. The simple form can exhibit all possible dynamical properties of the
original system in the neighborhood of the bifurcation point. Normal forms are generally
not uniquely defined and finding a normal form for a given system of differential equations
is not a simple task. In particular, finding the explicit formulas of normal forms in terms
of the coefficients of the original non-linear system is not easy. Several researchers have,
based on the normal form theory, developed symbolic computation programs for some
bifurcation cases (e.g. references [2–4]). The normal form theory is usually applied together
with center manifold theory [5]. The idea of the center manifold theory is also successive
non-linear transformations. It reduces the original system to a center manifold associated
with the part of the original system characterized by the eigenvalues with zero real parts
at a bifurcation point. The center manifold may have smaller dimensions than that of the
original system and therefore, given a non-linear system, the center manifold theory is
often applied to simplify the system before applying the normal form theory.

A perturbation technique is presented which has been developed for computing normal
forms via multiple scales [6]. The technique is systematic and can be directly applied to
the original non-linear system, without the application of center manifold theory. In fact,
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this approach has combined the two steps involved in using center manifold theory and
normal form theory into one step to simultaneously obtain the normal forms and
non-linear transformations. The main objective is not to study bifurcations, but to
illustrate the procedure of the technique and to show the computational efficiency of the
method. Thus, Hopf bifurcation will be chosen as an example for this purpose. It will be
shown that the perturbation technique systematically leads to a unique normal form for a
given set of differential equations up to any order. This approach is straightforward and
can be easily implemented in a symbolic computation system. With the aid of a symbolic
language such as Maple [7], one can use this approach to find the explicit expressions of
normal forms in terms of the coefficients of the original system. It will also be shown that
for Hopf bifurcation the method only requires solving two-dimensional matrix algebraic
equations for any higher order normal forms of a general n-dimensional system. In order
to verify the normal forms and the associated non-linear transformations obtained using
any method, a simple approach called system verification is given. A number of examples
are presented to show the applicability of the perturbation technique and the computation
efficiency of the Maple program. All the results presented have been verified by the system
verification scheme.

The perturbation technique is described in the next section. Section 3 outlines the
symbolic computation. An example is given in section 4 to show the applicability of the
technique, and then in section 5, the ‘‘system verification’’ scheme is described and used
to verify the results obtained in section 4. A mechanical oscillator is presented in section
6 to illustrate the practical usefulness of the technique. In section 7, Hilbert’s 16th problem
is considered to further demonstrate the computation efficiency of the technique. Finally,
concluding remarks are drawn in the last section.

2. PERTURBATION TECHNIQUE

The method of multiple scales or multiple time scales is frequently used for analyzing
second-order non-linear ordinary differential equations (ODE’s) [8], usually given in the
form

ẍ+ x= of(x, ẋ), (1)

where the dot indicates the differentiation with respect to time t, and o is a small parameter
(0Q o�1). f is a non-linear function, assumed to be analytic and thus can be expressed
as a Taylor series. Nayfeh has extended this technique to consider a more general
two-dimensional system consisting of first-order ODE’s [9]:

ẋ1 = x2 + of1(x1, x2), ẋ2 =−x1 + of2(x1, x2),

where f1 and f2 are non-linear functions. Nayfeh obtained the normal forms and periodic
solutions up to second order when f1 and f2 are cubic non-linear terms [9].

A perturbation technique associated with multiple scales is developed to consider a
general n-dimensional system,

ẋ= Jx+ f(x), x$Rn, f: Rn:Rn, (2)

where Jx represents the linear terms, the non-linear function f is assumed to be analytic,
and x= 0 is an equilibrium of the system, i.e., f(0)= 0. Further, assume that the linearized
system (2) evaluated at the equilibrium 0 has a pair of purely imaginary eigenvalues 2ivc .
Without loss of generality, we may assume that vc =1 (otherwise one may use an
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additional transformation t'=vct to change frequency vc to 1) and the Jacobian matrix
of equation (2) evaluated at x= 0 is in the Jordan canonical form

J= & 0
−1

0

1
0
0

0
0
A', A$R(n−2)× (n−2), (3)

where A is hyperbolic, i.e., all of its eigenvalues have non-zero real parts, either real or
complex conjugate. For the most physically interesting cases, it is assumed that the
unstable manifold is empty, i.e., all the eigenvalues of A have negative real parts. Equation
(3) may be written in the component form

ẋ1 = x2 + f1(x1, x2, . . . , xn ), ẋ2 =−x1 + f2(x1, x2, . . . , xn ), (4, 5)

ẋp =−apxp + fp (x1, x2, . . . , xn ), ( p=3, 4, . . . , m1 +2), (6)

ẋq =−aqxq +vqxq+1 + fq (x1, x2, . . . , xn ),

ẋq+1 =−vqxq − aqxq+1 + fq+1(x1, x2, . . . , xn ), (q=m1 +3, m1 +5, . . . , n−1),

(7)

where ap q 0, aq q 0, vq q 0, and m1 +2m2 +2= n. The above equations show that the
matrix A has m1 real eigenvalues, −ap , p=1, 2, . . . , m1 and m2 pairs of complex conjugate
eigenvalues, −aq 2 ivq , q=1, 2, . . . , m2. The functions fi (x1, x2, . . . , xn ) satisfy
fi (0, 0, . . . , 0)=0 and 1fi (0, 0, . . . , 0)/1xj =0, i, j=1, 2, . . . , n. That is, the Taylor
expansion of fi about x= 0 starts from the second order terms.

