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Impact of microRNA regulation on variation
in human gene expression
Jian Lu1 and Andrew G. Clark1

Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA

MicroRNAs (miRNAs) are endogenously expressed small RNAs that regulate expression of mRNAs at the post-
transcriptional level. The consequence of miRNA regulation is hypothesized to reduce the expression variation of
target genes. However, it is possible that mutations in miRNAs and target sites cause rewiring of the miRNA regulatory
networks resulting in increased variation in gene expression. By examining variation in gene expression patterns in
human populations and between human and other primate species, we find that miRNAs have stabilized expression of
a small number of target genes during primate evolution. Compared with genes not regulated by miRNAs, however,
genes regulated by miRNAs overall have higher expression variation at the population level, and they display greater
variation in expression among human ethnic groups or between human and other primate species. By integrating
expression data with genotypes determined in the HapMap 3 and the 1000 Genomes Projects, we found that expression
variation in miRNAs, genetic variants in miRNA loci, and mutations in miRNA target sites are important sources of
elevated expression variation of miRNA target genes. A reasonable case can be made that natural selection is driving
this pattern of variation.

[Supplemental material is available for this article.]

‘‘Canalization’’ is a term that was coined to describe the ability of

living organisms to buffer against phenotypic variation, despite

ubiquitous environmental or genotypic perturbations (Waddington

1942, 1953, 1956). MicroRNAs (miRNAs) have recently been pos-

tulated to be regulators of gene expression canalization (Hornstein

and Shomron 2006; Cui et al. 2007; Li et al. 2009; Wu et al. 2009).

Several lines of evidence allow tests of this idea, and here we con-

sider the role of miRNAs in canalization of gene expression in

humans.

MiRNAs are endogenously expressed, single-stranded RNAs

that are ;22 nucleotides (nt) long and regulate mRNA abundance

post-transcriptionally (Ambros 2003; Wienholds and Plasterk

2005; Zamore and Haley 2005; Carthew 2006; Kim and Nam 2006;

Sevignani et al. 2006). In animals, miRNAs bind complementary

sequences of target mRNAs to cause degradation (Bagga et al. 2005;

Guo et al. 2010) and/or translation repression (Olsen and Ambros

1999; Doench et al. 2003). One miRNA usually targets more than

100 genes (Enright et al. 2003; Stark et al. 2003; John et al. 2004;

Rajewsky and Socci 2004; Brennecke et al. 2005; Grun et al. 2005;

Lewis et al. 2005). A gene may, in turn, be regulated by multiple

miRNAs (Enright et al. 2003; Lewis et al. 2003, 2005; John et al.

2004; Rajewsky 2006). Given the large number of miRNAs anno-

tated in the human genome, 30%–80% of human genes are pre-

dicted to be influenced by miRNAs (Enright et al. 2003; Stark et al.

2003; John et al. 2004; Rajewsky and Socci 2004; Brennecke et al.

2005; Grun et al. 2005; Lewis et al. 2005; Friedman et al. 2009). The

comprehensive interactions between miRNAs and protein-coding

genes are expected to be sufficiently tightly regulated as to comprise

‘‘wired’’ genetic networks (Hornstein and Shomron 2006). Basic

modules inside the regulatory networks consist of coherent and

incoherent feed-forward loops (Fig. 1A,B) that are hypothesized to

reduce the stochastic noise in expression and translation of the

target genes (Hornstein and Shomron 2006; Li et al. 2009; Wu et al.

2009). These proposed canalization effects of miRNA regulation are

supported by systems biology simulations (Osella et al. 2011) and by

observations that miRNA deletions and mutations are often asso-

ciated with disease, cancer, or phenotypic abnormalities (Bartel

2004, 2009; He and Hannon 2004; Sokol and Ambros 2005; Calin

and Croce 2006; Esquela-Kerscher and Slack 2006; Li et al. 2006;

Ghildiyal and Zamore 2009), yet miRNA knockouts often result in

only subtle phenotypic effects (Miska et al. 2007).

Nevertheless, little is known about the canalization effects of

miRNAs in natural populations. Many studies have documented

extensive natural variation of gene expression, and the expression

patterns of individual genes can be treated as quantitative phe-

notypes, i.e., eQTL (Stranger et al. 2005, 2007a,b; Blekhman et al.

2010; Idaghdour et al. 2010; Pickrell et al. 2010). Since one crucial

function of miRNAs is to fine-tune (canalize) the expression levels

of target genes (Bartel and Chen 2004; Hornstein and Shomron

2006; Li et al. 2009), the miRNA canalization framework predicts

that protein-coding genes will have lower expression noise (or re-

duced variation across individuals in the population) when they

are targeted by miRNAs (the model is presented in Fig. 1C,D).

Previous studies, based on limited data, have reached mixed con-

clusions on this question. Cui et al. (2007) found that miRNA

regulation reduces gene expression divergence between human

and chimpanzee, while Zhang and Su (2008) observed higher

variation of miRNA target genes in the brains of a European-

American population.

In this study, we propose that at least six classes of genetic

variation in miRNA targeting networks would affect gene expres-

sion levels. Mutations in a miRNA precursor can be divided into

four categories based on their potential impacts on target recog-

nition and miRNA biogenesis (Fig. 1E). Genetic variants in miRNA

target sites in the 39 UTRs affect miRNA target recognition, and

mutations in other regions of 39 UTRs potentially affect the ac-

cessibility of a target site to a miRNA (Fig. 1F). Here we investigate

the regulatory effects of miRNAs on human gene expression by
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examining expression patterns of protein-coding genes across six

high-throughput data sets. For each gene, we calculated the CV

(coefficient of variation in expression) to quantify the extent of

expression variation with the formula

CV =
Standard deviation of expression levels across individuals

Mean of expression levels across individuals
3 100:

This metric has several desirable properties to quantify vari-

ation of gene expression levels and has been well justified in pre-

vious studies (Meiklejohn et al. 2003; Kaern et al. 2005; Zhang and

Su 2008).

To obtain an overview of the effect of miRNA targeting on

gene expression variation, we first compare the variability in ex-

pression levels of miRNA target genes vs. non-target genes. Next,

we dissect the trans-effects of miRNAs and cis-effects of miRNA

target sites on gene expression variation. Finally, we explore the

impact of miRNA regulation on human evolution.

Results

Empirically determined miRNA-correlated genes have
elevated expression variation (CV) in human populations

The canonical miRNA regulation model postulates that miRNAs

repress expression of target genes (Bartel 2009). Under this simple

repression model, one expects a negative correlation between the

expression levels of miRNAs and their respective target genes.

Nevertheless, the miRNA wiring networks will generate complex

expression patterns, causing either positive or negative correla-

tions between miRNAs and target genes (Tang et al. 2010; Huang

et al. 2011a). Wang et al. (2009) measured expression levels of

miRNAs and mRNAs in lymphoblastoid cell lines of 90 European-

American males. At an FDR of 0.01, the authors identified ;7200

mRNA–miRNA significantly correlated pairs, including 981 mRNAs

exclusively negatively correlated with at least one miRNA (de-

noted as neg), 1023 mRNAs exclusively positively correlated with

one or more miRNAs (pos), 414 mRNAs that positively and neg-

atively correlated with multiple miRNAs (negpos), and 11,754 genes

that were not significantly correlated with any miRNA (non) (Wang

et al. 2009).

