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MirSNP, a database of polymorphisms altering
miRNA target sites, identifies miRNA-related SNPs
in GWAS SNPs and eQTLs
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Abstract

Background: Numerous single nucleotide polymorphisms (SNPs) associated with complex diseases have been
identified by genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) studies.
However, few of these SNPs have explicit biological functions. Recent studies indicated that the SNPs within the
3’UTR regions of susceptibility genes could affect complex traits/diseases by affecting the function of miRNAs. These
3’UTR SNPs are functional candidates and therefore of interest to GWAS and eQTL researchers.

Description: We developed a publicly available online database, MirSNP (http://cmbi.bjmu.edu.cn/mirsnp), which is
a collection of human SNPs in predicted miRNA-mRNA binding sites. We identified 414,510 SNPs that might affect
miRNA-mRNA binding. Annotations were added to these SNPs to predict whether a SNP within the target site
would decrease/break or enhance/create an miRNA-mRNA binding site. By applying MirSNP database to three brain
eQTL data sets, we identified four unreported SNPs (rs3087822, rs13042, rs1058381, and rs1058398), which might
affect miRNA binding and thus affect the expression of their host genes in the brain. We also applied the MirSNP
database to our GWAS for schizophrenia: seven predicted miRNA-related SNPs (p < 0.0001) were found in the
schizophrenia GWAS. Our findings identified the possible functions of these SNP loci, and provide the basis for
subsequent functional research.

Conclusion: MirSNP could identify the putative miRNA-related SNPs from GWAS and eQTLs researches and provide
the direction for subsequent functional researches.

Keywords: microRNA, Single nucleotide polymorphism (SNP), Genome-wide association study (GWAS), Expression
quantitative trait loci (eQTLs), MirSNP
Background
MicroRNAs (miRNAs) are small non-coding RNA
molecules of ~22 nucleotides that primarily mediate
post-transcriptional gene silencing processes in ani-
mals [1,2]. MiRNAs inactivate specific mRNAs and
interfere with the translation of target proteins [3]. In
mammals, miRNAs are predicted to control the acti-
vities of ~50% of all protein-coding genes [4]. As key
post-transcriptional regulators, miRNAs have an im-
portant role in a wide range of biological processes,
* Correspondence: dryue@bjmu.edu.cn; daizhang@bjmu.edu.cn
1Institute of Mental Health, Peking University, 51 Hua Yuan Bei Road, Beijing
100191, People’s Republic of China
3Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
Full list of author information is available at the end of the article

© 2012 Liu et al.; licensee BioMed Central Ltd.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
including cell proliferation, differentiation, apoptosis
and metabolism [2,3]. Evidence indicates that miRNAs
are also involved in the pathogenesis of complex dis-
eases, such as cancer and mental disorders [4,5].
Complementarity to bases 2-8 of the miRNA (the seed

site) is important in miRNA-mRNA binding [6,7]. MiR-
NAs are key regulators of gene expression; therefore, SNPs
in the seed sites of miRNA targets may create, as well as
destroy, miRNA binding sites, and further affect pheno-
types and disease susceptibility [8]. Identifying these seed-
site SNPs could help in the further exploration of the mo-
lecular mechanism of gene dysregulation. In addition, gen-
etic variants in miRNA genes may also have important
roles by affecting miRNA maturation, which may affect
disease susceptibility [8]. Certain polymorphisms in
miRNA genes have been found to be associated with
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various complex diseases, including cancers, mental
diseases, cardiomyopathy, and asthma (Additional file 1:
Table S1).
GWAS and eQTLs are powerful methods for identi-

fying genetic variants contributing to disease risk and
gene expression. In a GWAS of schizophrenia (SCZ),
Ripke et al. found the most significant SNP (p < 1.6 ×
10-11) within an intron of a putative primary transcript
for hsa-mir-137 and found four other SNPs achieving
genome-wide significance that were located in pre-
dicted target sites of hsa-mir-137 [9]. It was estimated
that more than 50% of the protein-coding genes are
regulated by miRNAs, and each miRNA may regulate
hundreds of potential targets [10,11]. Taking into ac-
count large scale of biological significance shown by
miRNAs, miRNA-related SNPs could be important
variations leading to traits and diseases. Identifying
allele-specific miRNA-mRNA interactions may indicate
the functional roles of the SNPs from GWAS and
eQTLs that presently lack obvious known function.
To help identifying putative miRNA-related SNPs

