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a b s t r a c t

This paper presents the maiden application of a variant of Kalman Filter algorithm known as Local
Ensemble Transform based Kalman Filter (LET-KF) for power system harmonic estimation. The proposed
algorithm is applied for estimating the harmonic parameters of a power signal containing harmonics,
sub-harmonics, inter-harmonics in presence of white Gaussian noise. These algorithms are applied and
tested for both stationary as well as dynamic signals containing harmonics. The LET-KF algorithm
reported in this paper is compared with the earlier reported Kalman Filter based algorithms like
Kalman Filter (KF) and Ensemble Kalman Filter (EnKF) algorithms for harmonic estimation. The proposed
algorithm is found superior than the reported algorithm for its improved efficiency and accuracy in terms
of simplicity and computational features, since there are less multiplicative operations, which reduces
the rounding errors. It is also less expensive as it reduces the requirement of storing large matrices, such
as the Kalman gain matrix used in other KF based methods. Practical validation is carried out with exper-
imentation of the algorithms with the real time data obtained from a large paper industry. Comparison of
the results obtained with KF, EnKF and LET-KF algorithms reveals that the proposed LET-KF algorithm is
the best in terms of accuracy and computational efficiency for harmonic estimation.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

For the development of effective Power Quality (PQ) monitoring
techniques, greater efforts are made by the researchers towards
the development of less-complex and more efficient techniques
for detection, classification, identification of power quality
disturbances. Another key and challenging problem reported
recently by the researchers related to power quality is the
estimation of harmonic parameters for fundamental, harmonics,
inter-harmonics and sub-harmonics components of voltage and
currents signals. Accurate and efficient estimation of harmonics
from the distorted voltage signals is an important issue for
monitoring and analysis of power quality problems [1,2].

Harmonics are components of a distorted periodic waveform,
whose frequencies are integer multiples of the fundamental fre-
quency. In electrical power networks, the increasing use of nonlin-
ear loads and power electronic based load devices has caused
much more harmonic pollution, which significantly deteriorates
the power quality [1]. In order to reduce the harmonic pollution,
it is necessary to estimate the parameters of the harmonics. With
the estimated parameters, such as amplitudes and phases,
appropriate compensation system can be designed for improving
the poor power quality performances [1,2].

For past few decades, various approaches have been proposed
to estimate the parameters of these harmonics [1]. The Fast Fourier
Transform (FFT) is a suitable approach for stationary signal, but
it loses accuracy under time varying frequency conditions and also
posses picket and fence problems [3–5]. The International Electro-
Technical Commission (IEC) standard drafts have specified signal
processing recommendations and definitions for harmonic, sub-
harmonic and inter-harmonic measurement [4]. These standards
recommend using Discrete Fourier Transform (DFT) for harmonic
estimation with some windowing based issues but the DFT-based
algorithms do not perform stably for systems with time varying
frequency [5–7].

Many recursive algorithms are also proposed to solve harmonic
estimation problem but each of them have several limitations in
terms of accuracy, convergence and computational time. The Least
Mean Square (LMS) based algorithms have the drawbacks for their
poor convergence in addition to being failure in case of signal
drifting and changing conditions. However, Recursive Least Square
(RLS) group is the successful algorithms to some extent but the ini-
tialization for these algorithm parameters still remains a challenge
in case of time varying dynamic signals. The accuracy is also
limited for this class of algorithms [5–7].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2015.12.028&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2015.12.028
mailto:santoshkrsingh.nits@gmail.com
http://dx.doi.org/10.1016/j.ijepes.2015.12.028
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


Nomenclature

ŷ f forecast observation ensemble perturbation matrix
R error covariance
y0f forecast observation ensemble
C N � N Eigen vector matrix
^ diagonal matrix of corresponding Eigen values
V M �M orthogonal matrix
R N �M matrix
ke Kalman gain matrix
I identity matrix
d product vector

y f mean of ensemble perturbation matrixex update of state estimate
x f ensemble mean
X0f n� N ensemble perturbation matrix
H observation matrix
lt additive noise
k discrete time (sampling) index
Ts sampling period
n performance index

794 S.K. Singh et al. / Electrical Power and Energy Systems 78 (2016) 793–800
Another extensively used algorithm is the Kalman filter, which
is known for its simplicity, linearity and robustness. This algorithm
is capable enough to estimate harmonic parameters in presence of
noise and other non-linearities present in the harmonic signal
[7–9]. However, the main limitation is that it requires prior infor-
mation of the statistics of the harmonic signal and the initialization
of the state matrix in an accurate and faster way is the main
challenge. The dynamic variations present in the harmonic signals
calls for some suitable and enhanced methods for accurate estima-
tion of these harmonic components present in the signal [10–19].

