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This paper deals with the time differential three-phase-lag heat transfer model aiming, at first, to identify
the restrictions that make it thermodynamically consistent. The model is thus reformulated by means of
the fading memory theory, in which the heat flux vector depends on the history of the thermal displace-
ment gradient: the thermodynamic principles are then applied to obtain suitable restrictions involving

the delay times. Consistently with the thermodynamic restrictions just obtained, a first result about
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the continuous dependence of the solutions with respect to the given initial data and to the supply term
is established for the related initial boundary value problems. Subsequently, to provide a more compre-
hensive review of the problem, a further continuous dependence estimate is proved, this time conve-
niently relaxing the hypotheses about the above-said thermodynamic restrictions. This last estimate
allows the solutions to grow exponentially in time and so to have asymptotic instability.
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1. Introduction

Over the last decades, much attention has been devoted to the
theory originally proposed by Tzou [1-3] about the so-called
dual-phase-lag heat conduction model. Such a theory essentially
replaces the classical Fourier law with the following constitutive
equation
q;(X,t+17q) = —ki(X)T;(X,t + 7r), with 74,77 >0 (1)
stating, synthesizing its meaning, that the temperature gradient T
at a certain time t + 77 results in a heat flux vector g; at a different
time t + 74. In the above constitutive equation (1), besides the expli-
cit dependence upon the spatial variable, we point out that g; are
the components of the heat flux vector, T represents the tempera-
ture variation from the constant reference temperature Ty > 0 and
k; are the components of the conductivity tensor; moreover, t is
the time variable while 7, and 77 are the phase lags (or delay times)
of the heat flux and of the temperature gradient, respectively. In
particular, 74 is a relaxation time connected to the fast-transient
effects of thermal inertia, while 77 is caused by microstructural
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interactions, such as phonon scattering or phonon-electron
interactions [4].

We emphasize that the related time differential models
(obtained considering the Taylor series expansions of both sides
of Eq. (1) and retaining terms up to suitable orders in 7, and tr)
have been widely investigated with respect to their thermody-
namic consistency as well as to interesting stability issues (see,
for example, [5-7]).

A natural evolution of the dual-phase-lag heat conduction
model by Tzou consisted in the addition, by Roy Choudhuri [8],
of a third delay time t,, which has led to a three-phase-lag heat
conduction theory. He took into account the model by Green and
Naghdi [9-12] which includes, among the constitutive variables,
not only the temperature gradient but also the thermal displace-
ment gradient. Starting from the Green-Naghdi model, Roy Choud-
huri [8] proposed the following constitutive equation for the heat
flux vector

qi(X, £+ Tq) = —ky(X)T(X, t + Tr) — Ky(X)0; (X, £ + 7o), (2)

where « is the thermal displacement variable, being T equal to the
partial time derivative of o, K is a thermal tensor characteristic of
the considered theory and 7, is a new phase lag related to the ther-
mal displacement gradient o;: we can suppose, for example, that
0 < 7,4 < 71 < 7¢. Through this equation, that generalizes Eq. (1),
once again a lagging behavior is described. In agreement with the
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Tzou's interpretation, Eq. (2) means that a temperature gradient
and a thermal displacement gradient imposed across a volume ele-
ment at times t + 7 and t + t,, respectively, result in a heat flux
flowing at a different time t + 7.

Also in this case, exactly as for the constitutive equation by
Tzou, time differential (three-phase-lag) models can be considered,
obtained through the Taylor series expansions of both sides of Eq.
(2) and retaining terms up to suitable orders in 74, Tr and 7. At this
regard, in Quintanilla [13] and Quintanilla and Racke [14,15] it is
possible to find some interesting references to the Taylor expan-
sion orders issue.