from researchers’ own GWAS and cis-acting eQTLs
data set, we have developed a freely available database,
named “MirSNP”, which provides SNPs located in pre-
dicted miRNA target sites. This database has minor
allele frequency (MAF) and linkage disequilibrium
(LD) information for the SNPs and has annotations
concerning their creative or disruptive effects on puta-
tive target sites. The MirSNP database comprises over
414,510 predicted miRNA-related SNPs, enabling
users to identify potential miRNA-related SNPs from
their own GWAS or eQTLs data. In this work, we a-
pplied MirSNP to our schizophrenia GWAS data and
several brain eQTLs data as examples.

Construction and content
Data sources
To store the mRNA sequences, miRNA data and SNPs,
a local Structured Query Language (SQL) database was
built using MySQL software. Human miRNAs were
downloaded from miRBase18.0 [12]. For SNP catalogs,
four tables from dbSNP135 [13] were used (see URLs).
To maximize the consistency between different data-
bases, mRNA sequence files were obtained from NCBI
(see URLs) rather than from the UCSC genome browser.
In total, 42,733 mRNA sequences and 513,249 SNPs
located in the 3’UTRs of mRNA were eligible for subse-
quent analysis.

Identifying polymorphisms in pre-miRNA genes
We identified SNPs either located in human pre-
miRNA genes or in their adjacent upstream/down-
stream 200 bp regions by comparing the coordinates
of both SNPs and related miRNAs (Figure 1). There
were 12,846 polymorphisms, including 1,940 SNPs in
pre-miRNA sequences. An SQL script was written to
calculate the SNP density (Figure 2). The SNP density
in pre-miRNA regions declined rapidly to 0.43 SNPs/
kb if we considered only SNPs having a MAF above
0.01 in four populations (CEU, HCB, JPT, YRI).
Identifying polymorphisms in miRNA target sites
The method of identifying polymorphisms in mRNAs
affecting miRNA-mediated processes is shown in Figure 3.
The information as to whether or not a SNP is located in
the 3’UTR of an mRNA came from dbSNP135. Only SNPs
located in mRNA 3’UTR areas were recorded in the local
SQL database. Preforming sequence alignment between
20-bp DNA sequences surrounding 3’UTR SNPs and the
corresponding mRNA sequences, variants were mapped
onto their mRNA sequences. Subsequently, each SNP in
our database had two to four mRNA sequence records
corresponding to different alleles. Using the mRNA
sequences of SNPs and miRNA mature sequences, we
obtained the predicted target results using an miRNA tar-
get prediction algorithm, miRanda, which has highest sen-
sitivity among eight tested algorithms [14].
Although there are examples that imperfect 7-nt seed

site pairing can be functional, there is overwhelming evi-
dence to support the hypothesis that Watson-Crick
pairing to the miRNA seed site is the most important
feature for miRNA prediction and function [6,7]. There-
fore, we adopted the 7-nt seed region in the miRNA as
the major criterion in the miRanda algorithm [15]. In
detail, to predict miRNA binding sites, we applied mi-
Randa v3.3a with the default pairing score cutoff of
“≥140” and “–strick” command, which only considered
stringent 7-nt seed pairing (requiring an uninterrupted
match of at least seven nucleotides from the 5’-end of
the miRNA).
Additional information about MirSNP
A requirement for perfect 7-nt seed site pairing improves
the reliability of miRNA target prediction, particularly
when seed motif is conserved in the UTR regions of
whole-genome alignments [16,17]. We downloaded the
conservative information of whole-genome alignments
(phastCons 46way vertebrates from UCSC ftp site, see
URLs) [18] and then added the average value of conser-
vative scores of 7-nt seed motif to our database. The
score of mirSVR methodology, a machine learning
method for ranking miRNA target sites [19], were also
added to the MirSNP database as annotation. However,
the data of MirSNP are not identical to that of the
mirSVR. Imperfect overlap may traced back to SNPs (the
mirSVR methodology didn’t consider the impact of SNPs
on miRNA-mRNA bindings), the use of different UTR