The underlying idea of the method of multiple scales is to consider the expansion
representing the response to be a function of multiple independent variables, or scales,
instead of a single time variable. Thus, one begins by introducing new independent
variables according to

Tk = okt, k=0, 1, 2, . . . . (8)

It follows that the derivatives with respect to t now become expansions in terms of the
partial derivatives with respect to Tk , given by

d
dt

=
dT0

dt
1

1T0
+

dT1

dt
1

1T1
+

dT2

dt
1

1T2
+ · · ·=D0 + oD1 + o2D2 + · · · , (9)

where the differentiation operator Dk = 1/1Tk .
Next, suppose that the solution of equation (2) (or equivalently, equations (4)–(7)) in

the neighborhood of x= 0 is represented by an expansion of the form

xi (t; o)= oxi1(T0, T1, . . . )+ o2xi2(T0, T1, . . . )+ · · · (i=1, 2, . . . , n). (10)

It is noted that the number of independent time scales needed depends on the order to
which the expansion is carried out. For example, if the expansion is carried out to O(o2),
then T0, T1 and T2 are needed. In general, if one wants to derive a normal form up to order
n, then T0, T1, . . . , Tn should be included in the solution (10). However, one can employ
the idea of the intrinsic harmonic balancing technique [10] and let n be open so that the
process of the method will automatically take account of all necessary terms up to a certain
order as the following procedure shows.

Substituting solution (10) into equations (4)–(7) with the aid of equation (9) and
balancing the like powers of o results in the ordered perturbation equations

o1: D0x11 = x21, D0x21 =−x11, (11, 12)
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D0xp1 =−apxp1, ( p=3, 4, . . . , m1 +2), (13)

D0xq1 =−aqxq1 +vqx(q+1),

D0x(q+1)1 =−vqxq1 − aqx(q+1)1, (q=m1 +3, m1 +5, . . . , n−1), (14)

o2: D0x12 = x22 −D1x11 + f12(x11, x21, . . . , xn1), (15)

D0x22 =−x12 −D1x21 + f22(x11, x21, . . . , xn1), (16)

D0xp2 =−apxp2 + fp2(x11, x21, . . . , xn2), ( p=3, 4, . . . , m1 +2), (17)

D0xq2 =−aqxq2 +vqx(q+1)2 + fq2(x11, x21, . . . , xn1),

D0x(q+1)2 =−vqxq2 − aqx(q+1)2 + f(q+1)2(x11, x21, . . . , xn1),

(q=m1 +3, m1 +5, . . . , n−1), (18)

etc., where fi2 = (d2/do2)[ fi (x1, x2, . . . , xn )]o=0. Note that the fi2 are functions of xi1

(i=1, 2, . . . , n) which have been solved from the o1 order perturbation equations
(11)–(14). In general, functions fik only involve variables which have been solved from the
previous (k−1) steps perturbation equations.

To find the solutions of the o1 order equations (11)–(14), first note that these equations
can be divided into two groups, one of which consists of the first two equations (11) and
(12), and the other one includes the remaining equations. Second, since we are interested
in the asymptotic behavior of the system, the solutions of the second group are contributed
from the first two variables x1 and x2 only.

Now consider equations (11) and (12). Differentiating equation (11) and then
substituting equation (12) into the resulting equation yields a simple second order ordinary
differential equation

D2
0x11 + x11 =0. (19)

The solution of equation (19) can be written in a general form

x11 = r(T1, T2, . . . ) cos [T0 +f(T1, T2, . . . )]0 r cos (T0 +f)0 r cos u, (20)

where r and f represent, respectively, the amplitude and phase of motion and
u=vcT0 +f=T0 +f. Once x11 is solved, x21 can be directly determined from equation
(11). Note that solution (20) implies that

D0r=0 and D0f=0. (21)

The asymptotic o1 order solutions of the second group are given by

xi1 =0, i=3, 4, . . . , n, (22)

which actually represent the first order steady state solutions of the second group
equations.

Next, to solve the o2 order perturbation equations (15)–(18), the procedure described
above can be applied again. First, differentiating equation (15) and then substituting
equation (16) into the resulting equation results in

D2
0x12 + x12 =−D1D0x11 −D1x21 +D0f12 + f22, (23)

which is a non-linear homogeneous ordinary differential equation. Substituting the
solutions x11 and x21 into the right-hand side of equation (23) gives an expression in terms
of trigonometric functions cos k(T0 +f) and sin k(T0 +f), k=0, 1, 2. To eliminate
possible secular terms which may appear in x12, it is required that the coefficients of the
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two terms cos (T0 +f) and sin (T0 +f) equal zero, which in turn yields the explicit
expressions for D1a and D1f. Then the solution of x12 is determined from the remaining
terms of equation (23), and thus, x12 involves a particular solution only. Having found x12,
then x22 is determined from equation (15) as x22 =D0x12 +D1x11 − f12(x11, x21, . . . , xn1).
This procedure can be carried out to any high order perturbation equations.

Finally, the normal forms, given in polar co-ordinates, can be written as

dr
dt

=
1r
1T0

1T0

1t
+

1r
1T1

1T1

1t
+

1r
1T2

1T2

1t
+· · ·=D0r+ oD1r+ o2D2r+· · · , (24)

du

dt
=vc +

1f

1T0

1T0

1t
+

1f

1T1

1T1

1t
+

1f

1T2

1T2

1t
+· · ·=1+D0f+ oD1f+ o2D2f+· · · .(25)

It should be pointed out that the particular solutions of equation (23), etc. can be found
by using the method of harmonic balancing so that the solution is uniquely determined.
Thus, Dir and Dif are also uniquely defined, which implies that the normal forms given
in equations (24) and (25) are uniquely determined. It is also noted that the derivatives
Dir and Dif are given in the form of a monomial as Dir=(constant)ri+1 and
Dif=(constant)ri, where the constants are given explicitly in terms of the coefficients of
the original differential equations.