In the present work and with regard to Eq. (2), the terms up to
the second order in 7, and up to the first order in 77 and 7, are
retained, leading to the following generalized heat conduction
law valid at the position x and at the time instant t:

‘L-Zdi(x’ t) + qul'(x7 t) + qi(x7 t) = _TTkU( ) (X t)
= [k (%) + oK (X)] T (%, £) — Kij(X)0t(X, ). 3)

The purpose of this paper is twofold: on one side, following [6],
we want to reformulate the constitutive equation (3) in such a way
that the heat flux vector g; depends on the history of the thermal
displacement gradient, in order to evaluate the thermodynamic
consistency of the considered time differential three-phase-lag
model. To this end, we rewrite Eq. (3) in the framework of
Gurtin-Pipkin [16] and Coleman-Gurtin [17] fading memory
theory, and on this basis we analyze the compatibility of the model
with the thermodynamical principles. Subsequently, precisely
under the thermodynamic compatibility hypotheses just found,
we prove the continuous dependence of the solutions from the ini-
tial data and from the external heat supply. A uniqueness theorem
is also readily obtained as a direct consequence of these results.
Finally, to provide a more complete overview about the issue in
question, a further continuous dependence estimate is established
under a suitable assumption which relaxes the previous thermody-
namic compatibility hypotheses. This last estimate allows the solu-
tions to grow exponentially in time and so one can be led to an
unstable system.

2. The basic mathematical model

In this paper, referring to a fixed system of rectangular Cartesian
axes Oxy, (k = 1,2,3), we employ the usual summation and differ-
entiation conventions. For the components of tensors of order
p > 1, the Latin subscripts range over the set {1,2,3}, while a
superposed dot or a subscript preceded by a comma denote
partial differentiation with respect to the time variable t or to the
corresponding Cartesian coordinate x;, respectively; summation is
understood over the repeated subscripts. Moreover, with an overly-
ing bar we want to denote the closure of the corresponding set indi-
cated below it.We suppose to deal with a regular region B, whose
boundary is denoted by dB, and consider the linear theory of the
time differential three-phase-lag heat conduction model as formu-

lated through the following set of equations: the energy equation
—Qi; + pr = C&ﬁ in Bx (O 00)7 (4)

the constitutive equation

1 .
q; + TqQi +2 q (ku+ryK,})[3 TTk,]/Z] K;p;, in Bx[0,00), (5)
the geometrical equation
Bi=0aj, in Bx[0,00). (6)

For a greater clarity, let us repeat some concepts already shown in
the above Introduction, representing here all the notations used:

q; are the components of the heat flux vector, p is the mass density
of the considered medium, r is the external heat supply per unit
mass, c is the specific heat and « is the thermal displacement, being
T = o the temperature variation from the constant reference tem-
perature T > 0. The components of the thermal displacement gra-
dient vector are denoted by $; and we also recall that k; are the
components of the conductivity tensor and Kj; are the components
of a thermal tensor characteristic of the considered theory.

Further, we define the initial boundary value problem P by the
basic equations (4)-(6), the following initial conditions

2(x,0) =0, &x,0)=T(x), @
qi(xv O) = q?(x)7 Qi(x7 0) = q?(x)i in E7
recalling that o(x,0) = 0 because

X, t) = /: T(x,s)ds

as well as the following boundary conditions

a(x,t) = w(x,t), on X x [0,00),

g;(X,t)n; = q(x,t), on X, x [0,00),

where ¥, UX,; = 9B and ; N X, = ¢ and having denoted by g;n; the
heat flux at any regular point of B. We assume that the initial data
T°(x), °(x), ¢%(x) and the boundary data w(x,t) and q(x, t) are con-
tinuous prescribed functions selected in such a way to guarantee

the existence of reciprocal compatibility conditions in t =0 and
on 0B.

Let us call S={oq}, with axt)eC?Bx(0,00)) and
q;(x,t) € C'?(B x (0,00)), a solution of the initial boundary value
problem P, corresponding to the given data D = {r; T°, q?,4%; o, q}.

3. Thermodynamic consistency of the model

Following the example of Fabrizio and Lazzari [6], we want to
rewrite Eq. (5) as a memory constitutive equation of the type
described in Gurtin-Pipkin [16] and Coleman-Gurtin [17]. In order
to do this, let us rewrite it in terms of the thermal displacement
variable o (T = &):

7'[11(,‘}'6”(1') — (k,’j + T(XI(jj)dJ(t) — I(UO(J(f)
(8)

and then solve it as a linear non-homogeneous second-order
differential (in time) equation. We immediately see that the
homogeneous (complementary) solution has the form

Q) =C (exp?—j) (cosr—:> +G (exp;—qt) <sinT—tq>. 9)