We conducted a CVanalysis of the ;14,000 mRNA transcripts

that were expressed in the 90 European-American males (denoted

as data set I; for details, see Table 1 and Methods). The CV values

range from 0.37 to 26.30, with a median of 2.23 and a standard

deviation of 1.70 (Supplemental Fig. S1A). Relative to transcripts

with expression levels not associated with any miRNA, the CV is

significantly higher in transcripts that are associated with miRNA

expression—the median CV is 2.13, 2.54, 2.91, and 3.03 for the

non, neg, pos, and negpos classes, respectively (P < 10�16 for all the

three pairwise comparisons, Kolmogorov-Smirnov [KS] tests) (Sup-

plemental Fig. S1B). Therefore, our CV analyses of the empirically

correlated miRNA:mRNA pairs suggest that miRNA targeting is

coupled with increased gene expression variability, and this ob-

served pattern is contradictory to the hypothesized canalization

effects of miRNAs.

Direct target genes of miRNAs show higher
expression variation

A potential pitfall in the above comparisons is that the expression

correlation method tends to pick up mRNAs with high CVs while it

neglects those with low expression variation. In other words, the

higher expression variation of miRNA-correlated mRNAs might

be caused by ascertainment bias but not biological factors. To ex-

clude this possibility, we evaluated the expression variability of

Figure 1. Scheme for a canonical miRNA regulation network. The com-
prehensive interactions between miRNAs and transcription factors (TF) are
expected to comprise ‘‘wired’’ genetic networks to regulate the expression
of target genes. (A,B) Examples of incoherent and coherent feed-forward
loops, respectively. In the incoherent feed-forward loop, the direct regulatory
effect of a TF on the target gene is opposed to the indirect regulatory effect
through miRNA regulation (A); and in the coherent feed-forward loops, the
direct regulatory effect of a TF on the target gene is synergistic to the indirect
regulatory effect through miRNA regulation (B). The consequence of miRNA
regulatory effects is to reduce the stochastic noise in expression levels of
target genes. (C,D) Distributions of expression levels (the x-axis is the number
of molecules per cell) of two hypothetical target genes across cells (or
individuals). (C ) Expression levels of the target gene are tightly regulated due
to miRNA targeting; (D) expression levels of a gene not targeted by miRNAs
are highly variable across individuals. (E,F ) Six sources of genetic variation in
the miRNA regulatory networks. (E ) The scheme of a miRNA precursor
characterized by a hairpin structure. The sequence in black is the mature
miRNA (guide strand) and position 2–8 of mature miRNA is the ‘‘seed’’
region (underlined). Perfect pairing between the seed of the mature miRNA
and the target site is crucial for miRNA target recognition (F ). Mutations
associated with a miRNA precursor can be divided into four categories: (1)
mutations in the ‘‘seed’’ alter the target recognition; (2) changes in the
mature miRNA beyond the ‘‘seed’’ region potentially affect target recogni-
tion; (3) changes outside mature miRNAs can affect miRNA biogenesis and
hence affect the abundance of the mature miRNA; and (4) changes in pro-
moter regions of the miRNA precursor will cause the abundance of mature
miRNA to be variable (E ). Mutations in miRNA target pairing regions also
affect miRNA binding: (5) Mutations in the seed pairing region of a miRNA
will affect the target recognition and hence the expression level of the host
genes; and (6) mutations in regions of 39 UTR beyond seed pairing might
affect the accessibility of a miRNA to the target site. In our model, genetic
variation in the former four classes is defined as the ‘‘trans-regulatory’’ effect,
and variation in the latter two classes is defined as the ‘‘cis-regulatory’’ effect.
Both trans- and cis-regulatory effects in the miRNA regulatory networks
contribute to the expression variation of the target genes.
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miRNA target genes based on in silico predictions and experi-

mental validations.

Among the 366 putative miRNAs with expression detected by

the miRNA microarrays (Wang et al. 2009), we remapped 287 of

them on miRNAs annotated in miRBase V14 and V15 (Methods).

We used four current in silico miRNA target prediction algorithms

to identify conserved targets, including TargetScan based on con-

servation (TSs) (Lewis et al. 2005; Grimson et al. 2007; Friedman

et al. 2009), Pictar (Krek et al. 2005), miRanda (John et al. 2004),

and PITA (Kertesz et al. 2007). We also used the Context Score in

the TargetScan package (TSt) to identify non-conserved miRNA

targets of conserved miRNAs and targets of non-conserved miRNAs

(Grimson et al. 2007; Baek et al. 2008).

With each of the five algorithms, we consistently found evi-

dence that mRNAs targeted by miRNAs have significantly higher

CVs than non-target transcripts in the 90 European-American

males (Fig. 2A). The same pattern is also observed if we consider the

1078 target genes of coexpressed miRNAs that were experimentally

verified by previous studies (P = 10�8, KS test) (Fig. 2A). The pattern

is more pronounced if we combine the miRNA target determi-

nation methods—the coefficient of expression in variation (CV) of

the 8902 high-confidence miRNA target transcripts is significantly

higher than that of the 4833 non-target genes (the median CV is

2.32 vs. 2.05 for high-confidence vs. non-targets, P < 10�16, KS test;

high-confidence targets are defined in Methods) (Fig. 2B). Inter-

estingly, the 283 target genes determined by all six methods (five

prediction algorithms plus experimental verification) have the

highest expression variation in the 90 European-American males,

with a median CVof 2.43, ;18% higher than the median CVof the

non-target genes (P = 10�10, KS test).

Next, we expanded our analysis to another five large-scale

gene expression data sets as summarized in Table 1. We assume

that the same set of miRNAs in data set I (Wang et al. 2009) is also

expressed in these lymphoblastoid/leukocyte cell samples. There is

evidence that expression levels of miRNAs are highly variable in

lymphoblastoid cells from different human individuals (Wang

et al. 2009; Huang et al. 2011b); however, the expression patterns

of miRNAs in terms of ‘‘present’’ and ‘‘absent’’ are highly conserved

between lymphoblastoid cells from various sources (detailed com-

parisons are presented in the Supplemental Materials).

The second data set measures expression levels of ;16,700

mRNA transcripts (22,300 microarray probes) in 194 healthy Arab

and Amazigh individuals (Idaghdour et al. 2010). With each of the

five miRNA target prediction methods, we also observe signifi-

cantly higher CVs in transcripts that are targeted by the coex-

pressed miRNAs than in non-target transcripts (P < 10�16 in all the

five comparisons) (Supplemental Fig. S2A). In each comparison,

the expression variability (CV) of miRNA target transcripts is ;10%

higher than that of non-miRNA targets. For the 1504 microarray

probes mapping on transcripts that are targeted by the coex-

pressed miRNAs with experimental evidence (for details, see

Table 1. Data sets of human gene expression variation used in this study

Reference Data set Cell lines Population
Samples used
in HapMap?