3. SYMBOLIC COMPUTATION

The procedure described in the previous section can be very easily implemented in a
computer system using a symbolic language such as Maple. Software package coded in
Maple language for calculating the normal forms and periodic solutions of system (2) (or
equivalently (4)–(7)) has been developed. The program is slightly different from the
procedure described above. The perturbation solution in the program starts from o0 order
rather than o1 order as described in the above procedure. However, the above procedure
will be identical to that given in the program if a scaling xi:oxi is used first in the above
procedure. In order to obtain the normal forms for the original equation (2), one needs
to use a back scaling oxi:xi , or simply setting o=1 in equations (24) and (25).

The input file includes the data of the input functions fi , the numbers of real eigenvalues
and complex eigenvalues of the linearized systems, as well as the order of the normal forms.
Table 1 is an example of an input file, where M1 (m1)=1 is the number of the non-zero
real eigenvalues and M2 (m2)=1 is the number of the pairs of complex conjugate
eigenvalues. Therefore, for this example, the system has dimension 2+1+2×1=5,

T 1

Input file to Maple source code

M1 M 1:
M2 M 1:
N M 2+M1+M2(2:
Order M 4:
func[1] M eps((x[1]g2−x[1](x[3]);
func[2] M eps((x[2]g2 + x[1](x[4]) + epsg2(x[2]g3;
func[3] M − x[3]+eps(x[1]g2;
func[4] M − x[4]+x[5]+eps(x[1]g2;
func[5] M − x[4]−x[5]+eps(x[2]g2;

Note: the Maple source code (file name program 1) and the
above input file (name input1) are available from the author’s
web site: http://pyu1.apmaths.uwo.ca/ 	 pyu/pub/software.

 

 

 



. 24

indicating that in addition to a pair of purely imaginary eigenvalues, it has one real
eigenvalue and a pair of complex conjugate eigenvalues. Order=4 indicates that the
program will be executed up to fifth order (Order+1) approximations. It should be noted
in the first two functions func[1] and func[2] that there are no linear terms which have been
included in the main program since it is assumed that vc =1. Also note that a scaling
xi:oxi has been used in the input functions.

4. AN EXAMPLE OF HOPF BIFURCATION

In this section, the input file given in Table 1 is used as an example to show the procedure
of the method, and then this example will be used in the next section to discuss a
verification scheme. This example is actually described by the original equations:

ẋ1 = x2 + x2
1 − x1x3,

ẋ2 =−x1 + x2
2 + x1x4 + x3

2 ,

ẋ3 =−x3 + x2
1 ,

ẋ4 =−x4 + x5 + x2
1 ,

ẋ5 =−x4 − x5 + x2
2 . (26)

Note that applying a scaling xi:oxi to the above equations yields the equations given in
the Maple input file (see Table 1). It is seen that the origin x= 0 is an equilibrium, and
the linearized system of equation (26) has eigenvalues 2i, −1 and −12 i at the origin.
Now executing the Maple source code program1 yields the following output, which
includes Dir, Dif and the solutions xi :

D1r=D3r=0, D2r=
3
40

r3, D4r=−
14867
68000

r5, (27)

D1f=D3f=0, D2f=−
7
12

r2, D4f=
8093503
14688000

r4, (28)

and

x1 = r cos u+
1
6

r2(3+cos 2u+2 sin 2u)−
1

480
r3(28 cos 3u−13 sin 3u)+ · · · ,

x2 =−r cos u−
1
6

r2(3−cos 2u+2 sin 2u)−
1

480
r3(260 cos u−168 sin u

+ 17 cos 3u+28 sin 3u)+ · · · ,

x3 =
1
10

r2(5+cos 2u+2 sin 2u)−
1
12

r3(5 cos u+3 sin u−cos 3u+sin 3u)+ · · · ,

x4 =
1
10

r2(5+2 cos 2u+sin 2u)+
1

510
r3(119 cos u+408 sin u

− 23 cos 3u+44 sin 3u)+ · · · ,

x5 =−
1
10

r2(cos 2u+3 sin 2u)−
1

510
r3(68 cos u−119 sin u−24 cos 3u

+ 57 sin 3u)+ · · · , (29)
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where the fourth and fifth order terms are omitted for simplicity. The normal form can
then be considered from equations (27) and (28) as

dr
dt

=D0r+ oD1r+ o2D2r+ o3D3r+ o4D4r

=
1
40

r303−
14867
1700

r21, (30)

du

dt
=vc

dT0

dt
+D0f+ oD1f+ o2D2f+ o3D3f+ o4D4f

=1−
1
12

r207−
8093503
1224000

r21. (31)

It should be noted that the back scaling oxi:xi (and so or:r) has been used in the above
equations (29)–(31), or equivalently o has been set to 1 in these equations.

Now, based on the normal form (30), one can easily find steady state solutions and their
stability. The steady state solutions can be obtained by setting dr/dt=0, which yields a
trivial solution r̄=0, corresponding to the initial equilibrium x= 0, and a non-trivial
solution

r̄=z5100/14867, (32)

which is a periodic motion and its asymptotic solution is given by equation (29). The
stability of the periodic solution is determined by differentiating equation (30) with respect
to r (which means perturbing r around r̄ or simply linearization with respect to r̄) to obtain

d
dr 0da

dt1r= r̄

=−
1530
29384

Q 0. (33)

Therefore, the periodic solution is stable. The frequency of the periodic motion is given
by equation (31) as

v=
du

dtbr= r̄

=1−
1
12 0 5100

14867107−
8093503
1224000

5100
148671=

9174269227
10609329072

. (34)