A variant Kalman filter, called Ensemble Kalman Filter (EnKF)
[20] is proposed for accurate estimation of amplitude and phase
of the harmonic components of distorted power system signal.
The proposed method used sample covariance in Kalman gain
instead of state covariance to avoid the singularity problem and
computational feasibility for high-dimensional system [20]. But
the prominent limitation of the most EnKF-based systems is per-
haps the resource limited ensemble size [21–23]. This is true even
for medium-size systems, with the model state vector size of the
order of just tens of thousands, not to mention the large-scale
applications [22,23]. This limitation calls for the use of the method,
known as localization, which artificially reduces the influence of
observations of spatial domain during the update [21]. The local-
ization makes it possible to dramatically reduce the necessary
ensemble size and create operational systems with as small as a
hundred ensemble members or less [22]. Local Ensemble Trans-
form Kalman Filter (LET-KF) as proposed by Szunyogh [23]
has three features, (i) assimilation of all observations that may
affect the analysis at a given local domain simultaneously,
(ii) obtaining the analysis independently for each domain and
(iii) introduction of changes when non-local observations are
assimilated that improve the computational efficiency and
add flexibility [21,23]. The authors have used the method for
assimilation of large number of observational data for weather
prediction and demonstrated its better performance in terms of
accuracy and computational time [23]. However, there has been
no attempt made to investigate its performance for harmonic
estimation in power system.

In the view of the above following are the main objectives of the
present work.

(a) To study several variants of Kalman Filter algorithms for har-
monic estimation.

(b) Maiden application of Local Ensemble Transform based Kal-
man Filter (LET-KF) algorithm for estimating amplitudes and
phases of the fundamental, harmonics, inter and sub har-
monics in presence of Gaussian noises in power system
signal.

(c) To evaluate the comparative performances of KF [9,18], EnKF
[20] and the proposed LET-KF algorithms to find the best
harmonic estimator.
(d) To check the accuracy and time of convergence for harmonic
signal estimation with the proposed LET-KF algorithm.

(e) To evaluate the performance of the proposed LET-KF algo-
rithm for accurately estimating harmonic signal parameters
on real time data obtained from a real time industrial data
setup for harmonic estimation.

Several variants of Kalman Filtering (KF) algorithms applied for
harmonic parameter estimation

In this section, several variants of KF algorithms, which are
applied for harmonic estimation problems, are discussed. The
details of KF and EnKF algorithms may be referred from
[9,18,20]. The detail procedure of the LET-KF algorithm for
harmonic estimation is also reported in this section.

Kalman Filter (KF)

The vector of unknown parameters X is taken and then KF
algorithm is applied to update the weights as in Eq. (1). The KF dis-
cussed in this section is referred from [9,18].

GðkÞ ¼ P k=k� 1ð ÞHðkÞT HðkÞP k=k� 1ð ÞHðkÞT þ Q
� ��1

ð1Þ

where, G is the Kalman gain, H is the observation vector, P is the
covariance matrix, and Q is the noise covariance of the signal.
The covariance matrix is related with Kalman gain as given in the
following equation.

P k=kð Þ ¼ P k=k� 1ð Þ � GðkÞHðkÞP k=k� 1ð Þ ð2Þ
The updated estimated state vector is related with previous

state vector as follows.

bX k=kð Þ ¼ bX k=k� 1ð Þ þ GðkÞ yðkÞ � HðkÞbX k=k� 1ð Þ
� �

ð3Þ

After updating the weight vector, amplitudes, phases of the
fundamental and nth harmonic parameters and dc decaying
parameters are found out using Eqs. (38)–(41).

Ensemble Kalman Filter (EnKF)

The EnKF discussed in this section is referred from [20]. This
method is based on Monte Carlo approximation method of the
Kalman filter, which avoids evolving the covariance matrix of the
probability density function (pdf) of the state vector, x [20]. In this
case, the distribution is represented by a sample, which is called an
ensemble [20].