Platform for
mRNA

Probes
expressed

Platform for
miRNA

Wang et al. 2009 I Lymphoblastoid 90 European-American
males

No human-6 V2 BeadChip 14,172 Illumina microRNA
chip

Idaghdour et al. 2010 II Leukocyte 194 Arab and
Amazighs people

No HumanHT-12 BeadChip 22,300 N/A

Stranger et al. 2007a,b III Lymphoblastoid 30 YRI children
(23 M, seven F)

Yes human-6 V1 BeadChip 14,695 N/A

IV Lymphoblastoid 30 CEU children
(14 M, 16 F)

Yes human-6 V1 BeadChip 14,695 N/A

V Lymphoblastoid 45 CHB (22 M, 23 F) Yes human-6 V1 BeadChip 14,695 N/A
VI Lymphoblastoid 45 JPT (23 M, 22 F) Yes human-6 V1 BeadChip 14,695 N/A

Figure 2. Expression variability (CV) in the lymphoblastoid cells is sig-
nificantly higher for genes that are targeted by the coexpressed 287
miRNAs, regardless of target determination methods. (A) The results for
data set I (Wang et al. 2009); (TSs) TargetScan with conservation (PCT >
0.8); (TSt) context score (#0.4 and percentile >85); (Verified) experi-
mentally verified targets taken from TarBase, miR2Disease, and Hafner
et al. (2010). (B) The results after combining miRNA target determination
methods together. (High-confidence miRNA targets) Only targets de-
termined by TSs (PCT > 0.8); (TSt) (#0.4 and percentile >85), Pictar, or
experimentally verified targets of the 287 coexpressed miRNAs; (Non-
targets) transcripts that are not targeted by the 287 coexpressed miRNAs
with any of the miRNA target determination methods (including the four
aforementioned methods, PITA, and miRanda algorithms). Boxplots of
CVs for targets (gray) and non-target transcripts (white) are presented.

MicroRNAs and human genetic variation
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Methods), we also observed ;10% increase in variability of gene

expression (P < 10�16, KS test) (Supplemental Fig. S2A). For the

8472 transcripts that are targeted by none of the 287 miRNAs, the

median variability is 2.72, significantly lower than the corre-

sponding value (3.24) of the high-confidence miRNA targets (P <

10�16, KS test) (data set II in Fig. 2B). Consistent with data set I, the

388 miRNA targets predicted with all five methods and confirmed

by experimental verification have an even higher median expres-

sion variability of 3.36, the highest of all of the categories.

The third through sixth data sets are expression profiles of

mRNAs from lymphoblastoid cell lines of four populations in the

HapMap Project: YRI (Yoruba in Ibadan), CEU (CEPH Utah), CHB

(Han Chinese in Beijing), and JPT (Japanese in Tokyo). Extensive

expression studies have identified ;15,000 mRNA transcripts that

are expressed in these samples in previous studies (Stranger et al.

2005, 2007a,b). For each population, we observed the same pattern

as in the data set I and II, i.e., the miRNA target genes determined

by either in silico prediction or experimental verification, on av-

erage have higher variability than the non-targets (see Supple-

mental Fig. S2B–E for data sets III, IV, V, and VI). We also found that

the CVs of the high-confidence target genes are significantly

higher than those of the non-target genes in each of the four data

sets (Fig. 2B).

Therefore, our gene expression variation comparisons based

on various miRNA target determination methods also indicate that

miRNA targeting is significantly associated with elevated expres-

sion variation.

Synergistic effects of miRNA regulation

Since the 39 UTR of an mRNA often harbors multiple sites that are

targeted by miRNAs, there is often a synergistic effect of miRNA

targeting (Bartel 2009). miRNAs exert synergistic regulatory effects

through two mechanisms: (1) biological synergism: a 39 UTR

having target sites to multiple miRNAs; and (2) mechanistic syn-

ergism: a 39 UTR with multiple target sites (to either the same or

different miRNAs) that are spaced less than ;50 nt and the co-

operative repression effects on these sites are greater than pairs of

sites spaced far apart. In the miRNA target-prediction algorithms

applied in the above section, we dichotomized mRNA transcripts

by binning ‘‘miRNA target’’ vs. ‘‘non-target’’ and did not account

for the cooperative effects of miRNAs or target sites. In the fol-

lowing, we show that the CV of target genes is also affected by

synergistic effects of miRNA regulation.

To make our model simple, we neglected the possible non-

linear synergistic effects of target sites and assumed that the tar-

get sites have linear and additive repressive effects. We also com-

bined miRNAs with the same ‘‘seed’’ (position 2–8 of a miRNA) (see

Fig. 1E,F) into one distinct family. For each mRNA, we first iden-

tified the putative miRNA target sites predicted by TargetScan

(Context Score # 0.3) and grouped overlapping miRNA:mRNA

pairings based on ‘‘seed’’ information. The number of distinct

miRNA target sites within mRNA 39 UTRs varies from 0 to 14 (the

small number of mRNAs with >14 sites were binned into the class

with 14). In each of the six data sets, we grouped mRNAs based on

the number of target sites for the miRNAs that are expressed in the

lymphoblastoid cells. We found a strong positive correlation be-

tween the number of miRNA-interacting sites and the median CV

value of that transcript group, with a Pearson correlation co-

efficient (r) varying from 0.73 to 0.91 (Fig. 3A,B; Supplemental

Fig. S3). Because Context Score (TSt) identifies both the conserved

and non-conserved miRNA target sites, we next separately consid-

ered these patterns for conserved miRNA target sites. Not surpris-

ingly, the number of conserved target sites in each transcript is

generally smaller than the number of sites predicted by the context

score, which varies from 0 to 5 (based on a TargetScan PCT score

cutoff of 0.8; a small number of mRNAs have more than five sites,

and they were binned into five). Nevertheless, we still observed

a strong positive correlation between the number of conserved

miRNA target sites and gene expression variability (Pearson r be-

tween 0.61 and 0.90 across the six data sets; four are statistically

significant, and two are marginally significant, probably due to the

small number of classes) (Fig. 3C,D; Supplemental Fig. S3). In short,

the synergistic miRNA targeting effects further support the trend

that stronger miRNA regulation is associated with greater inter-

individual variation in gene expression.

The trans-acting effects of miRNAs on the expression
variation of targets

Changes in miRNA loci affect expression patterns of target genes

through diverse trans-acting mechanisms (Fig. 1A). To compre-

hensively characterize mutations in human miRNA loci, we sur-

veyed genetic variants determined in the HapMap 3 and 1000

Genomes Projects (The 1000 Genomes Project Consortium 2010;

The International HapMap 3 Consortium 2010). Among the 1.6

million non-redundant SNPs (single nucleotide polymorphisms)

genotyped in the HapMap 3 Project, we identified 21 SNPs located

inside miRNA precursors (Supplemental Table S1). Of the 36.8

million SNPs and 3.8 million indels (insertion and deletions)

identified in the 1000 Genomes Project, we found 594 genetic

variants (540 SNPs and 54 indels) located inside miRNA loci, in-

cluding 54 variants in ‘‘seed’’ regions (position 2–8 of mature

miRNAs), 115 variants in mature miRNAs outside of ‘‘seed’’ re-

gions, and 425 variants in miRNA precursors outside of mature

miRNAs or spanning entire miRNA loci (Supplemental Table S2).

In the global human population sample (1092 human individuals

Figure 3. The magnitude of the miRNA regulation effect is positively
associated with gene expression variability. In each plot, the x-axis is the
number of target sites. (A,B) The number of the putative miRNA target
sites predicted by TSt (context score # 0.3) and the median CV for the
transcripts in data sets I and II. The number of distinct miRNA target sites
that are harbored in an mRNA 39 UTR varies from 0 to 14 (a small number
of mRNAs have >14 sites and are binned into 14). (C,D) The number of
conserved miRNA-interacting sites (based on TSs PCT > 0.8) and the
median CV of the genes. The number of conserved target sites located in
one transcript is generally smaller than the number of sites predicted by
context score, and varies from 0 to 5 (a small number of mRNAs have more
than five sites and are binned into five). Only microarray probes that are
mapped on the RefSeq genes are used in the two data sets.
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in the 1000 Genomes Project), >50% of

the genetic variants (SNPs and indels)

have a minor allele frequency <0.5%

(Supplemental Fig. S4), consistent with

previous observations (Xie et al. 2005;

Chen and Rajewsky 2006; Saunders et al.