Through the application of the method of variation of constants,
we aim to find a couple of functions Kj(t) and K;(t) so that

q; (t) = K; () (exp%) (cos%) +Ki(t )(exp%) (sinr—tq) (10)

is a solution of Eq. (8). After appropriate differentiations and
straightforward calculations, the problem is reduced to the study

of a system in the variables K¢(t) and Ki(t), providing
Ke(t %( ) (sm ) [Tkt () + (ki + TKy ) b (6) + Kot (0)]
Ki(t)= = (exp ) (cosa> [Trkioi(t) + (ki +ToKi) 0i(t) +Kior (£)]

T2Gi(t) + Te@i(t) + qs(t) =
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which, through a suitable integration between —co and t, gives

KS(t) = / <exp ) <sinfi> [Trko;(s) + (ky+ T.Ki) & i(s) + Ko (s)]ds
q

and

t
Ki(t)= / —% (exp%) <cosri> [Trko;(s) + (kij + T2Ky) 0t (s) + Ko (s)] ds.
J- q q

q

After replacing such expressions in (10), it is sufficient to add to
the homogeneous solution (9) the particular solution just found
through the method of variation of constants. Finally, assuming
that lim,__..q;(t) = 0, we are readily led to the following expres-
sion for the heat flux vector g;(t):

2 [t ( sft)<. tfs>
=-= exp— | ( sin—>
Tg J Tq Tq
X [T'[k,'j(.).{‘i(s) + (kij + T;J(,’j)O'C_j(S) + KUO(J(S)]CIS.

Now, integrating twice by parts, we get
27Ty 2 [t s—t
_T—ék,-jij(t) + E /% (expt—q> oi(s)

X {[(E—Qk — T,Kj (costf—s>
Tq Tq

+ [kij + (T2 — Tq)Kjj] <smtr—> }ds

q

qi(t) =

and hence, with the change of variable u =t —s, i.e. s =t —u, we
have

27: 2 400
alt) =~k + 5 [ v (s)ds (1)
q q /0
where
—s .S
vi(s) = (exp ){[kij"r(fa 7q) K] (sm—)
Tq Tq
2 Tq S
+ T [rrk,-j -5 (ki + r“K,»j)] (COS‘E)} (12)
and

ol (s) = a(t —s),

having omitted everywhere the explicit dependence upon the space
variable.

In order to identify the restrictions that make the time
differential three-phase-lag model thermodynamically consistent,
we consider a closed cycle characterized by the following history

a(s) = Gjcos w(t —s) + Hjsinw(t —s),  with

w >0, GG +HH;>0, (13)
so that

0&j(t) = —wG;jsin wt + wH; cos wt. (14)

In view of Eqs. (11), (13) and (14), let us evaluate the scalar product
q;(t)d;(t) as follows

q;(t)a;(t) =— %kv (Gjcoswt + Hjsinwt) (—wG;sinwt + wH;cos wt)

2 [t .
+§/ V;i(5)[Gjcos(t —s) +H;sinw(t —s)]
q /0

x (wH;cos wt — wG;sinwt)ds,

whose integral on a closed cycle with respect to the time variable,
postulating the Second Law of Thermodynamics in terms of the
Clausius-Duhem inequality, has to be non positive. After simple

calculations, and assuming that the constitutive tensors k; and Kj;
satisfy the following symmetries

ki = ki, K =Kj,
we obtain
2/ . 21 +00
/ q;(t)o; (t)dt = - / vi(5)(GiG; + HiH;) sinws ds < 0
0 q J0
and thus
+o00
/ vij(s)(GiG; + HiH;) sinws ds > 0. (15)
0

In view of Eq. (12) and through a series of suitable integration by
parts, we come to an expression equivalent to the condition (15)
and valid for each w e R :

2w 2
MW {2 [k + (T — Tg)Ky] + Téwzr_q [T'[k,‘j -

X (G,'Gj -‘rHiHj) =0,

T
jq (k,‘j + TQKU‘)} }

from which it follows that the time differential three-phase-lag
model is consistent from the thermodynamical point of view if
the following conditions are satisfied:

[kij + (‘L'“ — Tq)Kij] (G,*Gj + HiHj) >0, forall G H;, (16)

[err%(kﬁraKﬁ)] (GG +HH;) >0, forall G, H. (17)

Concluding, we can see that the requirement of compatibility of
the time differential three-phase-lag model described by the con-
stitutive equation (8) with thermodynamics implies that the fol-
lowing tensors

Wij = kij + (TM - Tq)Kij,

T

Kij = TTkij — 7q (kij + szKij)y

are positive semi-definite.