X ¼ x1; x2; . . . :; xN½ � ð4Þ
X is a n� N matrix, whose columns are the ensemble members,

and it is called the prior ensemble. Ensemble members form a sam-
ple of the prior distribution [20]. As every EnKF step ties ensemble
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members together so they are not independent. Signal data y tð Þ is
arranged as a m� N matrix [20].

The vector of unknown parameter/Ensemble as in Eqs. (5) and
(6) is given by

XðkÞ ¼ X1ðkÞ X1ðkÞ . . . :X2N�1ðkÞ X2NðkÞ . . . :X2Nþ2ðkÞ½ �T ð5Þ

X ¼ A1 cos /1ð Þ A1 sin /1ð Þ . . .An cos /nð Þ An sin /nð Þ Adc Adcadc½ �T
ð6Þ

The ensemble mean and covariance are [20]

EðXÞ ¼ 1
Q

XQ
k¼1

XðkÞ ð7Þ

C ¼ GGT

Q � 1
ð8Þ

Here,

G ¼ X � EðXÞ ð9Þ
The updated ensemble is then given by

bX ¼ X þ CHT HCHT þ R
� ��1

y� HXð Þ ð10Þ
where, columns of X represent a sample from the prior probability

distribution and columns of bX will form a sample from the posterior
probability distribution [20]. The EnKF is now obtained by replacing

the state covariance P in Kalman gain matrix K ¼ PHT HPHT þ R
� ��1

by the sample covariance, C computed from the ensemble members
(also called as ensemble covariance), where, R is a covariance
matrix, which is always positive semi definite and usually positive
definite, so the inverse of the above exists [20]. After the updating
of the vector of unknown parameter using an Ensemble Kalman
Filtering algorithm, amplitudes, phases of the fundamental and
nth harmonic parameters and dc decaying parameters are obtained
out using Eqs. (38)–(41).

Background theory of LET-KF algorithm

The background theory discussed in this section about LET-KF is
taken from [21–23]. The main features of this method are well
known for its more efficiency and more accuracy, since it has less
multiplication operations that reduce the rounding errors [22].
This method is well known for less expense, because of the reduc-
tion of storage of large matrices that includes Kalman gain matrix
(ke). To describe the proposed LET-KF algorithm, let us consider the
ensemble size to be N and represented by the local forecasted

ensemble members by x f
i ; i ¼ 1;2 . . . ;N, each of which of length n.

x f
i ¼ x f

1 ; x
f
2 ; . . . ; x

f
N

h i
ð11Þ

Then the forecasted ensemble mean is given by

x f ¼ 1
N

XN
i¼1

x f
i ð12Þ

Also the n� N forecasted ensemble matrix is defined by

X f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p x f
1 ; x

f
2 . . . :x

f
N

� �
ð13Þ

Whereas the forecasted ensemble perturbation matrix is
defined by

X0f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p x f
1 � x f ; x f

2 � x f ; . . . ; x f
N � x f

� �
ð14Þ

The Eigen value decomposition is used on a matrix of measured,
real data, the inverse may be less valid when all eigenvalues are
used unmodified. This is because as eigenvalues become relatively
small, their contribution to the inversion is large. Those near
zero or at the ‘‘noise” of the measurement system will have undue
influence and could hamper solutions (detection) using the
inverse. So, to avoid the problems with the Eigen value decompo-
sition, the scaled and forecasted observation ensemble of the

perturbation matrix can be introduced as y f
i which can be

represented by

yf
i ¼ h x f

i

� �
ð15Þ

Now if the linear observation operator h ¼ H is considered then

the mean of this ensemble is yf ¼ Hxf and the ensemble perturba-
tions are represented by

yf
i ¼ H xf

i

� �
� Hðx f Þ ¼ Hðx f

i Þ � Hðx f Þ ¼ Hðx f
i � x f Þ ð16Þ

The ensemble perturbation matrix Y 0f is defined by the columns
y0i, where, i ¼ 1;2; . . . ;N that can be written as

Y 0f ¼ HX0f ð17Þ
Now, a scaled and forecasted observation ensemble perturba-

tion matrix is introduced that can be represented bycY f ¼ R�1=2Y 0f ð18Þ
The above equation has the effect of normalizing the observa-

tions so that it can be a dimensionless parameter with standard
deviation. This prevents the possibility of losses in accuracy due
to rounding errors. It can be rewritten as