5. VERIFICATION SCHEME

When one has obtained a normal form from a set of differential equations by using
certain methods, the question usually arising is how to verify them. Here, we want to ask:
can we find an approach to verify the normal forms and periodic solutions found by using
the perturbation technique described in the previous sections? These are different
verification approaches. A common one is substituting the obtained periodic solutions,
assumed up to nth order, back to the original differential equations; if the residue is
(n+1)th order, then the periodic solutions are correct. Let’s call this verification scheme
‘‘solution verification’’ which is frequently used to check a solution. The verification
scheme given below is, however, different from the ‘‘solution verification’’ because it
simultaneously verifies both the solutions and, more importantly, the normal forms. It may
be called the ‘‘system verification’’ scheme. The procedure of the approach is as follows:
to obtain a general non-linear transformation from the vibration solution, to substitue the
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non-linear transformation back to the original differential equations, and then simplify the
resulting equations to obtain a new set of differential equations. If the new system is
identical to the normal form obtained from the perturbation technique, then the results
are correct. One may think that ‘‘solution verification’’ should suffice to verify the normal
forms too. However, this is not true since the ‘‘solution verification’’ scheme only verifies
solutions, not necessary the normal forms. In fact, cases have been found in which although
solutions are verified to be correct (i.e., the ‘‘solution verification’’ gives correct results),
the new system does not agree with the normal forms, implying that the normal form
obtained from the perturbation technique is wrong (so the ‘‘system verification’’ fails).

Details of the ‘‘system verification’’ scheme are given below. First note that the periodic
solution of equation (2) (e.g., see equation (29)) can be written in a general form:

x1 = r cos u+ h1(r cos u, r sin u),

x2 =−r sin u+ h2(r cos u, r sin u),

xi = hi (r cos u, r sin u), i=3, 4, . . . , n. (35)

Next, if the transformation

y1 = r cos u, y2 =−r sin u, (36)

is introduced into equation (35), one can rewrite equation (31) in a Cartesian system:

x1 = y1 + h1(y1, y2), x2 = y2 + h2(y1, y2), xi = hi (y1, y2), i=3, 4, . . . , n. (37)

The first two equations may be considered as a non-linear transformation between the
co-ordinates (x1, x2) and (y1, y2), while the remaining equations actually represent the
projection of the original system to the two-dimensional center manifold [5].
Differentiating the first two equations of (37) yields

ẋ1
1+

1h1

1y1

1h1

1y2 ẏ1

ẋ2
=

1h2

1y1
1+

1h2

1y2

ẏ2
, (38)

from which we can solve for ẏ1 and ẏ2 as

ẏ1
1+

1h1(y1, y2)
1y1

1h1(y1, y2)
1y2

−1

x2 + f1(x1, x2, . . . , xn )
ẏ2

=
1h2(y1, y2)

1y1
1+

1h2(y1, y2)
1y2

−x1 + f2(x1, x2, . . . , xn )
,

(39)

where equations (4) and (5) have been used. Then substitute equation (37) into equation
(39) so that the resulting equations involve variables y1 and y2 only. Next, expand the
resulting equations in Taylor series, truncate the series to the same order of the
perturbations performed through the multiple scales, then put the transformed system in
a polar form. If the results given in the polar form are identical to the normal forms (24)
and (25), then the normal forms as well as the asymptotic solutions (i.e., non-linear
transformations) are verified to be correct! Otherwise they must be wrong! All the results
presented in this paper have been verified using the ‘‘system verification’’ scheme
implemented on a computer.

0 1 G
G

G

K

k
G
G

G

L

l 0 1

0 1 G
G

G

K

k
G
G

G

L

l 0 1
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One may think that finding the inverse matrix involved in equation (39) is not easy when
the order of the approximations become high. (This is true!) So, to avoid this difficulty,
instead of equation (39) one may want to verify the following equation:

1+
1h1(y1, y2)

1y1

1h1(y1, y2)
1y2 ẏ1 x2 + f1(x1, x2, . . . , xn )

1h2(y1, y2)
1y1

1+
1h2(y1, y2)

1y2

ẏ2
= −x1 + f2(x1, x2, . . . , xn )

, (40)

by comparing the coefficients of the same order terms on both sides of the equation with
the aid of equation (37). If the coefficients are equal up to the required order, one then
claims that the obtained non-linear transformation and normal form are correct! This is
only partially true because verifying equation (40) only verifies the transformation, not the
normal form; unless one guarantees that the normal form is correct as long as the
transformation is right! But there is no reason to guarantee this. So the ‘‘system
verification’’ is necessary to be used.

It should be pointed out that the ‘‘system verification’’ scheme is independent of any
particular procedure of methods and is particularly useful when one wants to compare two
(or several) different normal forms and non-linear transformations obtained using two
(several) different approaches. It is possible that both two (or several) normal forms are
correct, thus how to verify the results cannot depend upon the procedure by the
methodologies, but must depend on the equations, normal forms and transformations. In
this case, the ‘‘system verification’’ scheme can be used to verify each pair of normal forms
and non-linear transformations. In other words, a correct normal form must be consistent
with its associated non-linear transformation. In fact, we have successfully used the
‘‘system verification’’ scheme to verify different normal forms of a same system, obtained
using different approaches.

For the example described by equation (26), the computer output of the transformation
(37) up to third-order terms is (edited by rearranging the order of terms)

x1 = y1 +
2
3

y2
1 −

2
3

y1y2 +
1
3

y2
2 −

7
120

y3
1 −

13
160

y2
1y2 +

7
40

y1y2
2 +

13
480

y3
2 + · · · ,

x2 = y2 −
1
3

y2
1 +

2
3

y1y2 −
2
3

y2
2 −

277
480

y3
1 −

7
40

y2
1y2 +

209
480

y1y2
2 +

49
120

y3
2 + · · · ,

x3 =
3
5

y2
1 −

2
5

y1y2 +
2
5

y2
2 +

1
3

y3
1 − y2

1y2 +
2
3

y1y2
2 −

2
3

y3
2 + · · · ,

x4 =
7
10

y2
1 −

1
5

y1y2 +
3
10

y2
2 +

16
85

y3
1 −

18
17

y2
1y2 +

94
255

y1y2
2 −

182
255

y3
2 + · · · ,

x5 =−
1
10

y2
1 +

3
5

y1y2 +
1
10

y2
2 −

22
255

y3
1 +

26
255

y2
1y2 −

14
51

y1y2
2 −

88
255

y3
2 + · · · . (41)

The transformed equation (39), from the computer output, truncated at fifth-order terms,
is (edited)

ẏ1 = y2 +
3
40

y1(y2
1 + y2

2 )−
7
12

y2(y2
1 + y2

2 )−
14867
68000

y1(y2
1 + y2)2 +

8093503
14688000

y2(y2
1 + y2)2,

(42)
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G
G
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ẏ2 =−y1 +
3
40

y2(y2
1 + y2

2 )+
7
12

y1(y2
1 + y2

2 )−
14867
68000

y2(y2
1 + y2)2 −

8093503
14688000

y1(y2
1 + y2)2.