Figure 1 Workflow depicting analysis of variations in/near miRNA genes.
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database and miRNA information. Therefore, not all
results in MirSNP should have the score of mirSVR.
SNPs become more important if they have a high fre-

quency or are undergoing positive selection. Therefore,
we have added MAF information from dbSNP135 (see
URLs) for the SNPs into MirSNP. Based on this infor-
mation, the results of MirSNP filtered by MAF could be
displayed. Analysis of the MAF data revealed that there
were 32,822 SNPs located in miRNA-mRNA binding
Figure 2 Density of SNPs in human miRNA genes. (A) SNP density in h
average level of all human miRNAs, error bars represent the standard devia
mirBASE18 and dbSNP135, respectively. Figure A shows the result of all SN
0.01 in at least one population from four (CEU, HCB, JPT, YRI).
sites with MAFs greater than 0.01 in the four popula-
tions. In addition, 122 SNPs in pre-miRNA genes had
MAF data and the remaining 1,818 SNPs lacked MAF
data.
LD information was obtained for each SNP from the

HapMap project [20]. The Phase2 HapMap fileset (see
URLs) was downloaded for the four populations and the
linkage of the SNPs was calculated using a threshold of
r2 greater than 0.8 using the PLINK software [21]. LD
uman pre-miRNAs and flanking regions. Each bar represents the
tion of the mean value. MiRNA and SNP information came from
Ps in dbSNP135. (B) Figure B only shows SNPs with a calculated MAF >



Figure 3 (A) Workflow depicting the analysis of variations in miRNA-mRNA binding sites. (B) An example of how we determinate a
SNP in predicted mRNA target site.
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and MAF information of SNPs were stored into separate
tables in download page (see URLs).

Database construction
All the useful data were stored in a local MySQL data-
base. We used Django, a web application framework
written in Python, to build a user-friendly online website
(http://cmbi.bjmu.edu.cn/mirsnp).

Utility
The website
We obtained over one million records for 414,510
miRNA-related SNPs. These SNPs were classified into
four groups, labeled as create, enhance, decrease or
break. To display the records in the MirSNP database,
we designed a user-friendly MirSNP web site (see URLs)
to allowing searching for SNPs in putative miRNA target
sites. On the frame “single search” (Figure 4A), the sys-
tem allows users to search records by entering a
RefGene name, mRNA id, SNP RSid or mature miRNA
name. All identifiable RefGene names and mRNA ids for
this search can be found by clicking the hyperlinks
“Refgene name” and “mRNA id” on the page. After
pressing the “Search” button, the results are presented
on a new page (Figure 4B). The record in Figure 4B
shows that the A-allele of rs56352346 may promote the
binding of CYP4B1 gene and hsa-let-7a-2-3p and when
rs56352346 is the C-allele, the mature miRNA and gene
cannot combine (Figure 4B). The specific explanation of
each column is provided in the help page. Additionally,
on the “single search” frame, users can choose whether
to display the binding alignment as well as whether to
filter the output by MAF.
We would like to recommend the frame named “Query

disease & trait associated SNPs” (Figure 5). This frame
permits the search of SNPs from GWAS and eQTL stud-
ies. The acceptable input is a list of SNP RSid in a text file.
Here, users can query not only the submitted SNPs, but
also their linked SNPs (r2 > 0.8). For example, searching
for associated SNPs in our schizophrenia GWAS data
(p < 0.0001) in this frame, four additional SNPs were iden-
tified compared to using the “batch search” frame that
does not consider linked SNPs.

The use of MirSNP for brain eQTL data sets
Many studies have implicated the association between
SNPs and the expression of their host genes. We specu-
late that it will be of great significance to combine our
miRNA-related SNPs data and eQTL data. We used the
MirSNP database for three human brain eQTL data sets,
including human cortical samples from 193 individuals
[22], cortex samples from 269 individuals [23] and sam-
ples obtained from 150 subjects [24]. SNPs located in
miRNA-mRNA binding sites could affect the expression
of their host genes; therefore, we only considered eQTLs
that had a cis-effect on the host genes. Four putative
miRNA-related SNPs (rs3087822, rs13042, rs1058381,
rs1058398) were selected and they were statistically sig-
nificant, genome-wide, in the three brain eQTL data
(Table 1). Based on our in silico analysis, we hypothesize
that these SNPs may affect the miRNA mechanism and
thus affect the mRNA expression of their host genes in

http://cmbi.bjmu.edu.cn/mirsnp


Figure 4 (A) The “Single search” frame of the MirSNP web site. (B) An example of miRNA-related SNP search results.
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the brain. Further experiments are necessary to confirm
our speculation concerning these SNPs.