Y 0f T R�1Y 0f ¼ cY f TcY f ð19Þ
So in this case the Eigen value decomposition becomescY f TcY f ¼ C ^ CT ð20Þ

The multiplication performance can be avoided by cY f TcY f

because it avoids the possible loss of accuracy. Instead of using
the Eigen value decomposition, the singular value decomposition
(SVD) can be used that is represented bycY f T ¼ CRVT ð21Þ
where, C is the N � N eigenvector matrix as in Eq. (11) and R is the
N �M matrix satisfying ^ ¼ RRT and V is an M �M orthogonal
matrix. Then (22) can be used for updating the ensemble perturba-
tion matrix.

X0a ¼ X0f CðI þ ^Þ�1=2 ð22Þ
Since ^ is a diagonal matrix, I þ ^ is also diagonal, the compu-

tation of the matrix ðI þ ^Þ�1=2 is easy. To update the state estimate,
we can use the Eq. (23) as

Ke ¼ X 0f Y 0f T Y 0f Y 0f T þ R
� ��1

¼ X 0f cY 0f T cY 0f cY 0f T þ I
� ��1

R�1=2

¼ X 0f CRðRTRþ IÞ�1
VTR�1=2 ð23Þ

The last line obtained using SVD and V is orthogonal. To avoid
storing the Kalman gain matrix ke, it can be build up as the product
vector

d ¼ R RT þ I
� ��1

VTR�1=2ðy� y f Þ ð24Þ

Now from right to left and use the equation to update the state
estimates.

ex ¼ xf þ X0f Cd ð25Þ
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LET-KF based harmonic estimation

Any distorted waveform can be represented as the sum of har-
monic components of higher order frequencies. These higher order
frequencies are integral multiple of fundamental frequency in case
of harmonics. Mathematically any harmonic signal can be modeled
as [6,7,9,18,20,24–26]

y0f ðtÞ ¼
XN
n¼1

vnSinðxnt þunÞ þ vdc expð�adctÞ þ lt ð26Þ

where, N is the number of harmonic order, xn is the angular
frequency,un is the phase of the harmonic signal. Further, the angu-
lar frequency can be written as xn ¼ n2pf 1, f 1 is the fundamental
frequency, lt is the additive noise, and vdc expð�adctÞ is the
probable decaying term. The discrete time version of (26) can be
represented as (27)

y0f ðkÞ ¼
XN
n¼1

vnSinðxnkTS þunÞ þ vdc expð�adckTSÞ þ lk ð27Þ

where, TS is the sampling period. The decay term can be approxi-
mated using the first two terms of Taylor series expansion and also
after neglecting higher order terms

vdc expð�adckTSÞ ¼ vdc � vdcadckTS ð28Þ
Substituting (28) in (27) and (28) becomes

y0f ðkÞ ¼
XN
n¼1

vnSinðxnkTS þunÞ þ vdc � vdcadckTS þ lk ð29Þ

The cause of nonlinearity in this model is due to the phase com-
ponent of the sinusoidal signal. In this paper, LET-KF is used for the
estimation of amplitudes and phases of signal. For the estimation
of amplitudes and phases, (29) can be rewritten as

y0f ðkÞ ¼
XN
n¼1

vn sinðxnkTSÞ cos/n þ vn cosðxnkTSÞ sin/n½

þ vdc � vdcadckTS þ lk

� ð30Þ
Hence, for the estimation purpose, the signal can be expressed

in parametric form as

y0f ðkÞ ¼ HðkÞX 0f ð31Þ

HðkÞ ¼ sinðx1kTSÞ cosðx1kTSÞ . . . sinðxnkTSÞ cosðxnkTSÞ . . .1� kTS½ �T
ð32Þ

The vector of unknown parameter is represented by

X0f ¼ X0f
1 ðkÞ X0f

2 ðkÞ . . .X0f
2N�1ðkÞ X 0f

2NðkÞ . . .X0f
2Nþ1ðkÞ X 0f

2Nþ2ðkÞ
h i

ð33Þ

X0f ¼ v1 cos/1 v1 sin/1 . . .vn cos/n vn sin/n . . .vdc vdcadc½ �T
ð34Þ

The forecasted ensemble mean, forecasted ensemble matrix and
forecasted ensemble perturbation matrix of ensemble vector are
computed using (12)–(14) from the above equations. The updated
ensemble is then given by