(43)

Now in order to prove that equations (42) and (43) are identical to equations (30) and
(31), equation (42) is multiplied by y1 and equation (43) by y2, and then the resulting
equations are added together to yield

y1ẏ1 + y2ẏ2 =
3
40

(y2
1 + y2

2 )2 −
14867
68000

(y2
1 + y2)3. (44)

Similarly, multiplying equation (42) by y2 and equation (43) by y1, and then subtracting
the resulting second equation from the first equation leads to

y2ẏ1 − y1ẏ2 = y2
1 + y2

2 −
7
12

(y2
1 + y2

2 )2 +
8093503
14688000

(y2
1 + y2)3. (45)

Next, applying the transformation (36), and using the relations

ẏ1 =
dr
dt

cos u− r
du

dt
sin u, ẏ2 =−

dr
dt

sin u− r
du

dt
cos u

in equations (44) and (45), one obtains

r
dr
dt

=
3
40

r4 −
14867
68000

r6, i.e.,
dr
dt

=
3
40

r3 −
14867
68000

r5,

which is identical to equation (30); and

r2 du

dt
= r2 −

7
12

r4 +
8093503
14688000

r6, i.e.,
du

dt
=1−

7
12

r2 +
8093503
14688000

r4,

which is the same as equation (31).
In order to further demonstrate the computation efficiency of the perturbation technique

and the Maple program, we shall consider two more examples in the next two sections.
One of them is an oscillator of a mechanical system and the other is the well known
Hilbert’s 16th problem.

6. DOUBLE PENDULUM

The double pendulum system shown in Figure 1 consists of two rigid weightless links
of equal length l which carry two concentrated masses 2m and m, respectively. A follower
force P is applied to this system.

The system energy for the three linear springs h1, h2 and h3 is assumed to be given by
reference [11]:

V= 1
2[(h1 + h2 + h3l2)u2

1 +2(h3l2 − h2)u1u2 + (h2 + h3l2)u2
2 ]

− 1
6h3l2(u1 + u2)(u3

1 + u3
2 ), (46)

where u1 and u2 are generalized co-ordinates which specify the configuration of the system
completely.

The kinetic energy T of the system is expressed by

T=
ml2

2V2 [3u� 21 + u� 22 +2u� 1u� 2 cos (u1 − u2)], (47)
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Figure 1. A double pendulum system.

where V is an arbitrary value rendering the time variable non-dimensional, and the overdot
denotes differentiation with respect to the non-dimensional time variable t' and t'=Vt.

The components of the generalized forces corresponding to the generalized co-ordinates
u1 and u2 may be written as

Q=Pl sin (u1 − u2), (48)

and the linear damping can be expressed by

D= 1
2[u�

2
1 + (u� 1 − u� 2)2]d. (49)

With the aid of the Lagrangian equations, one can drive a set of first order differential
equations up to third order terms as follows:

dz1

dt'
= z2,

dz2

dt'
=−1

2( f1 +2f2 − h)z1 − 3
2f4z2 + 1

2(2f2 − h)z3 + f4z4

+ 1
12(3f1 +9f2 +2f3 −4h)z3

1 − 1
4(2f1 +9f2 −2f3 −4h)z2

1z3

+ 1
4( f1 +9f2 −4h)z1z2

3 − 1
6(3f2 +3f3 −2h)z3

3

+ 1
4 f3(3z2 −2z4)(z1 − z3)2 − z2z4(z1 − z3),

dz3

dt'
= z4,
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dz4

dt'
= 1

2( f1 +4f2 −2f3 − h)z+ 5
2f4z2 − 1

2(4f2 +2f3 − h)z3 −2f4z4

− 1
12(6f1 +15f2 −2f3 −7h)z3

1 + 1
4(4f1 +15f2 − f3 −7h)z2

1z3

− 1
4(2f1 +15f2 −2f3 −7h)z1z2

3 + 1
12(15f2 +14f3 −7h)z3

3

− 1
4 f4(5z2 −4z4)(z1 − z3)2, (50)

where the state variables zi are defined as

z1 = u1, z2 = u� 1, z3 = u2 and z4 = u� 2, (51)

and dimensionless coefficients fi are given by

f1 =
h1V

2

ml2
, f2 =

h2V
2

ml2
, f3 =

h3V
2

m
, f4 =

dV2

ml2
and h=

PV2

ml
, (52)

in which fi q 0 (i=1, 2, 3, 4) due to physical conditions, and h (or P) is used to indicate
the system parameter.