2007) and with the suggestion that they

are somewhat deleterious.

To evaluate the regulatory impact of

the miRNA-related genetic variants on

variation of transcriptomes in human pop-

ulations, we used a compressed mixed

linear model (Zhang et al. 2010) and per-

formed tests of genome-wide association

between these mutations and expression

levels of mRNAs (detailed analysis pro-

cedures are fully described in Methods).

Among samples of 1092 individuals that

were sequenced in the 1000 Genomes Proj-

ect Phase 1, 149 samples have mRNA ex-

pression data quantified by Stranger et al.

(2007b), including samples from 32 un-

related CEU, 41 unrelated CHB, 39 un-

related JPT, and 37 YRI individuals. There

are 322 genetic variants in miRNA loci that are segregating in the 149

individuals, and 94 of them are located in miRNA loci expressed in

lymphoblastoid cells (Supplemental Fig. S4E,F). We identified six

SNPs and indels in miRNA loci that are significantly associated with

at least one of the putative target genes (FDR cutoff 10%) (Table

2). We also identified 14 SNPs/indels in miRNA loci that are sig-

nificantly associated with the expression levels of at least one

gene, either through direct or indirect targeting mechanisms (FDR

cutoff 5%) (Table 3). Interestingly, nearly all of the miRNA-oriented

variants that are associated with mRNA expression levels are located

outside of the ‘‘seed’’ regions (Tables 2, 3), suggesting that they

might not directly affect target recognition. Since these mutations

potentially affect miRNA biogenesis, it is likely that these mutations

affect target genes by changing the abundance of mature miRNAs.

The associations noted above motivate us to ask whether

variation in expression (abundance) of miRNAs affects expression

patterns of target genes. It is notable that expression levels of

miRNAs vary greatly in natural human populations (Wang et al.

2009; Borel et al. 2011). In Supplemental Figure S5, we show that in

lymphoblastoid cells of 90 European-American males (Wang et al.

2009), the expressed miRNAs have a very similar distribution of

CVas the ;14,000 coexpressed mRNAs—the median CVof miRNAs

is 2.75, which is slightly higher than that of mRNAs. Thus we

calculated pairwise Spearman correlation coefficients between

expression levels of miRNAs and mRNAs in the 90 European-

American males that are quantified in Wang et al. (2009). After

correcting for multiple tests at an FDR of 0.05, we identified

365,920 miRNA:mRNA pairs that are negatively correlated (287

miRNAs and 10,765 Ensembl genes were used in the correlation

analysis). For each miRNA, we used a hypergeometric test to de-

termine whether the predicted target genes of the miRNA (con-

text score # 0.3 and percentile > 80%) are significantly enriched

in the negatively correlated miRNA:mRNA pairs. After multiple

test corrections, we identified 24 miRNAs that have targets sig-

nificantly enriched in the negatively correlated miRNA:mRNA

pairs (Table 4). We also found that 15 of the 24 miRNAs are sig-

nificantly negatively correlated with at least one experimentally

verified target gene (Supplemental Table S3).

In an alternative approach, we aimed to identify miRNAs with

target genes that have significantly different CV values from the

genome-wide backgrounds. After multiple test corrections, we

found five miRNAs (miR-25, 32, 363, 92a, and 92b) that have high-

confidence target genes with a CV signifi-

cantly different from the CV of the

remaining RefSeq genes in both data sets I

and II (at an FDR cutoff of 0.05, there are

eight and 22 significant miRNAs in data

sets I and II, respectively, and five miRNAs

are significant in both data sets) (see Table

5; Supplemental Table S4). It deserves not-

ing that miR-363, miR-92a, and miR-92b

were detected by both approaches, sug-

gesting that the two methods are comple-

mentary (Tables 4, 5). Thus, our results

collectively indicate that both expression

variation of miRNAs and SNPs within

miRNA loci regulates expression patterns

of target genes through trans-regulating

effects at the population level.

Table 2. SNPs in miRNA loci that are associated with expression levels of target genes

ID Chr SNP position miRNA locus SNP location
Number of associated

target genes

rs183843457 20 26,188,906 MIR663A Precursor 201
rs139405984 1 205,417,483 MIR135B Precursor 4
rs115831106 14 101,531,806 MIR142 Precursor 3
rs190748158 19 46,522,298 MIR769 Precursor 1
rs189877545 1 220,291,206 MIR215 Precursor 1
rs2292181 3 44,903,434 MIR564 Precursor 1

The genome-wide association studies were performed between genetic variants in expressed miRNA
loci and expression levels of coexpressed target genes in 149 unrelated human individuals. The ge-
notype data are from the 1000 Genomes Project. For each variant, the FDR cutoff for the association
study is 10%. The target genes were predicted based on perfect matching of the ‘‘seed’’ of a miRNA and
target sites in the 39 UTR of target genes. For the location of the variants in a miRNA locus, ‘‘precursor’’
means that this variant is located in the miRNA precursor but outside of the mature miRNA.

Table 3. SNPs in miRNA loci that are associated with expression levels of target
or non-target genes

ID Chr SNP position miRNA locus Variant location
Number of associated

genes

rs147011290 1 172,113,756 MIR199A2 Precursor 2573
rs183843457 20 26,188,906 MIR663A Precursor 334
rs41276930 15 89,155,073 MIR7-2 Precursor 118
rs147579757 15 89,155,121 MIR7-2 Precursor 73
rs189877545 1 220,291,206 MIR215 Precursor 12
rs72631820 7 1,062,599 MIR339 Mature 7
rs139405984 1 205,417,483 MIR135B Precursor 5
rs72563729 1 1,102,563 MIR200B Precursor 4
rs72631826 13 50,623,143 MIR16-1 Precursor 3
rs115831106 14 101,531,806 MIR412 Precursor 3
rs137963341 19 54,265,617 MIR519A2 Precursor 2
rs140379047 5 168,690,664 MIR585 Precursor 2
rs112439044 1 41,220,077 MIR30E precursor 1
rs78547906 3 188,406,636 MIR28 Mature 1

The genome-wide association studies were performed between genetic variants in expressed miRNA
loci and expression levels of ;11,000 RefSeq genes in 149 unrelated human individuals. The genotype
data are from the 1000 Genomes Project. For each genetic variant, the FDR cutoff for the association
study is 5%. For the location of the variants in a miRNA locus, ‘‘precursor’’ means that this variant is
located in the miRNA precursor but outside of the mature miRNA; ‘‘mature’’ means that this variant is
located in mature miRNA product but outside of the seed (position 2–8) region.
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Expression variation associated with mutations in miRNA
target sites

Mutations in miRNA target sites will cause turnover of miRNA

targeting and rewire the regulatory networks, thereby influencing

expression of host genes (Fig. 1F). An intriguing case is a G ! A

mutation in the 39 UTR of MSTN, which created a new target site

for miR-1 in Texel sheep, dramatically increasing muscular devel-

opment (Clop 2006). A large number of SNPs have been found to be

associated with gene expression variation (Cheung and Spielman

2002; Stranger et al. 2005, 2007a; Spielman et al. 2007). Here we ask

how many genetic variants affect miRNA targeting specificity and

hence the expression levels of the host genes.