~x ¼ x f þ X0f Cd ð35Þ
Estimated signal is given by

~y ¼ HðkÞ gxðkÞ ð36Þ
Estimation error becomes

eðkÞ ¼ y0f ðkÞ � gyðkÞ ð37Þ
After updating, the vector of unknown parameters using the
LET-KF algorithm, amplitudes and phases of the fundamental and
nth harmonic parameters including dc decaying parameters can
be computed using the following expression (38)–(41):

vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0f 2

2N þ X 0f 2N
2Nþ2

� �r
ð38Þ

/n ¼ tan�1 X0f
2N

X0f
2N�1

ð39Þ

vdc ¼ X0f
2Nþ1 ð40Þ

adc ¼
X0f

2Nþ2

X0f
2Nþ1

 !
ð41Þ

LET-KF algorithm steps for harmonic estimation:
Step-1:
 Initialize Amplitude, Phase and Frequency of
fundamental and harmonic components, dc decaying
components and forecasted ensemble vector (Local
Members of the Ensemble).
Step-2:
 Generate the power signal containing fundamental
and higher order harmonics satisfying several
conditions as- one period of the signal sampled at
2.5 kHz rate and also conform to 200-ms windowing
in practice as per IEC recommendation referred in [4].
Step-3:
 Discretize and Model the signal in parametric form
using (31).
Step-4:
 Initialize the number of unknown parameters/

ensembles ðX0f Þ and specify error covariance matrix ðRÞ.

Step-5:
 Evaluate estimation error using (35)–(37).

Step-6:
 Calculate forecasted ensemble mean, forecasted

ensemble matrix and forecasted ensemble perturbation
matrix of ensemble vector using (12)–(14).
Step-7:
 Obtain the estimate of forecasted ensemble vector
using (35).
Step-8:
 If final iteration is not reached, go to step-5.

Step-9:
 Estimate amplitude and phase of fundamental and

harmonic components and dc decaying components
using (38)–(41) from final estimate of the forecasted
ensemble vector.
Simulation, results and discussions

Stationary signal corrupted with random noise and DC decay

To evaluate the performance of the proposed LET-KF algorithm
for estimating the harmonic amplitudes and Phases for harmonic,
sub harmonics and inter harmonics, a discretized signal having a
fundamental frequency of f 1 ¼ 50 Hz, third harmonic frequency
f 3 ¼ 150 Hz, fifth harmonic frequency f 5 ¼ 250 Hz, seventh har-
monic frequency f 7 ¼ 350 Hz and eleventh harmonic frequency
f 11 ¼ 550 Hz is generated using MATLAB. The stationary power sig-
nal consisting of 1st, 3rd, 5th, 7th and 11th order of harmonics is
given in Eq. (32). This type of signal is typically present in indus-
trial load comprising of power electronic devices, Variable Fre-
quency Drives (VFD’s) and arc furnaces [9,18,20].

xðtÞ ¼ 1:5 sinð2� pi� f 1 � t þ 80�Þ
þ 0:55 sinð2� pi� f 3 � t þ 70�Þ
þ 0:2 sinð2� pi� f 5 � t þ 45�Þ
þ 0:15 sinð2� pi� f 7 � t þ 36�Þ
þ 0:1 sinð2� pi� f 11 � t þ 30�Þ þ 0:5expð�5tÞ þ ln ð42Þ



Fig. 2. Estimated phase vs time plot of the harmonic signal using LET-KF algorithm.

Fig. 3. Amplitude MSE vs time plot of the harmonic signal using EnKF, KF and LET-
KF algorithms.

Fig. 4. Phase MSE vs time plot of the harmonic signal using EnKF, LET-KF and KF
algorithms.
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The aforementioned signal is corrupted by 5% of Gaussian ran-
dom noise (ln) with zero mean and unity variance. All the ampli-
tudes given are in per unit (p.u) values and phases are in degrees.
For improving the performance in KFalgorithm, many extensions
and modifications are reported in the literature [8–20]. The basic
objective of these modifications is less deviations along with faster
convergence and accurate calculations. The algorithms are imple-
mented in MATLAB 2009a installed in a PC with 2.25 GHz Intel
CPU and 2 GB RAM and the results obtained are reported based
on 50 Hz nominal fundamental frequency of the harmonic signal.
The performance index ðnÞ which is defined as a measure of accu-
racy in estimation is represented by (43)-

n ¼
PN

k¼1 y0f ðkÞ � gyðkÞh i2
PN

k¼1 y0f ðkÞ½ �2
� 100 ð43Þ

where, ŷ f is actual forecasted observation ensemble perturbation

Matrix and gy0f ðkÞ is the estimated and forecasted ensemble pertur-
bation matrix. In this case, the significance of the performance
index n is that it provides the accuracy of the estimation algorithm.
Small value of n corresponds to more accurate estimation and the
more value of n corresponds to significantly less accurate
estimation.