The Jacobian matrix of equation (50) evaluated at an arbitrary point on the initial
equilibrium solution zi =0 takes the form

0 1 0 0

−1
2( f1 +2f2 − h) −3

2 f4
1
2(2f2 − h) f4

J=G
G

G

K

k
0 0 0 1

G
G

G

L

l

, (53)

1
2( f1 +4f2 −2f3 − h) 5

2 f4 −1
2(4f2 +2f3 − h) −2f4

from which one may obtain the characteristic polynomial

P(l)= l4 + a1l
3 + a2l

2 + a3l+ a4, (54)

where

a1 = 7
2 f4, a2 = 1

2( f
2
4 + f1 +6f2 +2f3 −2h),

a3 = 1
2( f1 + f2 +5f3)f4, a4 = 1

2 f1( f2 + f3)+ f3(2f2 − h). (55)

By using the Hurwitz criterion one may show that when

a1 q 0, a2 q 0, a4 q 0 and a3(a1a2 − a3)− a4a2
1 q 0, (56)

the initial equilibrium solution zi =0 is stable.
It is easy to verify that at the critical point, defined by

f1 = 1
2, f2 = 5

8, f3 = 1
8, f4 = 1

2, and hc = 3
2, (57)

the polynomial P(l) has a pair of purely imaginary and two distinct negative eigenvalues:

l1,2 =21
2i, l3 =−1

2 and l4 =−5
4. (58)

Choosing h (initially, P) as the parameter, and then using the parameter transformation

h= hc + m= 3
2 + m, (59)
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and the state variable transformation

z1 − 1
20

7
20 −2 −1 x1

z2 − 7
40 − 1

40 1 5
4 x2

z3
=

0 1
2 0 1 x3

, (60)

z4 −1
4 0 0 −5

4 x4

one may transform equation (50) into the system

dx1

dt'
=X1(x1, x2, x3, x4; m)=

1
2

x2 +
8

145
mx1 +

24
145

mx2 + g1(x1, x2, x3, x4),

dx2

dt'
=X2(x1, x2, x3, x4; m)=−

1
2

x1 +
9

145
mx1 +

27
145

mx2 + g2(x1, x2, x3, x4),

dx3

dt'
=X3(x1, x2, x3, x4; m)=−

1
2

x3 + g3(x1, x2, x3, x4),

dx4

dt'
=X4(x1, x2, x3, x4; m)=−

5
4

x4 + g4(x1, x2, x3, x4), (61)

where functions gi (x1, x2, x3, x4), listed in the Appendix, are polynomials starting from
second order terms. The Jacobian matrix of equation (61), evaluated on the initial
equilibrium solution xi =0 at the critical point mc =0, is now in the Jacobian canonical
form

0 1
2 0 0

−1
2 0 0 0

Jc = 0 0 −1
2 0

. (62)

0 0 0 −5
4

Now, the Maple program can be applied to equations (61) to obtain the normal forms.
Since here vc =1/2, we need another time scale t'= (1/2)t0, or we simply first multiply
the right hand side of equation (61) by 2 and then execute the Maple program. When the
normal form is obtained from the output, it should be multiplied by a back scaling 1/2
(i.e., the vc ). Having done this, one may finally find the following forms up to third order:

dr
dt'

=
7
58

mr−
3019

296960
r3, (63)

du

dt'
=

1
2

+
3
58

m−
19597
296960

r2. (64)

Note that the m terms in equations (63) and (64) are given by the formulas [10]:

da(m)
dm bm=0

=
1
2 0 12X1

1x1 1m
+

12X2

1x2 1m1xi =0,m=0

=
1
2 0 8

145
+

27
1451=

7
58

,

dv(m)
dm bm=0

=
1
2 0 12X1

1x2 1m
−

12X2

1x1 1m1xi =0,m=0

=
1
2 0 24

145
−

9
1451=

3
58

, (65)
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f
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where a(m) and v(m) are, respectively, the real and imaginary parts of the complex
conjugate eigenvalues of the Jacobian matrix of equation (61) evaluated on the equilibrium
xi =0 in the vicinity of the critical point mc =0, satisfying a(0)=0 and v(0)=vc =1/2.

The steady state solutions are determined by setting dr/dt'=0, which yields r̄1 =0 and

r̄2
2 =

1025360
87551

m. (66)

The solution r̄1 =0 is actually the initial equilibrium xi =0 while equation (66) represents
periodic motion of a family of limit cycles. Equation (66) describes the pitchfork bifurcation
path (or parameter-amplitude relationship), shown in Figure 2(a). The stability of the
steady state solutions are determined from

d
dr 0dr

dt'1r= r̄

=
7
58

m−
3019

146480
r̄26Q0

q0
c stable,
c unstable.

(67)

Evaluating equation (67) on the initial equilibrium r̄1 =0 results in (d/dr)(dr/dt')= (7/
58)m. Thus, the initial equilibrium is stable when mQ 0 and unstable when mq 0. Similarly,
evaluating equation (67) on the periodic solution (66) yields (d/dr)(dr/dt')=−(7/29)m,
which indicates the periodic solution is stable if mq 0 and unstable if mQ 0. This shows
the classical theory of stability exchange between the initial equilibrium and the periodic
solutions at the critical point m=0. The frequency of the periodic motion is given by
equation (64) as

v=
du

dt' br= r̄2

=
1
2

+
3
58

m−0 19597
29696010 7

5810296960
3019 1m=

1
2

−
2209
3019

m. (68)

Figure 2. Periodic solution for the double pendulum: (a) pitchfork bifurcation path; and (b) Hopf bifurcation
solutions.
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The periodic asymptotic solutions up to third-order terms are also obtained from executing
the Maple program as given in the following equations:

x1 = r̄ cos vt'+ r̄3 0 4519
11712000

cos 3vt'−
24281

113216000
sin 3vt'1,

x2 =−r̄ sin vt'+ r̄30 179
1484800

cos vt'−
105997
1484800

sin vt'−
5681

3072000
cos 3vt'

−
354443

89088000
sin 3vt'1,

x3 = r̄30 17473
10764800

cos vt'−
14639

10764800
sin vt'+

4519
11712000

cos 3vt'−
24281

113216000
sin 3vt'1,

x4 = r̄30 17473
10764800

cos vt'−
14639

10764800
sin vt'+

4519
11712000

cos 3vt'

−
24281

113216000
sin 3vt'1. (69)