In our genome-wide association studies between cis-acting ele-

ments and expression levels of mRNAs, we

only focus on autosomal protein-coding

genes. We also only consider genetic vari-

ants that are located within the genic re-

gions (or 100-kb upstream and downstream

regions) to ensure that the association is

strictly caused by the cis-acting effects (for

details, see Methods). Among the ;1.6

million SNPs genotyped in the HapMap 3

Project, there are 8413 SNPs located in 39

UTRs and 187,222 SNPs located in introns

of the expressed genes in lymphoblastoid

cells (only SNPs with minor allele fre-

quency >0.05 in the 196 tested samples

are considered; we also removed SNPs lo-

cated in the probes of microarrays; see

Methods). At an FDR of 0.001 (the

Benjamini-Hochberg method is used to

correct for multiple tests), 467 SNPs in 39

UTRs and 3874 SNPs in introns are sig-

nificantly associated with the host gene

expression levels (Table 6). It is striking

that the proportion of associated SNPs in

39 UTRs is significantly higher than the

proportion in introns (5.55% vs. 2.07%,

P = 8.8 3 10�73, Fisher’s exact test) (Table

6). We observed the same pattern with an

FDR cutoff of 0.05 (Table 6).

The 1000 Genomes Project has dis-

covered a more comprehensive collection

of genetic variants than the HapMap 3

Project and provides more power in

identifying the genetic elements that af-

fect gene expression (Montgomery et al.

2011). For the 149 samples that have ex-

pression data quantified by Stranger et al.

(2007b) and sequenced by the 1000 Hu-

man Genomes Project Phase 1, we iden-

tified 13.4 million SNPs (Supplemental

Fig. S6A), 3.6 million small indels (2–51

nt in size) (Supplemental Fig. S6B), and

3247 large indels (size > 100 nt, referred to

as structural variants) (Supplemental Fig.

S6C). In our association studies, we sep-

arately considered the impacts of the

three categories of genetic variants on the

expression levels of the host genes. For

each type of variant, we incorporated

variants that are located in 39 UTRs, introns, and 100 kb upstream

and downstream of the genes with expression evidence in the

association studies. We only considered autosomal variants (mi-

nor allele frequency cutoff is 5% for SNPs and small indels; the

cutoff is 1% for large indels). (For each gene that is expressed, the

number of cis-regulating variants in the association studies is

plotted in Supplemental Fig. S6; and the frequency spectra of

genetic variants in the tested samples are presented in Supple-

mental Fig. S7.)

Consistent with the analysis of the HapMap 3 genotypes, we

found that the SNPs that are associated with host gene expression

levels are significantly enriched in 39 UTRs relative to introns (at an

FDR of 0.001, the proportion of the significantly associated SNPs in

39 UTR vs. introns is 3.80% vs. 1.35%, P = 2.6 3 10�132, Fisher’s

Table 4. 24 miRNAs have target genes enriched in the negatively correlated
miRNA:mRNA pairs

miRNA
Target
genes

Negatively
correlated

pairs, observed

Negatively
correlated

pairs, expected
Fold

enrichment P-value Q-value

miR-107 258 22 7.7 2.84 2.10 3 10�10 8.00 3 10�4

miR-497 298 49 27.6 1.77 5.37 3 10�9 3.34 3 10�3

miR-30b 545 146 86.1 1.70 2.21 3 10�8 6.01 3 10�8

miR-16 350 65 40.5 1.61 2.98 3 10�7 4.49 3 10�3

miR-17-3p 264 63 39.9 1.58 2.15 3 10�6 5.53 3 10�3

let-7f 191 58 37.5 1.55 6.32 3 10�6 8.83 3 10�3

let-7c 190 63 41.7 1.51 1.96 3 10�5 8.07 3 10�3

miR-92a 250 69 46.1 1.50 8.52 3 10�5 9.29 3 10�3

miR-195 352 145 99.3 1.46 8.75 3 10�5 2.13 3 10�5

miR-30d 545 202 138.6 1.46 1.17 3 10�4 7.67 3 10�7

miR-30a 541 191 131.1 1.46 1.47 3 10�4 2.11 3 10�6

miR-92b 243 85 58.4 1.45 1.88 3 10�4 3.83 3 10�3

let-7e 190 64 44.1 1.45 2.51 3 10�4 1.86 3 10�2

miR-181c 484 150 104.1 1.44 3.95 3 10�4 1.23 3 10�4

miR-544 480 144 100.8 1.43 4.63 3 10�4 3.01 3 10�4

miR-363 279 82 59.0 1.39 5.20 3 10�4 1.92 3 10�2

miR-651 230 68 49.1 1.39 5.59 3 10�4 3.95 3 10�2

let-7a 190 67 48.5 1.38 7.42 3 10�4 3.91 3 10�2

miR-20b 369 110 81.0 1.36 9.30 3 10�4 9.41 3 10�3

miR-342-3p 193 79 58.5 1.35 1.30 3 10�3 2.51 3 10�2

miR-181a 504 157 117.2 1.34 1.41 3 10�3 2.78 3 10�3

miR-181b 505 136 103.5 1.31 1.88 3 10�3 1.18 3 10�2

miR-30c 544 181 138.8 1.30 2.02 3 10�3 2.78 3 10�3

miR-27b 419 139 109.8 1.27 3.28 3 10�3 2.45 3 10�2

The pairwise Spearman’s correlation coefficients between the expression levels of miRNAs and mRNAs
were calculated based on data from Wang et al. (2009). For each miRNA, a hypergeometric test was
used to examine whether the predicted target genes (context score #0.3 and percentile >80%) of the
miRNA are significantly enriched in the negatively correlated miRNA:mRNA pairs. The Q-values were
obtained after correcting for multiple tests with the Benjamini-Hochberg method.

Table 5. miRNAs that have high-confidence target genes with CV values significantly higher
than the genomic backgrounds

Data set I Data set II

Background Target

Q

Background Target

QmiRNA Number CV Number CV Number CV Number CV

miR-25 11,198 2.27 388 2.50 0.0038 16,457 3.22 556 3.43 0.0025
miR-32 11,117 2.27 469 2.48 0.0053 16,339 3.22 674 3.43 0.0001
miR-363 11,333 2.27 253 2.59 0.0007 16,656 3.22 357 3.45 0.0012
miR-92a 11,333 2.27 253 2.59 0.0007 16,654 3.22 359 3.46 0.0012
miR-92b 11,334 2.27 252 2.58 0.0007 16,657 3.22 356 3.45 0.0012

For each miRNA, the remaining curated RefSeq coding transcripts that are not targets of this miRNA
were used as genomic background. The three underlined miRNAs are also significant in Table 4.
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exact test; the patterns are consistently observed even if we use

other FDR levels) (see Table 7). (The SNPs that are significantly as-

sociated with the host gene expression levels are listed in Supple-

mental Table S5.) Interestingly, we also found small indels (2–52 nt)

that are associated with host gene expression levels are threefold

enriched in 39 UTRs relative to introns (at an FDR of 0.001, the

proportion is 2.60% vs. 0.84%, P = 2.4 3 10�25, Fisher’s exact test)

(Table 7). More striking patterns are observed for large indels

(>100 nt). We observed that the large indels that are associated with

host gene expression levels are 10-fold enriched in 39 UTRs relative

to introns (at an FDR of 0.05, the proportion is 35.3% vs. 3.3%, P <

0.0001, Fisher’s exact test) (Table 7). Thus GWA studies on the cis-

elements using data from the 1000 Genomes Project also indicate

that genetic variants that are significantly associated with expres-

sion patterns of host genes are significantly enriched in 39 UTRs

relative to introns. Therefore, the elevated proportion of associ-

ated SNPs in 39 UTRs compared with introns suggests that the

SNPs might be causative to gene expression variation rather than

hitchhiking with other functional SNPs, since we expect the same

proportion of associated SNPs in introns and 39 UTRs under the

hitchhiking scenario.

miRNA target sites are preferentially located in 39 UTRs;

therefore, it is possible that the associated SNPs in 39 UTRs directly

(category 5 in Fig. 1F) or indirectly affect miRNA target recognition

(category 6 in Fig. 1F). For the miRNA target genes based solely on

‘‘seed pairing,’’ we identified 7692 SNPs, 1824 small indels, and 17

large indels located in the miRNA pairing regions in the 1000

Genomes Project; and for all the three categories of genetic vari-

ants, we found a significantly higher proportion of associated

variants in the miRNA pairing regions than in introns (Table 7).

