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Abstract

In this paper, we aaply certain mapping methods to solve Fractional Boussinesq

equation. We derive Jacobi elliptic function solutions and deduce the solitary wave

solutions and the singular wave solutions when the modulus of the elliptic functions

approaches 1. The correctness of the SWS for some particular values has been

checked using the tanh method. Solitary wave solutions have been plotted for

different values of the fractional order of the derivatives and for the power of the

dependent variable.
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1 Introduction

One of the sought after topics of research in Applied Mathematics is the study of nonlinear

phenomena in different physical situations. There has been a significant progress in the investi-

gation of exact solutions of nonlinear evolution equations (NLEEs) [1-6] in the past few decades.
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NLEEs are the governing equations in various areas of physical, chemical, biological and geolog-

ical sciences. For example in Physics, NLEEs appear in the study of nonlinear optics, plasma

physics, fluid dynamics etc. and in geological sciences in the dynamics of magma.

The important question that arises is about the integrability of these NLEEs. Several methods

have been developed for finding exact solutions. Some of these commonly used techniques are

tanh method [7], extended tanh method [8,9], exponential function method [10], G′/G expansion

method [11-13], Mapping methods [14-18].

In this paper, we derive periodic wave solutions (PWSs) of a fractional Boussinesq equation

in terms of Jacobi elliptic functions (JEFs) [19] and deduce their infinite period counterparts in

terms of hyperbolic functions such as solitary wave solutions (SWSs) and singular wave solu-

tions using mapping methods. The mapping methods employed in this paper give a variety of

solutions which other methods cannot.

The paper is organised as follows: In section 2, we give a definition of Riemann-Liouville frac-

tional derivative [20] and a mathematical analysis of the mapping methods, In section 3, an

introduction to JEFs in sections 4-6 we give a description of the Fractional Boussinesq equation

and its solutions using mapping methods, in section 7, tanh mehod has been employed to find

a SWS and section 8 gives the conclusion.

2 Mathematical Analysis of Mapping Methods

In this section, we give an analysis of the mapping method which will be employed in this paper.

We consider the nonlinear FPDE

F (u,Dα
t u,D

α
xu,D

2α
x u,D3α

x u, ...) = 0, 0 < α ≤ 1. (1)

where the unknown function u depends on the space variable x and time variable t.

Here, the Riemann-Liouville fractional derivatives are given by

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α, Dα

xx
r =

Γ(1 + r)

Γ(1 + r − α)
xr−α. (2)

We consider the TWS in the form

u(x, t) = u(ξ), ξ =
xα

Γ(1 + α)
− c tα

Γ(1 + α)
, (3)

where c is the wave speed.
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Substituting eq. (3) into eq. (1), the PDE reduces to an ODE and then we search for the

solution of the ODE in the form

u(ξ) =
n∑
i=0

Aif
i(ξ), (4)

where n is a positive integer which can be determined by balancing the linear term of the highest

order with the nonlinear term. Ai are constants to be determined.

Here, f satisfies the equation

f ′
2

= pf + qf2 + rf3, (5)

where p, q, r are parameters to be determined.

After substituting eq. (4) into the reduced ODE and using eq. (5), the constants Ai, p, q, r

can be determined.

The mapping relation is thus established through eq. (4) between the solution to eqn. (5)

and that of eq. (1).

The motivation for the choice of f is from the fact that the squares of the first derivatives

of JEFs satisfy eq. (5) and so we can express the solutions of eq. (1) in terms of those functions.

3 Jacobi Elliptic Functions

Consider the function

F (φ,m) = ξ =

∫ φ

0

dθ√
1−m2 sin2 θ

. (6)

Letting t = sin θ, we obtain

ξ =

∫ sinφ

0

dt√
(1− t2)(1−m2t2)

. (7)

This is called Legendre’s standard elliptical integral of the first kind.

When m = 0, ξ =

∫ x

0

dt√
1− t2

= sin−1 x, where x = sinφ.

When m = 1, ξ =

∫ x

0

dt

1− t2
= tanh−1 x, where x = sinφ.

For 0 < m < 1, we define ξ as the inverse of a function which is known as Jacobi Sine el-
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liptic function, expressed in the form ξ = sn−1x so that x = snξ or snξ = sinφ. Here, m is

known as the modulus of the JEFs.

We define two other elliptic functions as

cnξ =
√

1− x2 =
√

1− sn2ξ, (8)

dnξ =
√

1−m2x2 =
√

1−m2sn2ξ. (9)

cnξ is known as Jacobi cosine elliptic function and dnξ is known as JEF of the third kind.