The use of MirSNP for a schizophrenia GWAS data set
Our previous GWAS data [25], involving 746 SCZ cases
and 1,599 healthy controls, identified a set of 7,705 SNPs
having a statistical significance of p < 0.01. Here, we con-
ducted a genome-wide analysis for these GWAS SNPs
falling within computationally predicted miRNA targets.
We combined putative miRNA-related SNPs and GWAS
SNPs with SNP id as the key. To increase the range of
combination, we used HapMap data and the software
Plink to calculate r2 between pairwise SNPs. The GWAS
data are from Chinese Han population; therefore, we
chose 90 Asian individuals from the HapMap project for
LD analyses. A subset of 4,997 SNPs in predicted
Figure 5 The “Query disease & trait associated SNPs” frame of the Mi
miRNA target sites were in our GWAS analyses. Hence,
we set 1.0 × 10-5 (0.05/4997) as the threshold of statis-
tical significance. Three polymorphisms were identified
(Table 2). The SNP that showed the strongest asso-
ciation with schizophrenia was found in the TBC1D15
gene (p = 4.0 × 10-6 in the Chinese Han population). The
in silico analysis implied that three SNPs (rs17110432,
rs11178988, and rs11178989) in 3’UTR area of TBC1D15
may affect the miRNA-mRNA binding process. However,
further experiments are necessary.
We also overlapped the SNPs around microRNA genes

in our GWAS data of schizophrenia. A subset of 108
SNPs around miRNA genes was identified. We found
one SNP (rs10173558), which is only 5 bp away from the
start site of “hsa-mir-1302-4”, having a statistical signifi-
cance lower than 0.001. Yuan et al. reported that the
rSNP web site.



Table 1 Brain eQTLs found in predicted miRNA-mRNA binding sites

mirSNP Gene Involved miRNAs Allele eQTL Linkagea p-value
(Myers, A.J. et
al)b

p-value
(Colantuoni, C.
et al)c

p-value
(Gibbs, J.R. et
al)d

rs3087822 CRIPT hsa-miR-200a-3p, hsa-miR-26b-3p,
hsa-miR-29b-1-5p, hsa-miR-335-3p

A/G rs3087822 1 8.45E-05 9.54E-18 3.20E-13

rs13042 FAM82B hsa-miR-202-5p, hsa-miR-362-5p,
hsa-miR-500b, hsa-miR-1914-5p

A/Ge rs13042/
rs4961193

1/0.864 5.03E-06 8.52E-16 1.30E-08

rs1058381 RABEP1 hsa-miR-4760-3p A/G rs1058381/
rs1065483

1/0.954 0.00254 7.81E-19 2.89E-08

rs1058398 RABEP1 hsa-miR-134, hsa-miR-3118, hsa-miR-943,
hsa-miR-192-3p, hsa-miR-5002-3p

A/G rs1065483 0.955 0.00254 7.81E-19 3.92E-10

aLinkage analysis of predicted miRNA-related SNPs and eQTLs in 90 CEU individuals from HapMap project.
bA survey of gene expression of 193 normal human brain tissues (cortex) [22]. The p-values have been adjusted by Bonferroni correction.
cA survey of gene expression of 269 normal human brain tissues (prefrontal cortex) [23]. Genome-wide Bonferroni corrected p = 0.05 (2.6e-12).
dA survey of gene expression of 150 normal human brain tissues (cerebellum, frontal cortex, pons, and temporal cortex) [24].
eAlthough rs13042 has four allelotypes in MirSNP, only A and G alleles have frequencies in populations.
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highest expression level of miR-1302’ target genes was in
the nervous system and the genes were enriched in both
synapses and intracellular membrane-bounded organelles
[26]. This finding implied a potential relevance of miR-
1304 to psychiatric disorders.