Similar results are obtained even if we incorporate SNP informa-

tion in the target prediction algorithms. We identified 2262 SNPs

located in 39 UTRs that are complementary to the seeds of the 287

miRNAs expressed in the HapMap 3 data, and 130 of the SNPs

(5.74%) are significantly associated with expression levels of the

host genes (FDR cutoff 0.001) (Table 6). The proportion of seed-

pairing-associated SNPs is significantly higher than the corre-

sponding value in introns (8.0 3 10�24 and 2.0 3 10�30 at an FDR

of 0.001 and 0.05, respectively, Fisher’s

exact tests) (Table 6). The Context Score

(TSt) is well-suited to identify miRNA

target genes based on local sequence fea-

tures rather than conservation (Grimson

et al. 2007; Bartel 2009). With the target

genes predicted by the Context Score al-

gorithm, we also found genetic variants

associated with host gene expression pat-

terns to be significantly enriched in seed-

pairing regions (or adjacent target sites)

compared with introns based on inferred

genotypes from the HapMap 3 and 1000

Genomes Projects (Tables 6, 7). By com-

paring genetic variants from 100 kb up-

stream and downstream of the genic re-

gions, we also observed that genetic

variants in 39 UTRs (or miRNA target sites)

have a significantly greater chance to be

associated with host gene expression (data

not shown).

In summary, our results indicate that

a large number of cis-elements rewire the

miRNA regulatory networks and hence

affect expression levels of the host genes through miRNA-tar-

geting mechanisms.

Implication of miRNA targeting on human
population differentiation

Our results so far indicate that miRNA targeting is associated with

elevated expression variation in target genes among individuals

within human ethnicity groups. Next, we would like to explore the

implications of variation in miRNA targeting on gene expression

differentiation among human populations. Previous studies have

found that 17%–30% of genes are differentially expressed among

different ethnic populations (Cheung and Spielman 2002; Cheung

et al. 2003a,b; Spielman et al. 2007; Storey et al. 2007) and miRNAs

are also expressed in a population-specific manner (Huang et al.

2011b). Among the ;15,000 transcripts that are expressed in the

lymphoblastoid samples in data sets III–VI (Stranger et al. 2005,

2007a,b), we found ;4700 transcripts that are differentially

expressed between the CEU and Asian (CHB + JPT) populations

(FDR cutoff 0.001) (for details, see Methods). There are 36.7% (3187

out of 8684) of the high-confidence miRNA target genes differen-

tially expressed between CEU and Asians, which is significantly

higher than differentiation of non-miRNA target genes (1593 out of

5560, or 28.7%, P < 10�16, x2 test) (Fig. 4). The difference in the

population differentiation ratio is attenuated if we restrict our

analysis to the RefSeq transcripts; however, a significant difference

was still observed (36.8% for high-confidence targets vs. 33.8%

for non-targets, P = 0.007, x2 test) (Fig. 4). To exclude possible

biases caused by sex-linked effects, we narrowed our focus to

only males (CEU vs. CHB + JPT), and we still observed the same

trends (Fig. 4). The same patterns are observed between the YRI

and Asian populations (28.7% for high-confidence targets vs.

23.4% for non-targets, P < 0.001, x2 test). Some portion of this

difference could be caused by changes that occurred in cell cul-

ture (Imig et al. 2011), but for our purposes, even cell culture–

induced differences in miRNA expression will be of interest.

Resolution of true host differences vs. cell culture artifacts will

require contrasts of fresh primary cells.

Table 6. SNPs that are associated with host gene expression in the HapMap 3 samples
(196 unrelated individuals used in GWAS studies)

Location of SNPs
Number
of SNPs

FDR 0.001 FDR 0.05

Associated
SNPs

Proportion
(%)

Associated
SNPs

Proportion
(%)

Intron 187,222 3874 2.07 11,108 5.93
39 UTR 8413 467 5.55a 1070 12.72a

TSs (seed) 14 0 0 0 0
TSs (flank) 70 4 5.71 9 12.86b

TSt (seed) 115 5 4.35 8 6.96
TSt (flank) 222 20 9.01a 37 16.67a

Seed pairing (287 miRNAs) 2262 130 5.74a 282 12.44a

(TSs) TargetScan with conservation score PCT > 0.5; (TSt) TargetScan with context score #0.3; (seed)
the target region that is perfectly paired with the seed (position 2–8) of a miRNA; (flank) the 39-UTR
region that is 1–13 nt upstream of the seed pairing regions. The flank region usually pairs with mature
miRNAs outside of the seed regions. The target sites predicted with the two algorithms are based on the
reference genome. We also predict targets of the 287 miRNAs solely based on seed pairing. SNPs in the
39 UTR are incorporated in the target prediction algorithms. Only the 287 miRNAs that are expressed in
the lymphoid cell lines were used. X- and Y-linked genes were excluded. The FDR rates of 0.001 and
0.05 in the association studies were used. Fisher’s exact tests were conducted between introns and
various classes in 39 UTRs.
aP < 10�6.
bP < 0.05.
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We also observed synergistic miRNA regulatory effects on

differential expression of target genes between the CEU and

Asian populations. The number of distinct target sites (Context

Score # 0.3) is positively correlated with the proportion of genes

differentially expressed between the CEU and CHB + JPT popula-

tions (FDR cutoff of 0.001; Pearson correlation coefficient r = 0.63,

P = 0.01) (Supplemental Fig. S8A). However, a significant negative

correlation was observed between the number of conserved miRNA

target sites and the proportion of differentially expressed transcripts

(r = �0.94, P = 0.02), suggesting that the impact of miRNA targeting

on gene expression differentiation is mainly associated with the

non-conserved miRNA:mRNA pairing (Supplemental Fig. S8B). In

summary, we observe that miRNA target genes are significantly

enriched in the set of genes that are differentially expressed between

European-American and East Asian groups, and that non-conserved

sites primarily account for this enrichment.

Dual roles of miRNA regulation on target genes during
primate evolution

In this section, we show that miRNA regulation has likely shaped

complex gene expression evolution patterns during primate evo-

lution. With an extensive RNA-seq analysis, Blekhman et al. (2010)

identified 3335 genes differentially expressed in the liver between

human and chimpanzee, 6030 genes between human and ma-

caque, and 5549 genes between chimpanzee and macaque

(Blekhman et al. 2010). They were able to infer that expression

levels of 1391 genes were under stabilizing selection (i.e., the genes

have little variation in gene expression

among individuals and species and are

thus possible targets of canalization) dur-

ing primate evolution, and 887 genes were

under directional selection in the human

lineage (i.e., genes having little variation

in expression levels within and between

other primate species and individuals but

a different expression pattern in humans)

(Blekhman et al. 2010).

Based on tissue-specific miRNA se-

quencing, previous studies identified

72 miRNAs expressed in human liver

(Landgraf et al. 2007; Betel et al. 2008).