Figs. 1 and 2 represent the amplitude and phase estimation plot
of the harmonic signal containing fundamental, 3rd, 5th, 7th and
11th harmonics. The estimated signals are very close to actual
value for each harmonics in case of amplitude and phase estima-
tion using proposed LET-KF algorithm.

For evaluating the performance of proposed LET-KF algorithm
along with other two recently reported algorithms, the compara-
tive MSE is reported in Figs. 3 and 4. These figures represent the
amplitude and phase MSE of estimation for the harmonic signal
containing fundamental, 3rd, 5th, 7th and 11th harmonics using
KF, EnKF and LET-KF algorithms. It is clearly evident from the
figures that the performance of proposed LET-KF algorithm is
better than KF and EnKF algorithms in case of amplitude and phase
estimation for the signal with harmonics. The proposed LET-KF
algorithm converges faster than that of KF and EnKF algorithms.

Fig. 5 represents the frequency estimation plot of the funda-
mental harmonic signal using KF, EnKF and LET-KF algorithms.
The proposed algorithm outperforms over the existing KF and EnKF
algorithms as is vivid in the figure. The estimated frequency output
of the fundamental harmonic signal is almost matching with 50 Hz
fundamental signal frequency. The deviations observed in case of
LET-KF are less than that of two recently reported KF and EnKF
algorithms.

To investigate the performance of the proposed LET-KF algo-
rithm for sub harmonic signals, a signal as given by (34) is created
in MATLAB. The proposed LET-KF algorithm is applied and then
amplitude and phase are estimated. The test signal considered in
case of sub harmonic is of f sub ¼ 20 Hz.
Fig. 1. Estimated amplitude vs time plot of the harmonic signal using LET-KF
algorithm.

Fig. 5. Estimated frequency vs time plot of the fundamental signal using KF, LET-KF
and EnKF algorithms.
xðtÞ ¼ 0:5 sinð2� pi� f sub � t þ 75�Þ þ ln ð44Þ
Fig. 6 represents the amplitude of estimation plot along with

actual signal of the sub harmonic signal in presence with Gaussian
noise obtained with LET-KF algorithm. It is found that the
estimation error achieved with the proposed algorithm for the
sub harmonic signal is very much reduced and almost matches
with the actual signal.



Fig. 6. Estimated amplitude vs time plot of the sub harmonic signal using LET-KF
algorithm.
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Next the performance of the algorithms is investigated on inter-
harmonic as given by (45) and generated in MATLAB. The signal
considered for testing is of two different frequencies at,
f inter�1 ¼ 180 Hz and f inter�2 ¼ 230 Hz.
xðtÞ ¼ 0:25 sinð2� pi� f inter�1 � t þ 65�Þ þ ln ð45Þ
xðtÞ ¼ 0:35 sinð2� pi� f inter�2 � t þ 10�Þ þ ln

Fig. 7 represents the amplitude estimation plot along with
actual signal containing inter harmonics using LET-KF algorithm
at 180 Hz frequency. The estimation signal obtained with the pro-
posed LET-KF almost matches with the actual inter harmonic
signal.

Table 1 presents the comparative performance of KF, EnKF and
proposed LET-KF algorithm for estimating harmonic parameters
for fundamental, 3rd, 5th, 7th and 11th order harmonics along
with sub and inter harmonics. The estimated values obtained with
Fig. 7. Estimated amplitude vs time plot of the inter harmonic signal using LET-KF
algorithm.