Discussion
In recent years, increasing numbers of databases have been
published to aid researchers to explore the impact of SNPs
on miRNA targets [27-33]. Some researchers, such as
Richardson [31] and Ziebarth [32], have provided links be-
tween SNPs in miRNA target sites, cis-acting eQTLs and
Table 2 Putative miRNA-related SNPs associated with schizop

mirSNP Involved
gene

MAFa Involved miRNAs

rs11178988 TBC1D15 0.156 hsa-miR-145-3p, hsa-miR-3680-3p, hsa-miR-5

rs11178989 TBC1D15 0.156 hsa-miR-4501

rs17110432 TBC1D15 0.167 hsa-miR-1193, hsa-miR-335-3p, hsa-miR-29b

rs11544338 FAM117B 0.305 hsa-miR-409-3p, hsa-miR-653

rs11680951 FAM117B 0.291 hsa-miR-516a-3p, hsa-miR-376a-5p, hsa-miR
3p, hsa-miR-5191, hsa-miR-516b-3p

rs6058896 DNMT3B 0.078 hsa-miR-30b-5p, hsa-miR-3686, hsa-miR-30c
hsa-miR-2278, hsa-miR-589-3p

rs10484565 TAP2 0.078 hsa-miR-3689b-5p, hsa-miR-3177-5p, hsa-mi
3689f, hsa-miR-190b, hsa-miR-3689e, hsa-mi

rs670358 CDC42BPG 0.395 hsa-miR-4305, hsa-miR-331-3p, hsa-miR-463
hsa-miR-3690, hsa-miR-5195-5p, hsa-miR-43

rs11563929 STEAP2 0.1 hsa-miR-16-2-3p, hsa-miR-195-3p, hsa-miR-3
4703-5p, hsa-miR-4766-3p

rs16870907 TAP2 0.047 hsa-miR-4760-3p, hsa-miR-330-3p

rs12178 ZBTB34 0.456 hsa-miR-1267, hsa-miR-501-5p, hsa-miR-361

Eleven putative miRNA-related SNPs link to SCZ-GWAS SNPs with a significance of p
aMinor allele frequencies (MAF) are from an HCB population.
bAllele reports are from NCBI.
cLinkage analysis of putative miRNA-related SNPs and SCZ-associated SNPs in 90 As
the results of GWAS. Previous works summarized the char-
acteristics of miRNA-related SNPs and showed the potential
of applying such databases in GWAS and eQTL researches.
However, these databases may not be suitable for a single
GWAS or eQTL data set. Some databases cannot perform
batch search for numbers of SNPs and some cannot provide
effective miRNA-related information for strongly- associated
loci. MirSNP was developed to identify putative miRNA-
related SNPs from single data sets of GWAS or eQTL,
especially from newly published data sets. First, our analysis
covered 513,249 known 3’UTR SNPs based on dbSNP135
and we used highly consistent data sources to avoid data loss
hrenia

Alleleb SCZ-
associated
SNP

Linkagec p value OR

689, hsa-miR-1294 C/T rs17110426 0.945521 4.06E-06 0.6449

A/C rs17110426 0.945521 4.06E-06 0.6449

-2-5p A/G rs17110426 1 4.06E-06 0.6449

A/C/G/
T

rs11544338 1 5.48E-06 0.6511

-1287, hsa-miR-145- A/C/G/
T

rs11544338 1 5.48E-06 0.6511

-5p, hsa-miR-4773, C/T rs6058894 0.946365 2.31E-05 1.584

R-3689a-5p, hsa-miR-
R-190a

A/G rs10484565 1 3.58E-05 1.448

8-3p, hsa-miR-4705,
08

A/G rs670358 1 4.68E-05 0.7677

942-5p, hsa-miR- G/T rs11563929 1 6.81E-05 0.7281

C/T rs16870907 1 8.48E-05 1.589

3-3p, hsa-miR-653 A/C/G/
T

rs12178 1 9.66E-05 1.277

< 0.0001.

ian individuals from the HapMap project.