About 20% of genes putatively targeted

by the 72 coexpressed miRNAs are differ-

entially expressed between human and

chimp, whereas only 15% of the non-

target genes are differentially expressed

between the two species (P-value < 10�5)

(Fig. 5A). When we only consider the 880

experimentally verified target genes of the

72 coexpressed miRNAs, we still find that

21.3% of the targets are differentially

expressed between human and chimpan-

zee, significantly higher than the remain-

ing genes (Fig. 5A). The same patterns are

observed for genes differentially expressed

between human and macaque (Fig. 5B).

Intriguingly, we found that miRNA

target genes are significantly over-repre-

sented in the category of genes under

stabilizing selection during primate evo-

lution (P-value < 10�5 in all the compar-

isons) (Fig. 5C). Based on TSs, 6.4% of the non-miRNA target genes

with expression levels are under stabilizing selection, while 9.7%

of the miRNA target genes are under stabilizing selection (Fig. 5C).

The contrast becomes enhanced when we restrict the analysis to

experimentally verified miRNA targets: 12.3% are under stabiliz-

ing selection, compared with only 6.4% of the remaining genes

(Fig. 5C).

Among the 20,689 Ensembl genes analyzed by Blekhman

et al. (2010), 16,272 are protein coding and 4417 are non-coding

genes. Interestingly, we found that protein-coding genes show

a greater degree of differential expression across species. For ex-

ample, 19.3% (3141 out of 16,272) of coding genes are differen-

tially expressed between human and chimpanzee, while only 4.4%

(194 out of 4417) of non-coding genes are differentially expressed

between the two species. Since canonical targets of miRNAs are

protein-coding genes, we also only focused on the protein-coding

genes. For the high-confidence target genes of the 72 miRNAs, we

still observed that they are significantly enriched for genes that are

differentially expressed between human and chimpanzee (or ma-

caque), and for genes under stabilizing selection (Fig. 5D). We

identified seven miRNAs with high-confidence targets signifi-

cantly enriched in the set of genes showing directional selection in

the human lineage as identified in Blekhman et al. (2010), and

three miRNAs (miR-23a,b, and 194) having targets that are sig-

nificantly enriched in the set of genes under stabilizing selection

(Supplemental Table S6).

These comparisons are compatible with the hypothesis that

miRNA targeting has dual roles in regulating gene expression: (1)

Table 7. Genetic variants that are associated with gene expression in the 1000 Human
Genomes Project (149 human individuals used in GWAS studies)

Types and locations
of variants

Number
of variants

FDR 0.001 FDR 0.05

Associated
variants

Proportion
(%)

Associated
variants

Proportion
(%)

SNPs
Intron 900,178 12,130 1.35 35,793 3.98
39 UTR 20,447 776 3.80a 1740 8.51a

miRNA pairing regions 7692 317 4.14a 671 8.72a

TSt (seed + flank) 826 39 4.72a 79 9.56a

TSt (seed) 259 11 4.25b 19 7.34b

Small indels (2–50 nt)
Intron 168,861 1414 0.84 4280 2.53
39 UTR 4699 122 2.60a 292 6.21a

miRNA pairing regions 1824 46 2.52c 114 6.25a

TSt (seed + flank) 268 8 2.99b 16 5.97b

TSt (seed) 122 3 2.46 6 4.92

Large indels (>100 nt)
Intron 428 4 0.93 14 3.27
39 UTR 17 2 11.76b 6 35.29b

miRNA pairing regions 10 2 20.0b 6 60.0c

TSt (seed + flank) 7 1 14.29 4 57.14b

For the three types of variants, we first surveyed the variants in the miRNA target sites that are predicted
solely based on ‘‘seed pairing’’ (referred to as ‘‘miRNA pairing regions’’). We also predict the target
genes based on TSt (context score # 0.3). For the targets predicted with context score, we separately
consider the SNPs located in the ‘‘seed’’ pairing regions and the ‘‘flank’’ region that is 1–13 nt upstream
of the ‘‘seed’’ pairing regions in 39 UTRs. Only the 287 miRNAs that are expressed in the lymphoid cell
lines were used. X- and Y-linked genes were excluded. The FDR rates of 0.001 and 0.05 in the asso-
ciation studies were used. Fisher’s exact tests were conducted between introns and various classes in
39 UTRs. For the large indels, the MAF cutoff is 1% since the majority of the large indels are segregating
at very low frequency in the populations.
aP < 10�10.
bP < 0.05.
cP < 10�5.

Lu and Clark

1250 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on January 19, 2018 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


to canalize (or to reduce expression variation in) a subset of target

genes, and (2) to promote variability in gene expression by rewir-

ing the miRNA regulatory networks as summarized in Figure 1.

Discussion

Consequences of miRNA regulation on target genes
at the population level: canalization vs. increased
expression variation?

Genes encoding small RNAs undergo rapid evolutionary processes

at both the macro- and micro-evolutionary levels (Allen et al. 2004;

Fahlgren et al. 2007; Grimson et al. 2008; Lu et al. 2008a,b; Lu and

Clark 2010). In this study, we identified variants related to miRNA

targeting. We proposed dual roles of miRNAs on the evolution of

expression regulation of the target genes. We found that miRNA

targeting is associated with reduced expression divergence of a

small number of target genes during primate evolution, and the

targeting is also coupled with decreased CVs of highly expressed

genes. However, the overall pattern is that genes targeted by co-

expressed miRNAs generally have higher expression variation

within species or higher divergence between human and other

primate species.

There are two hypotheses to account for this observation. The

first explanation is that expression levels of genes targeted by

miRNAs are intrinsically highly variable, and the miRNA regula-

tion has evolved to reduce the interindividual stochastic variability

of target gene expression. Under this hypothesis, miRNAs have

comprehensive canalization effects on the expression of target

genes. At this moment, it is unclear what level of intrinsic sto-

chastic variation in gene expression would be seen in the absence

of miRNA targeting, and thus we are unable to quantify the mag-

nitude of canalization effects of miRNAs in natural populations.

The second explanation is that variation in miRNA regulatory

networks promotes the expression variation of target genes (sum-

marized in Fig. 1). We find several lines of evidence supporting this

hypothesis. First, expression levels of miRNAs themselves are

highly variable across individuals. We found that variation in ex-

pression of ;10 miRNAs accounts for the elevated expression

variation of their target genes. Second, miRNAs have pleiotropic

effects by regulating a large number of target genes. SNPs that

occur in 39 UTRs can cause birth and death of target sites and hence

may rewire the miRNA regulatory networks. We found that SNPs

that are significantly associated with host gene expression are

significantly enriched in 39 UTRs (or putative miRNA target sites).

Some of the associated SNPs in the 39 UTRs show signatures of

variation that are consistent with positive natural selection. Third,

we find synergistic regulatory effects between miRNA targeting

and elevated expression variation in the target genes (Fig. 3).

Therefore, it seems most parsimonious to infer that variation in

miRNA regulatory networks promotes expression variation of tar-

get genes across individuals or expression differentiation among

ethnic groups. This conclusion does not imply that miRNAs never

play a role in canalization effects (Hornstein and Shomron 2006;

Cui et al. 2007; Li et al. 2009; Wu et al. 2009). Instead, our analysis

indicates that miRNAs have dual roles in influencing expression

variation of the target genes: miRNA targeting canalizes expression

of a subset of the target genes and promotes expression variation of

other target genes.