The periodic solutions are depicted in Figure 2(b).
It is seen from the Appendix that equation (61) is quite involved, compared to the simple

example given in the previous section. Therefore, a symbolic computation program is
necessary to be used for saving computation time and avoiding mistakes. It is known that
though a recursive program can, in principle, be executed to any a required high order,
the computation time increases very fast as the order of the normal forms and solutions
increases. All the results including the normal forms and periodic solutions (non-linear
transformations) for the case study of Hopf bifurcation of the double pendulum system
are obtained by executing the Maple program, and execution on an IBM RS6000
workstation is virtually instant. In order to show the efficiency of the program, we have
run the program for this example up to 11th order on the same IBM RS6000 workstation.
It only took about half a minute of CPU time to get all the results (normal form and
periodic solution), and the output of the 11th order normal forms (asymptotic solutions
are omitted here) is given as follows (edited by rearranging the terms):

dr
dt

=
7
58

mr−
3019

292960
r3 −

5426431103033
9359981543424000

r5 +
1100905917258337546093

19668025883000611799040000
r7

+
26620573881148541396526584893146067

464942313595613669023895519232000000000
r9

+
2817957571023925669033252817555329038029913727

91591701618311335044844277883343994880000000000000
r11,

 

 

 



. 34

du

dt
=

1
2

+
3
58

m−
19597
296960

r2 −
104608971027463
9359981543424000

r4 −
466952276797470137509781

147510194122504588492800000
r6

−
502431434305919305691349692533338169

464942313595613669023895519232000000000
r8

+
16613721812708589604284432256148783297417621609

40707422941471704464375234614819553280000000000000
r10. (70)

We know that the memory needed for executing a symbolic program increases
extraordinarily fast as the order of the normal form increases. For a test, the Maple
program has been executed on the same IBM RS6000 workstation to get the normal form
and asymptotic solutions for the double pendulum example up to 21st order, and the
machine did not crash. The CPU time taken for this case is about 1 h. In practice, of
course, we usually do not need such high order approximations to study a physical system
like the double pendulum. However, in degenerate bifurcation cases, we do need to derive
high order normal forms. In order to further show the efficiency of our Maple program,
we now consider another example.

7. HILBERT’S 16TH PROBLEM

In this section, the method and Maple program is used to consider the well known
Hilbert’s 16th problem.

7.1.  

A simplified quadratic form of the Hilbert’s 16th problem is given by [12]

ẋ=−y+ l1x− l3x2 + (2l2 + l5)xy+ l6y2,

ẏ= x+ l1y+ l2x2 + (2l3 + l4)xy− l2y2. (71)

The fundamental question about this quadratic differential equation is: what is the
maximal number of limit cycles the system can have? In general, this is a very difficult
question. If it is restricted to the neighborhood of the isolated fixed point (x, y)= (0, 0),
then the question is related to degenerate Hopf bifurcations [13]. Suppose equation (71)
is transformed into the polar co-ordinate normal form:

ṙ= v1r+ v3r3 + v5r5 + v7r7 + · · · , u� =1+O(r2), (72, 73)

where vi , i=1, 3, 5, . . . , called focus number, are functions of the parameters li ,
i=1, 2, . . . , 6. Now the maximal number of limit cycles which may exist in the vicinity
of the origin depends upon the vi’s. For example, if we choose the li’s such that v1 = v3 =0
but v5 $ 0, then equation (72) can be truncated as ṙ= v5r5 which may be perturbed to
obtain equation ṙ= m1r+ m2r3 + v5r5, where m1 and m2 are small perturbation parameters.
Thus, the maximal number of limit cycles which may exist in the vicinity of the fixed point
(0, 0) is 2.
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Bautin [12] used the method of successive functions to obtain the coefficients of the
normal form as follows:

v1 =2pl1,

v3 =−
p

4
l5(l3 − l6), (l1 =0),

v5 =
p

24
l2l4(l3 − l6)(5l3 + l4 −5l6), (l5 =0),

v7 =−
125p

32
l2(l3 − l6)3(l3l6 −2l2

6 − l2
2 ), (l4 =−5(l3 − l6)), (74)

where the equations in the brackets give the conditions when the previous vi’s are equal
to zero. For example, if l1 =0, then v1 =0 but v3 $ 0; if both l1 and l5 equal zero, then
v1 = v3 =0, but v5 $ 0, etc.

Executing our Maple program yields

D0r= l1r,

D2r=−
1
8

l5(l3 − l6)r3, (l1 =0),

D4r=
1
48

l2l4(l3 − l6)(5l3 + l4 −5l6)r5, (l5 =0),

D6r=
25
64

l2(l3 − l6)3(l3l6 −2l2
6 − l2

2 )r7, (l4 =−5(l3 − l6)). (75)

Note the difference between the notations vi and Dir: Di+1r corresponds to vi . It can be
seen that with a scaling 2p, the coefficient of r in D0r, the coefficient of r3 in D2r and the
coefficient of r5 in D4r agree with Bautin’s results v1, v3 and v5, respectively. However, the
coefficient of r7 in D6r is different from v7, not only in scaling but also in the sign. This
difference is important as it can critically change the behavior of the system. So which set
of results is correct? Recently, several researchers have shown that the result of v7 in
Bautin’s solution is wrong. The same results of equation (75) have been obtained, for
example, by Shi [14], and Qin and Liu [15] using symbolic computations, and by Farr et
al. [13] using the Liapunov Schmidt method.

Further, if we let the factor l3l6 −2l2
6 − l2

2 in D6r (or v7) equal zero, then our Maple
program has been executed to show that D0r=D2r=D4r=· · ·=D20r=0. This seems
to imply that all high order focus numbers are zero. That is, the origin is a center. Bautin
[12] has proved that the origin is indeed a center, i.e., v2k−1 =0 [kq 0 if the following
conditions are satisfied:

l1 = l5 =0, l4 =−5(l3 − l6), l2
2 = l6(l3 −2l6). (76)

7.2.  