Table 3 Comparison among four databases

MirSNP PolymiRTS 2.0 Mirsnpscorea Patrocles

Data source NCBI UCSC UCSC UCSC

Predicting strategy miRanda TargetScan L motifs [17]

Results

miRNA-related SNPs 414510 117037 19513 26578

miRNA-related SNPs with MAF > 0.01 32822 21938 19208 7334

Involved Genes 17569 13129 8495 11314

Involved mature miRNAs 1921 1738 1222 846

Records (SNPs with MAF > 0.01) 121796 78351 69026 10908

Overlap with MirSNP

Number of SNPs (MAF > 0.01) coinciding with MirSNP 15913 17481 5759
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while integrating different data. Furthermore, sequence
alignments between surrounding DNA sequences of SNPs
and the corresponding mRNA sequences were used to map
variants into their mRNA sequences. Finally, our web site
was designed to directly use GWAS or eQTL data sets in a
batch query, particularly considering the linked SNPs in dif-
ferent populations.
The MirSNP database stores a large number of records

of SNPs in predicted miRNA targets sites and we con-
centrated on providing a convenient search platform so
that recent GWAS or eQTL results can be placed on
this platform for batch retrieval. In MirSNP, all 3’UTR
SNPs stored in dbSNP135 database (513,249) were ana-
lyzed. Compared with other databases, MirSNP obtained
more results for both common and rare SNPs that might
influence miRNA processes. In Table 3 and Figure 6, a
comparison between MirSNP and three existing databases
(PolymiRTS, Mirsnpscore and Patrocles) are presented.
To compare the sensitivity of MirSNP prediction, we
Figure 6 Comparison between MirSNP and three similar databases.
identified 13 validated miRNA-related SNPs by literature
review: most of the SNPs coming from the table 2 in
Sethupathy and Collins [34]. Of the 13 cases (Table 4),
nine were identified using MirSNP. The SNPs that not
found were either not located in the 3’UTR based on our
records (rs34764978, rs13212041) or do not have a perfect
7-nt binding in the seed site (rs2735383, rs9341070). For
the other three databases, from thirteen cases, no more
than five validated SNPs were identified. Therefore, the
MirSNP database could cover majority of validated
miRNA-related SNPs.
MiRNAs can downregulate gene expression by two

posttranscriptional mechanisms: mRNA cleavage or trans-
lational repression. In animals, miRNA is thought to have
a repressive effect that influences protein expression, not
the mRNA levels. However, it has been estimated that
over 80 percent of miRNAs acted to lower mRNA levels,
which shows that mRNA destabilization is the primary ac-
tion mode of miRNAs on target mRNAs [35]. In addition,