Table 1
Performance of KF, EnKF, and proposed LET-KF algorithm for harmonic parameter estimat

Algorithm Parameters Sub Fund 3rd Inte

Actual Frequency 20 50 150 130
Amp (V) 0.2 1.5 0.5 0.1
Phase (deg) 75 80 60 65

KF [9,18] Amp (V) 0.2045 1.4988 0.5051 0.1
Error (%) 2.25 0.080 1.02 10.
Phase 75.5544 79.9715 60.8927 65.
Error (%) 0.7392 0.035 1.4878 1.3

EnKF [20] Amp (V) 0.2021 1.5100 0.5049 0.0
Error (%) 1.050 0.066 0.980 0.4
Phase 75.2547 79.8782 60.1708 65.
Error (%) 0.3396 0.15225 0.2846 1.3

LET-KF Amp (V) 0.2018 1.4998 0.5048 0.0
Error (%) 0.900 0.0133 0.960 0.3
Phase 75.2417 79.9661 60.1679 65.
Error (%) 0.3222 0.042 0.27983 0.0
all three algorithms for each of amplitude and phase is reported
with their computational times as well. It is evident from the table
that the performance of the proposed LET-KF algorithm is better
than any of the other two algorithms in terms of accuracy and
computational time.

Table 2 presents the values of the Performance Index ðnÞ
obtained with the proposed LET-KF and other two algorithms in
presence of no noise, 10 dB and 40 dB noises respectively under
simulated environment. The performance index achieved with
the proposed LET-KF algorithm on three different signals to noise
ratio is again the best amongst all the three algorithms.

During the LET-KF estimation process the highest amplitude
error deviation (%) is observed in case of inter harmonics signal,
which is 5.4% and is significantly lesser than that with KF and EnKF
algorithms. Whereas, the highest phase deviation obtained with
the LET-KF for seventh harmonic signal is 0.71%, which is the least.
The overall estimation performance of LET-KF algorithm is signifi-
cantly better than other two in terms of accuracy, convergence and
computational time.
Dynamic signal

Dynamic signals are time dependant signals whose parameters
such as amplitude, phase and frequency varies with respect to
time. The proposed LET-KF algorithm is evaluated for dynamic sig-
nal given by (46) and (47). The amplitude, phase and frequency are
estimated by the algorithm one by one and performance is evalu-
ated. The dynamic performance is investigated for three different
frequencies, such as 1 Hz, 3 Hz and 6 Hz and different amplitudes
as referred in (47) below [20,25,26].

yðtÞ ¼ f1:5þ a1ðtÞg sinðx�t þ 80�Þ þ f0:5þ a3ðtÞg sinð3x�t

þ 60�Þ þ f0:2þ a5ðtÞg sinð5x�t þ 45�Þ þ ln ð46Þ
a1 ¼ 0:15 sin 2pf 1t þ 0:05 sin 2pf 5t
a3 ¼ 0:05 sin2pf 3t þ 0:02 sin2pf 5t
a5 ¼ 0:025 sin2pf 1t þ 0:005 sin2pf 5t
f 1 ¼ 1:0 Hz
f 3 ¼ 3:0 Hz
f 5 ¼ 6:0 Hz

9>>>>>>>>=>>>>>>>>;
ð47Þ

Fig. 8 presents the amplitude estimation plot of the dynamic
signal obtained using LET-KF algorithm. It can be observed that
the estimated values of the amplitude of the dynamic signal
achieved with the LET-KF closely match with the actual signal.
ion including sub and inter harmonics.

r-1 Inter-2 5th 7th 11th CT(sec)

180 250 350 550 –
0.15 0.2 0.15 0.1
10 45 36 30

107 0.1635 0.2143 0.1578 0.1105 0.4512
70 9.000 7.150 5.200 10.50
8817 10.4093 44.9312 36.5543 30.8157
5646 4.0930 0.15289 1.5397 2.7190
996 0.1592 0.2142 0.1556 0.0946 0.1573
00 6.133 7.100 3.733 5.400
8750 10.1409 45.1201 36.4381 30.7478
461 1.4090 0.2668 1.2169 2.4926
997 0.1534 0.2115 0.1477 0.0945 0.0753
00 2.2666 5.750 1.533 5.400
0259 10.0459 44.9312 36.2566 29.8180
3985 0.4590 0.15280 0.71278 0.60667



Table 2
Comparison of performance index (n).

SNR No noise 10 dB 20 dB 40 dB

KF [9,18] 0.2987 0.5842 0.7549 0.0590
EnKF [20] 0.0872 0.4755 0.0527 0.0285
LET-KF 0.00541 0.0253 0.01435 0.0156

Fig. 8. Estimated amplitude (A1) vs time plot of the dynamic harmonic signal using
LET-KF algorithm.