Evolutionary forces impacting genetic variation related
to miRNA targeting and the implications for human disease

We proposed six modes whereby genetic variation in the miRNA

regulatory networks potentially affect expression patterns of target

Figure 4. High-confidence miRNA target genes tend to display greater
differential expression between CEU vs. Asian populations (FDR is cut off
at 0.001). This pattern holds true either when we incorporate all of the
probes or restrict our analysis to the RefSeq transcripts. Similar patterns
were observed when we considered both genders, or males alone. High-
confidence miRNA targets were considered as miRNA targets, while genes
not targeted by coexpressed miRNAs in all of the six methods were
considered non-targets (see legend to Fig. 2). (Gray) miRNA targets;
(white) non-targets. When we only consider RefSeq transcripts, 3187 of
8660 (36.8%) miRNA target transcripts are differentially expressed, and
818 of 2421 (33.8%) non-target transcripts are differentially expressed
(P = 0.007). For all of the expressed transcripts in males, 26.9% (2332 out
of 8684) of targets are differentially expressed, and 19.4% (1080 out of
5560) of non-targets are differentially expressed (P < 10�16). For the
RefSeq data in males, 25.6% (2217 out of 8660) of targets are differen-
tially expressed, and 22.7% (550 out of 2421) of non-targets are differ-
entially expressed (P < 10�16).

Figure 5. Genes that are differentially expressed or under stabilizing
selection during primate evolution are significantly enriched in miRNA
target genes. (A) The genes that are differentially expressed between
human and chimpanzee (deHC). (B) The genes that are differentially
expressed between human and macaque (deHR). (C ) The genes that are
under stabilizing selection. All of the 20,689 Ensembl genes sequenced by
Blekhman et al. (2010) are used in A, B, and C. (D) The combinational
miRNA target gene determination methods. Only the 16,772 protein-
coding genes examined in Blekhman et al. (2010) are used.
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genes. By extensively surveying genotypic data from the 1000 Ge-

nomes Project, we found that most of the genetic variants in miRNA

loci are segregating at very low frequencies in the global human

populations, suggesting that they are somewhat deleterious.

Our results suggest that SNPs located in 39 UTRs (or putative

miRNA target sites) affect expression levels of host genes by directly

or indirectly affecting miRNA targeting. It was reported that miRNA

target sites are generally under selective pressure (Xie et al. 2005;

Chen and Rajewsky 2006; Saunders et al. 2007). We performed

a literature search and identified 21 SNPs located in the 39 UTRs that

had been associated with disease. Six of those SNPs are located in the

seed-pairing regions of miRNAs, although none of these SNPs are

associated with host gene expression levels (Supplemental Table S7).

Intriguingly, signals of positive selection can also be detected in

SNPs located within putative miRNA target sites. Recently, Sabeti

and colleagues identified more than 8000 SNPs that might be fa-

vored by natural selection (Grossman et al. 2010). We found that 46

of these positively selected SNPs are located in 39 UTRs of the genes

expressed in lymphoblastoid cells, including 16 SNPs in the pairing

regions of coexpressed miRNAs. Six of these positively selected SNPs

are significantly associated with host gene expression at a FDR of

10% (Supplemental Table S8). Since 39 UTRs might harbor miRNA

target sites that are not covered by the 287 coexpressed miRNAs

under the current miRNA target prediction methods or by other

undiscovered miRNAs, these comparisons suggest that some genetic

variation mediating miRNA target recognition might be favored by

natural selection.

We also identified several other factors that are related to the

inflated expression variation of miRNA target genes, including

gene annotations, abundance of miRNA target genes, and expres-

sion patterns of miRNAs. Comprehensive analyses of these factors

justify the analytical procedures and conclusion of this study (the

details are fully described in the Supplemental Material).

Accumulating evidence has indicated that post-transcriptional

factors such as RNA binding proteins broadly interact with miRNAs

to regulate gene expression patterns (Galgano et al. 2008; Hafner

et al. 2010). We believe that the kind of analysis begun in this study

will provide deeper insight regarding the genetic mechanisms un-

derlying human genetic variation and local adaptation.

Methods

Expression data of mRNAs and miRNAs
We used six high-throughput mRNA expression data sets in hu-
man populations, including five from human lymphoblastoid cell
lines and one from primary leukocytes (Table 1). The mRNA ex-
pression in human, chimpanzee, and macaque were extracted
from Blekhman et al. (2010). The miRNA expression data in the 90
European-American males were taken from Wang et al. (2009).
There are 72 miRNAs expressed in the human liver by deep se-
quencing from Landgraf et al. (2007).

Genotype data from the HapMap 3 and 1000
Genomes Projects

The Phase 3 release of HapMap data was downloaded from ftp://
ftp.ncbi.nlm.nih.gov/hapmap/genotypes/latest_phaseIII_ncbi_b36/
hapmap_format/polymorphic/.

The February 2012 release of the 1000 Human Genome Project
was downloaded from ftp://ftp-trace.ncbi.nih.gov/1000genomes/
ftp/release/20110521. The genetic variants were mapped on miRNAs,
RefSeq, and Ensembl transcripts based on the genomic location
coordinates.

miRNA targets

We used state-of-the-art in silico miRNA target prediction algorithms,
including canonical TargetScan based on conservation criteria (TSs)
(Lewis et al. 2005; Grimson et al. 2007; Friedman et al. 2009), Pictar
(Krek et al. 2005), miRanda (John et al. 2004), PITAtop (Kertesz et al.
2007), and TargetScan based on Context Score (TSt) (Grimson et al.
2007). The seed and mature sequences of miRNAs were downloaded
from miRBase V15. The experimentally verified target genes of the
coexpressed miRNAs were parsed from TarBase (Papadopoulos et al.
2009), miR2Disease (Jiang et al. 2009), and the PAR-CLIP method
determined by the Tuschl laboratory (Hafner et al. 2010).

High-confidence miRNA targets

We considered genes predicted to be targets of the coexpressed
miRNAs by TargetScan with Conservation (aggregate PCT > 0.8) or
Context Score (#0.4 and percentile > 85), or by Pictar, or experi-
mentally verified targets as high-confidence miRNA targets be-
cause the former three methods have low false discovery rates
(Baek et al. 2008). When we combine the miRNA target deter-
mination methods together, genes not targeted by coexpressed
miRNAs as determined in the four methods and also not predicted
by miRanda and PITAtop were considered as non-targets.

Association tests

We used a compressed mixed linear model implemented in the
GAPIT (http://www.maizegenetics.net/gapit) package (Zhang et al.
2010) to conduct the genome-wide association studies between
genetic variants and expression levels of mRNAs. Since genotypic
and expression data in the CEU population are from trio families,
to exclude the dependence between the data points, we only in-
clude the unrelated CEU parents and YRI parents data from each
trio family into our analysis. Among the samples with expression
levels quantified by Stranger et al. (2007b), there are 196 unrelated
samples genotyped in the HapMap 3 Project, including 43 CHB, 42
JPT, 56 CEU parents, and 55 YRI parents. Among the 1092 samples
that are sequenced in the 1000 Genomes Project Phase 1, 149 un-
related samples have mRNA expression data measured by Stranger
et al. (2007b), including samples from 32 CEU parents, 41 CHB, 39
JPT, and 37 YRI parents. To increase the statistical powers of asso-
ciation tests, we pooled samples from different populations into the
analysis. For SNPs from the HapMap 3 Project and the 1000 Ge-
nomes Project, the association tests were conducted separately. For
small indels and large indels sequenced in the 1000 Genomes
Project, the association tests were performed based on the genome-
wide population parameters estimated from SNPs.

Population differentiation analysis

Genes that are differentially expressed between populations were
detected with the limma package (Diboun et al. 2006).

Detailed information on data retrieval and analysis are fully
described in the Supplemental Material.
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