Table 4 Experimentally validated miRNA-related SNPs found in MirSNP

MiRNA Target
gene

Functional
SNP

Reported
associated disease

MirSNP PolymiRTS2 Mirsnpscore Patrocles Pubmed
id

Journal Author

hsa-
mir-
629

NBS1 rs2735383 Lung cancer 22114071 Carcinogenesis Yang L

hsa-
mir-
184

TNFAIP2 rs8126 Squamous cell
carcinoma of the
head and neck

✓ ✓ 21934093 Carcinogenesis Liu Z

hsa-
mir-
1827

MYCL1 rs3134615 Small-cell lung
cancer

✓ ✓ ✓ 21676885 Cancer Res Xiong F

hsa-
mir-
148a

HLA-C rs67384697 HIV ✓ 21499264 Nature Kulkarni S

hsa-
mir-
191

MDM4 rs4245739 Ovarian
carcinomas

✓ ✓ 21084273 Cancer Res Wynendaele J

hsa-
mir-
125b

BMPR1B rs1434536 Breast cancer ✓ ✓ ✓ ✓ 19738052 Cancer Res Saetrom P

hsa-
mir-
510

HTR3E rs56109847 Diarrhea
predominant
irritable bowel
syndrome

✓ ✓ 18614545a Hum. Mol.
Genet

Kapeller J

hsa-
mir-
96

HTR1B rs13212041 Arson or property
damage

18283276a Mol. Psychiatry Jensen KP

hsa-
mir-
433

FGF20 rs12720208 Parkinson’s disease ✓ ✓ 18252210a Am. J. Hum.
Genet

Wang G

hsa-
mir-
148/
152

HLA-G rs1063320 Childhood
asthma

✓ ✓ ✓ ✓ 17847008a Am. J. Hum.
Genet

Tan Z

hsa-
mir-24

DHFR rs34764978 Methotrexate
resistance

17686970a PNAS Mishra PJ

hsa-
mir-155

AGTR1 rs5186 Hypertension ✓ ✓ 17668390a Am. J. Hum.
Genet

Sethupathy P

hsa-
mir-206

ESR1 rs9341070 Breast cancer 17312270a Mol.
Endocrinol

Adams BD

hsa-
mir-24

SLITRK1 rs193302862 Tourette’s syndrome ✓ 16224024a Science Abelson JF

Some cases are not in MirSNP because the SNPs were not located in the 3’UTR based on our records (rs34764978, rs13212041) or do not have a perfect 7-nt
binding in the seed site (rs2735383, rs9341070).
aThese cases are from Table 2 in Sethupathy and Collins [34].
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studies have shown that SNPs in seed-sites region can sig-
nificantly change the expression of the target mRNA and
protein [36-40]. eQTL analysis is an experimental method
for exploring the relationship between SNPs and mRNA
expression at a high throughput. Genetic variants that
create or destroy an miRNA binding site may be the cas-
ual cis-acting eQTLs. The combination of our MirSNP
database and eQTL data will provide possible explanations
for the eQTLs. We have already identified four SNPs in
prediected miRNA target sites that were proven to be
brain eQTLs in three independent studies. Further experi-
ments are needed to prove that these eQTLs affect gene
expression through an miRNA mechanism. On the other
hand, using GWAS, enormous numbers of associations
between SNPs and diseases have been reported. There are
many disease-associated SNPs that function by miRNA
regulation. Overlapping miRNA-related SNPs and the
existing GWAS data could identify possible biological
mechanisms for these disease-associated variations and
provide the in silico basis for further studies.
Our aim was to merge the MirSNP database with high

throughput SNP experimental data. We identified many
SNPs in predicted miRNA targets and indicated their
potential functions based on sequence algorithms.
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Unfortunately, the expression information of miRNAs
and mRNAs are not supplied in our database. We con-
sidered the possibility of an miRNA and mRNA combin-
ing, but under the complex mechanism of spatial and
temporal expression, we had no idea if the two mole-
cules would encounter each other in vivo. Combining
MirSNP with additional databases containing expression
information, such as miRGator [41], would improve the
functionality of the database.

Conclusions
MirSNP is a database of SNPs in predicted miRNA target
sites, based on information from dbSNP135 and mir-
BASE18. MirSNP is highly sensitive and covers most
experiments confirmed SNPs that affect miRNA function.
The results suggest that our prediction and data proce-
ssing are full-scale. MirSNP may be combined with
researchers’ own GWAS or eQTL positive data sets to
identify the putative miRNA-related SNPs from traits/
diseases associated variants. We aim to update the
MirSNP database as new versions of mirBASE and dbSNP
database become available.

Availability and requirements
MirSNP is publicly available on the internet at http://
cmbi.bjmu.edu.cn/mirsnp.

URLs
MirSNP (http://cmbi.bjmu.edu.cn/mirsnp)
dbSNP135 (ftp://ftp.ncbi.nih.gov/snp/organisms/

human_9606/database/organism_data)
mRNA sequence file (ftp://ftp.ncbi.nih.gov//refseq/

H_sapiens/mRNA_Prot/human.rna.fna.gz, released
November 15, 2011)
HapMap fileset (http://pngu.mgh.harvard.edu/~purcell/

plink/res.shtml)
mirBASE (http://www.mirbase.org/ftp.shtml)
UCSC (ftp://hgdownload.cse.ucsc.edu/goldenPath/

hg19/phastCons46way/vertebrate/)

Additional file

Additional file 1: Table S1. Disease-associated SNPs found within
microRNA genes. We queried articles for all SNPs located in human pre-
miRNA genes and their adjacent upstream/downstream 200 bp regions.
286 articles were found that were published before November, 2011. We
reviewed these papers and selected 22 SNPs that were reported to be
associated with diseases. aPubmed ids and SNP information are from
dbSNP135. bmicroRNA positions are from mirBASE18. cThe MAF column
reports the allele frequency of the minor allele from the four populations
where it was the highest.
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