Next, consider the cubic system of Hilbert’s 16th problem (e.g., see references [16, 17]):

ẋ= y+ lx,

ẏ=−x+ ly+ a20x2 + a11xy+ a02y2 + a30x3 + a21x2y+ a12xy2 + a03y3. (77)

Jin and Wang [16] considered the case under the conditions:

l= a11 = a12 =0, a21 =−3a03, a20 =−1
2a02 and a30 =− 1

12a
2
02, (78)
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with l= a02a03 $ 0. They used symbolic computer programs to find the following results:

u1 = v3 = v5 =0, v7 =−
1

1680
a03(288a2

03 − a4
02),

v9 =
23

6480
a2

02a03(288a2
03 − a4

02), v11 =
1

997920
a03(999a2

03 +790a4
02)(288a2

03 − a4
02).

(79)

Note that there is a common factor (288a2
03 − a4

02) in all the three equations. Executing our
Maple program yields

D0r=D2r=D4r=0,

D6r=−
1

6144
a03(288a2

03 − a4
02)r7,

D8r=−
61

196608
a2

02a03(288a2
03 − a4

02)r9,

D10r=−
1

4529848320
a03(195840a2

03 +251933a4
02)(288a2

03 − a4
02])r11. (80)

It is seen that significant discrepancy exists in these two sets of coefficients: D6r and v7 differ
by a scaling; D8r and v9 have, in addition to scaling, opposite signs; the worst is in D10r
and v11 where they even have a different factor. This again shows that verification schemes
are important and needed for verifying the results. The above results obtained from our
Maple program have been verified by the ‘‘system verification’’ scheme. Since Jin and
Wang did not report their non-linear transformation in reference [16], we cannot use the
‘‘system verification’’ scheme to verify the results given in equation (79).

Similar to the case of quadratic form, if, in addition, we let the common factor
(288a2

03 − a4
02) equal zero, then the execution of our Maple program on another workstation

has shown that D0r=D2r=· · ·=D60r=0. (The workstation, with more than 30 users,
took 1 week to get the results up to 60th order.) This suggests a clue that all high order
focus numbers are zero. Indeed, Jin and Wang [16] raised the conjecture and later
Christopher and Lloyd [17] showed that the origin is indeed a center (i.e., v2k−1 =0 [kq 0)
if the following conditions,

l= a11 = a12 =0, a21 =−3a03, a20 =−
1
2

a02, a30 =−
1
12

a2
02, a4

02 =288a2
03,

(81)

are satisfied.
The purpose of using the perturbation technique developed in this paper to reconsider

Hilbert’s 16th problem is not to verify the known conclusions, but to test the efficiency
of the method and the Maple program. It might be very difficult or impossible to use some
other methodology such as the matrix approach (based on the normal form theory) to
calculate these coefficients up to as high as 60th order terms!

8. CONCLUDING REMARKS

A perturbation technique for computing normal forms has been developed. A special
bifurcation problem is studied in detail in this paper to demonstrate the computation
efficiency. It has been shown that with the aid of multiple scales, the application of the
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perturbation technique is straightforward and systematic. One of the advantages using this
method is that it is very easy to implement the approach in a computer system via a
symbolic computation language. Based on this method, Maple programs have been
developed for the study of the Hopf bifurcation. Furthermore, a ‘‘system verification’’
scheme is given for verifying normal forms and non-linear transformations (periodic
asymptotic solutions) obtained using any approach. It is expected that the perturbation
technique can be straightforwardly extended to systems whose linearized system evaluated
at a critical point has, at least, a pair of purely imaginary eigenvalues. The author is
currently engaged in work on several other systems. For example, the linearized equations
of these systems may have two pairs of purely imaginary eigenvalues, or one zero and one
pair of purely imaginary eigenvalues at a critical point.
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APPENDIX: FUNCTIONS

The functions gi (x1, x2, x3, x4) given in equation (61) are as follows:

g1 =−
83069

11136000
x3

1 −
931423

11136000
x3

2 +
631
174

x3
3 +

1318
87

x3
4 −

88487
3712000

x2
1x2 −

23169
92800

x2
1x3

−
102613
371200

x2
1x4 +

231
128000

x1x2
2 +

17799
92800

x2
2x3 −

125837
371200

x2
2x4 +

4731
2320

x1x2
3

−
1087
2320

x2x2
3 +

4587
232

x2
3x4 +

1185
928

x1x2
4 +

305
928

x2x2
4 +

3725
116

x3x2
4

+
3213
46400

x1x2x3 +
3041

185600
x1x2x4 +

14987
46400

x1x3x4 +
3841
4640

x2x3x4, (A1)

g2 =−
16811

5568000
x3

1 −
6179

1856000
x3

2 −
71
87

x3
3 −

221
87

x3
4 −

18753
1856000

x2
1x2 −

4831
46400

x2
1x3

−
22077
185600

x2
1x4 −

111
64000

x1x2
2 −

999
46400

x2
2x3 −

13173
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x2
2x4 +

749
1160

x1x2
3

−
1273
1160

x2x2
3 −

637
116

x2
3x4 +

5
464

x1x2
4 −

635
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x2x2
4 −

415
58

x3x2
4

−
413

23200
x1x2x3 −

5911
92800

x1x2x4 +
1443
2320

x1x3x4 −
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2320

x2x3x4, (A2)

g3 =−
1123
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x3

1 +
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x3

2 −
7
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x3
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x3
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x2
1x3

−
4469

102400
x2

1x4 −
801

1024000
x1x2

2 −
357

25600
x2

2x3 −
2221
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7
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−
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256

x2x3x4, (A3)

g4 =
16811

11136000
x3

1 +
6179

3712000
x3
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5
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