Fig. 10. Estimated voltage vs sample plot of the real time harmonic signal using
LET-KF.

Table 3
Comparison of the performance index (n) for real time data using KF, EnKF, and
proposed LET-KF algorithm.

Algorithm Amplitude Phase Computational Time (Sec)

KF 9.5245 12.2562 0.6715
EnKF 5.4165 8.4512 0.3565
LET-KF 2.2518 5.3654 0.1752
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Real time validation of proposed LET-KF algorithm

To investigate the performance of the proposed LET-KF algo-
rithm under real time environment for estimating harmonics in
power system, a voltage signal is recorded across a Variable Fre-
quency Drive (VFD) panel that is used for controlling the speed
and torque of the induction motor at Hindustan Paper Corporation
Limited (HPCL) industry located at Panchgram in Cachar district of
Assam, India, through an experimental setup with power quality
analyzer depicted in Fig. 9. The distorted voltage signal is acquired
through USB connecting port of a Power Quality Analyzer (PQA)
and sent to the laptop for analysis through the proposed LET-KF
algorithm and other two algorithms, KF and En-KF.

Specifications of the instrument used are:

1. Laptop (Maker HP):1.5 GHz, 2 GB RAM, Intel Pentium3
Processor.

2. Power Quality Analyzer (Maker Fluke):
� True RMS Voltage (AC/DC): 5–1250 V.
� True RMS Current (AC/DC): 5–5000 A.
� Frequency Range: 40 Hz to 15.9 kHz.

3. PC Connectivity: USB Port and open choice pc communication
software.

4. Variable Frequency Drive (AC) Make- Siemens.
� Model No – MICROMASTER-440.
� Rating – 250 KW/750 RPM.
Fig. 9. Real time recording of harmonic data at HPCL across a VFD panel.
� 2 Analogue Inputs, 6 Digital Inputs, 2 Analogue Outputs, 3
Relay Outputs.

� Input Voltage – 3ph 380–480 V � 10%, 47–63 Hz.
5. 3-Phase Induction Motor Make – Siemens.

� Rating – 260 KW, 458 A, 988 RPM, 415 V.
� Frame – KDW-400.
� Connection-Delta.
� Rotor Voltage – 790 V, 200 A, 50 Hz.

The real time distorted voltage data is recorded across the VFD
panel while the motor is at running condition. Fig. 10 depicts the
estimation performance of proposed LET-KF algorithm under real
time data. The estimated voltage almost matches with the actual
voltage signal along with lesser deviation. Hence, the results
obtained with real time data from a real time system validate the
performance under theoretical aspects. As per IEC 61000-4-30 for
computing power quality parameters 10 cycles in a 50 Hz system,
which is 200 ms windowing at a sample time of 0.4 ms has been
used for the experiment.

Table 3 presents the values of performance index obtained with
proposed LET-KF, and other two algorithms using the real time
data recorded at HPCL along with the computational time. The per-
formance of the proposed LET-KF algorithm is found to be superior
to both algorithms, KF and EnKF.
Conclusion

A new variant of Kalman filter, Local Ensemble Transform based
Kalman Filter (LET-KF), is applied for the first time for the estima-
tion of amplitude and phase of a time varying fundamental signal,
its harmonics, sub harmonics and inter harmonics corrupted with
white Gaussian noise. The harmonic parameters are estimated
using the proposed LET-KF and other two variants of Kalman Filter,
i.e. KF and EnKF algorithms, for evaluating their comparative per-
formance. The experimentation is made on both static and
dynamic signals with different orders of harmonics. The perfor-
mance index and results obtained with all the three algorithms
reveals that the proposed LET-KF algorithm is the best amongst
all the three algorithms in terms of accuracy and computational
time in estimating harmonic, sub-harmonic and inter harmonics.
In addition, the computational time achieved with the proposed
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LET-KF is the least due to the simplicity of the algorithm with less
multiplicative operations. It is also less expensive, as it does not
require the storing of large Kalman gain matrices like in other KF
based methods. Further, the real time experimentation on the data
obtained at a large paper industry has validated the superior per-
formance of the proposed LET-KF algorithm as compared to other
recently reported two KF based algorithms.
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