Some properties of JEFs are:

sn2ξ + cn2ξ = 1, dn2ξ +m2sn2ξ = 1

ns ξ =
1

sn ξ
,nc ξ =

1

cn ξ
, nd ξ =

1

dn ξ

sc ξ =
sn ξ

cn ξ
, sd ξ =

sn ξ

dn ξ
, cd ξ =

cn ξ

dn ξ

cs ξ =
cn ξ

sn ξ
, ds ξ =

dn ξ

sn ξ
, dc ξ =

dn ξ

cn ξ
(10)

The derivatives of JEFs are given by

(sn ξ)′ = cn ξ dn ξ, (cn ξ)′ = −sn ξ dn ξ, (dn ξ)′ = −m2sn ξ cn ξ. (11)

When m→ 0, the JEFs degenerate to the triangular functions, that is,

sn ξ → sin ξ, cn ξ → cos ξ, dn ξ → 1 (12)

and when m→ 1, the JEFs degenerate to the hyperbolic functions, that is,

sn ξ → tanh ξ, cn ξ → sech ξ, dn ξ → sech ξ. (13)

4 Fractional Boussinesq Equation

We Consider the fractional Boussinesq equation

D2α
t q − k2D2α

x + aD2α
x (q2n) + b1D

4α
x q + b2D

2α
x D2α

t q = 0, (14)

where a, b1 and b2 are arbitrary constants.
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We are looking for TWSs of eq. (14) in the form

q(x, t) = U(s), s =
xα

Γ(1 + α)
− vtα

Γ(1 + α)
. (15)

Substituting eq. (15) into eq. (14), we get

(v2 − k2)U ′′ + a(U2n)′′ + (b1 + b2v
2)U ′′′′ = 0, (16)

where prime denotes differentiation with respect to s.

Integrating eq. (16) twice with respect to s and keeping the integration constants equal to

0, we obtain

(v2 − k2)U + aU2n + (b1 + b2v
2)U ′′ = 0. (17)

Letting U(s) = [u(s)]1/2n−1, eq. (17) can be written as

(2n− 1)2(v2 − k2)u2 + a(2n− 1)2u3 + (b1 + b2v
2)[2(1− n)u′

2
+ (2n− 1)uu′′] = 0. (18)

We rewrite eq. (18) as

Au′
2

+Buu′′ + Cu2 +Du3 = 0, (19)

where,

A = 2(1− n)(b1 + b2v
2), (20)

B = (2n− 1)(b1 + b2v
2), (21)

C = (2n− 1)2(v2 − k2), (22)

D = a(2n− 1)2. (23)
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5 Solution by Mapping Method

We apply the mathematical analysis of the mapping method to eq. (19). Here, we can see that

l = 1. So, we assume the solution of eq. (19) in the form

u(s) = A0 +A1f(s), (24)

where f satisfies eq. (3).

Substituting eq. (24) into eq. (19) and equating the coefficients of powers of f to zero, we

arrive at the following set of algebraic equations:

f3 : AA2
1r +

3

2
BA2

1r +DA3
1 = 0, (25)

f2 : AA2
1q +

3

2
BA0A1r +BA2

1q + CA2
1 + 3DA0A

2
1 = 0, (26)

f : AA2
1p+BA0A1q +

1

2
BA2

1p+ 2CA0A1 + 3DA2
0A1 = 0, (27)

f0 :
1

2
BA0A1p+ CA2

0 +DA3
0 = 0. (28)

From eqs. (25) and (26), we get

A0 = −(Aq +Bq + C)(2A+ 3B)

6D(A+B)
, A1 = − r

2D
(2A+ 3B). (29)

From eqs. (27) and (28), we obtain the constraint condition

AA1p+BA0q + CA0 + 2DA2
0 = 0. (30)

Case 1. f(s) = tanh2(s). In this case, we can see that p = 4, q = −8, r = 4.

So, we get

A0 =
(8A+ 8B − C)(2A+ 3B)

6D(A+B)
, A1 = − 2

D
(2A+ 3B). (31)

Thus, the solution of eq. (14) can be written as
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q(x, t) =

[
2A+ 3B

D

{
8A+ 8B − C

6(A+B)
− 2 tanh2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
, (32)

with the constraint condition

16(A+B)2 + C(8A+ 8B + C) = 0. (33)

Case 2. f(s) = sech2(s). In this case, we can see that p = 0, q = 4, r = −4 so that we get

A0 = −(4A+ 4B + C)(2A+ 3B)

6D(A+B)
, A1 =

2

D
(2A+ 3B). (34)

So, the solution of eq. (14) becomes

q(x, t) =

[
−2A+ 3B

D

{
4A+ 4B + C

6(A+B)
− 2 sech2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
, (35)

with the constraint condition

4B + C + 2DA0 = 0. (36)

With the value of A0, the condition given by eq. (36) reduces to

C = 8(A+B). (37)

Case 3. f(s) = cs2(s). Here, we have p = 4− 4m2, q = 8− 4m2, r = 4 so that we obtain

A0 = − [(8− 4m2)(A+B) + C](2A+ 3B)

6D(A+B)
, A1 = − 2

D
(2A+ 3B). (38)

So, the solution of eq. (14) can be written as

q(x, t) =

[
−2A+ 3B

D

{
(8− 4m2)(A+B) + C

6(A+B)
+ 2 cs2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
, (39)

When m→ 1, solution given by eq. (39) gives rise to the singular solution
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q(x, t) =

[
−2A+ 3B

D

{
4(A+B) + C

6(A+B)
+ 2 csch2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
, (40)

with the same constraint condition given by eq. (37).

Case 4. f(s) = sn2(s). Here, we have p = 4, q = −(4 + 4m2), r = 4m2 so that we get

A0 =
[(4 + 4m2)(A+B)− C](2A+ 3B)

6D(A+B)
, A1 = −2m2

D
(2A+ 3B). (41)

So, the solution of eq. (14) can be written as

q(x, t) =

[
2A+ 3B

D

{
(4 + 4m2)(A+B)− C

6(A+B)
− 2m2sn2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
, (42)

As m→ 1,we obtain the same solution and the constraint condition given by eq. (32.

Case 5. f(s) = cn2(s). So, we have p = 4(1 − m2), q = 8m2 − 4, r = −4m2 so that we

arrive at

A0 =
[(4− 8m2)(A+B)− C](2A+ 3B)

6D(A+B)
, A1 =

2m2

D
(2A+ 3B). (43)

Thus, the solution of eq. (12) can be written as

q(x, t) =

[
2A+ 3B

D

{
(4− 8m2)(A+B)− C

6(A+B)
+ 2m2cn2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)}]1/2n−1
. (44)

When m→ 1,we obtain the same solution and the constraint condition given by eq. (37).

6 Solution by modified mapping method

In this method, we assume the solution of eq.(19) in the form

u(s) = A0 +A1f(s) +B1f
−1(s), (45)

where f−1 is the reciprocal of f .
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Substituting eq.(45) into eq.(19) and using eq.(3), we arrive at a set of algebraic equations

by equating the coeffients of various powers of f to zero given by

f3 : AA2
1r +

3

2
BA2

1r +DA3
1 = 0, (46)

f2 : AA2
1q +

3

2
BA0A1r +BA2

1q + CA2
1 + 3DA0A

2
1 = 0, (47)

f : AA2
1p− 2AA1B1r +BA0A1q + 2BA1B1r

+
1

2
BA2

1p+ 2CA0A1 + 3DA2
1B1 + 3DA2

0A1 = 0, (48)

f0 : −2AA1B1q +
1

2
BA0B1r + 2BA1B1q + 6DA0A1B1

+CA2
0 +

1

2
BA0A1p+ 2CA1B1 +DA3

0 = 0, (49)

f−1 : −2AA1B1p+AB2
1r +

1

2
BB2

1r +BA0B1q

+2BA1B1p+ 2CA0B1 + 3DA1B
2
1 + 3DA2

0B1 = 0, (50)

f−2 : AB2
1q +BB2

1q +
3

2
BA0B1p+ CB2

1 + 3DA0B
2
1 = 0, (51)

f−3 : AB2
1p+

3

2
BB2

1p+DB3
1 = 0. (52)

From eqs. (46), (47), (51) and (52), we derive the following:

A1 = − r

2D
(2A+ 3B), B1 = − p

2D
(2A+ 3B)

rB1 = pA1, A0 =
A1(Aq +Bq + C)

3r(A+B)
. (53)

Eqs. (48), (49) and (50) give rise to a very cumbersome constraint condition which is omitted

in the paper.

Case 1. f(s) = tanh2(s). In this case, we can see that p = 4, q = −8, r = 4.
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So, we get

A0 =
(2A+ 3B)(8A+ 8B − C)

6D(A+B)
, A1 = B1 = −2(2A+ 3B)

D
. (54)

Thus the solution of eq. (14) is

q(x, t) =

[
A0 +A1 tanh2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)
+B1 coth2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)]1/2n−1
,(55)

where A0, A1 and B1 are given by eq. (54).

Case 2. f(s) = cs2(s). In this case, we can see that p = 4− 4m2, q = 8− 4m2, r = 4.

Here, we get

A0 = −(2A+ 3B)[(8− 4m2)(A+B) + C]

6D(A+B)
, A1 = −2(2A+ 3B)

D
, B1 =

(2m2 − 2)(2A+ 3B)

D
.(56)

Thus the solution of eq. (14) can be written as

q(x, t) =

[
A0 +A1 cs2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)
+B1 sc2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)]1/2n−1
, (57)

where A0, A1 and B1 are given by eq. (56).

As m→ 1, solution given by eq. (57) reduces to eq. (40).

Case 3. f(s) = cn2(s). In this case, we can see that p = 4− 4m2, q = 8m2 − 4

r = −4m2.

In this case, we get

A0 = −(2A+ 3B)[(8m2 − 4)(A+B) + C]

6D(A+B)
, A1 =

2m2(2A+ 3B)

D
, B1 =

(2m2 − 2)(2A+ 3B)

D
.(58)

Thus the solution of eq. (14) becomes

q(x, t) =

[
A0 +A1 cn2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)
+B1 nc2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)]1/2n−1
, (59)

where A0, A1 and B1 are given by eq. (58).
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As m→ 1, solution given by eq. (59) reduces to eq. (35).

7 Solution by Tanh Method

In this method, the Tanh function is introduced as a new variable since all derivatives of tanh

can be represented as a polynomial in tanh itself. We apply this method to eq. (19) with

A = 1, B = −2, C = 4, D = 1. With these values of the parameters, eq. (19) reduces to

u′
2 − 2uu′′ + 4u2 + u3 = 0. (60)

With the assumption that TWSs can be expressed in terms of tanh(s), we introduce y =

tanh(s) as the new dependent variable and consider solutions of the form

u(s) = S(y) =
N∑
n=0

any
n, y = tanh(s). (61)

So, we can write

d

ds
= (1− y2) d

dy
, (62)

d2

ds2
= (1− y2)

[
−2y

d

dy
+ (1− y2) d

2

dy2

]
. (63)

Now, eq. (60) can be written as

[
(1− y2)dS

dy

]2
− 2S(1− y2)

[
−2y

dS

dy
+ (1− y2)d

2S

dy2

]
+ 4S2 + S3 = 0. (64)

By substituting eq. (61) into eq. (64) and balancing the highest degree terms in y, we get

N = 2 so that we can assume the solution of eq. (64) in the form

S(y) = a0 + a1y + a2y
2. (65)

By substituting eq. (65) into eq. (64) and equating the coefficients of different powers of y

to zero, we obtain a0 = −8, a1 = 0, a2 = 8.

Thus the solution of eq. (60) is
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u(s) = −8 sech2(s). (66)

Thus the solution of eq. (14) for the special values of A,B,C and D can be written as

q(x, t) = −8

[
sech2

(
xα

Γ(1 + α)
− vtα

Γ(1 + α)

)]1/2n−1
(67)

which confirms the correctness of the solution given by eq. (32) with the constraint condition

given by eq. (33) also satisfied.

Fig.(1)-(8) represent the solution for Eq(14),by taking different vales for α and n

Figure 1: Solution for q(x, t) when n = 2, α = 0.2

Figure 2: Solution for q(x, t) when n = 2, α = 0.5
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Figure 3: Solution for q(x, t) when n = 2, α = 0.8

Figure 4: Solution for q(x, t) when n = 2, α = 1

Figure 5: Solution for q(x, t) when n = 1, α = 0.2
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Figure 6: Solution for q(x, t) when n = 1, α = 0.5

Figure 7: Solution for q(x, t) when n = 1, α = 0.8

Figure 8: Solution for q(x, t) when n = 1, α = 1
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8 Conclusion

The Fractional Boussinesq equation has been solved using mapping methods solutions of which

are expressed in terms of JEFs. When the modulus m of the elliptic functions approaches 1, it

leads to SWSs as well as singular wave solutions. The correctness of the SWS has been checked

using the tanh method. SWSs for different values of n and α have been graphically illustrated.
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