Remark 1. A direct consequence of the two thermodynamic

restrictions TR1, given in (16), and TR2, given in (17), is the
following inequality of future usefulness

3
(Tr + Tq) ki + 14 (7:9c - jrq>1(,»]} &g =0 forall ¢, (18)
that is the tensor
3
Kij = (tr + 7¢) ki + 14 (r“ - Erq) K;

is positive semi-definite.

4. The initial boundary value problem P

For the analysis at issue, it is convenient to introduce the fol-
lowing notations. For any continuous function of the time variable
f(t), we denote by f'(t) the integral over [0, t] of that function, i.e.

:‘/0‘ Fs)ds, f”(t):‘/o‘ t A f(2)dads, ...

in addition, for any continuous function of time g(t) we denote by
g(¢t) the following function

gr(t):gw(t)+rqg'(t)—s—%rég(t)=/0~ /:g(z)dzds—s-‘cq/(; g(s)ds-&-%rﬁg(t).
(19)
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In view of the above definitions, and taking into account the consti-
tutive relation (5) and the initial conditions (7), one can easily prove
that

! ! l
Qi(t) = g () + Tgqi(0) + 5 74i()
= — (ki + T.Ky) Bi(£) — Trky Bi(£) — K} (£) + (1),
where

1 1.
Po(t) = 5 T2q0 + t(rqq? +3 240 + rﬂcﬂf}) . (20)

For a subsequent convenience, we will shorten W?(t) as follows:

P (t) = a; + thy, (21)
where
_1 240 b = 0 1 2,0 I“TO‘ 22
_j‘cqqiv i = Tq(; +§qui + Trkil j; (22)

moreover, by replacing the function g(t) with r(t) into Eq. (19), we
have

Ft)=1"(t)+ 147’ (t) + 5 1 72r(t)

214
t 1 )
/ / dzds+rq/0 r(s)ds+§‘cqr(t).
Now, after a direct comparison between & and 9%4/0t*> and
denoting by
R = pf + cT°(t + 14), (23)

we are able to define, through the application of the hat operator,
the new initial boundary value problem P as follows:

The equation of energy
24
—61,:1-+R:c¥, in B x (0,00), (24)

The constitutive equation
i = — (ki + TuKy) B — TrkB; — K| + V7.

The geometrical equation

in Bx[0,00), (25)

Bi=0&;, in Bx][0,00), (26)
The initial conditions

A~ _ (90( 0

a(x,0) =0, 6t(x 0)= irT( ),

N 1 aql 15,. .=

qi(x7 0) = jrﬁq?(x)~ 6t (x O) = qu1 ( ) + iréq?(x)v mn B7

(27)

The boundary conditions

&(x,t) = @d(x,t), on X x [0,00),

Gix, t)n; = q(x,t), on X5 x [0,00). (28)

Coherently with what we did above, it follows that if S = {a,q;} is a
solution of the initial boundary value problem 7, then S= {&,q;} is
a solution of the new initial boundary value problem P (24)-(28),
where ‘P? and R are defined through Eqgs. (20) and (23), respectively.

5. The continuous dependence result based upon the
thermodynamic restrictions TR1 and TR2

In this section, we want to evaluate the continuous dependence
of the solution of the initial boundary value problem P, with
respect to the initial data as well as to the external heat supply,
assuming the validity of the above restrictions TR1 and TR2: we
remark that, precisely because we are interested in such a kind
of continuous dependence, the boundary data are assumed null
here. Starting from Eq. (24), suitably multiplied by 94/dt and inte-
grated over B, we apply the divergence theorem and consider Egs.
(25) and (28) to write

;;t/ (M) dv —/R C’H/Oﬁ'[ K] — (ki + TaKiy) B — Trki | do

/6’3’\11 dv. (29)

Using the definition of the hat operator (19), we represent one of
the integral terms of Eq. (29) in this way:

8 1 /! /
/ a/i[ —Ky) - (k,-j+TMI(U)ﬁj—ITI<,jﬂj}d1/

,/BKU[};/E]’-'dZ/f/B (kij*"fg‘ij)ﬁ;ﬂ]’-dU*TT/Bk[jﬁ;ﬁjdy
_1, /B Kififldv — T, /B (ks + TKy) i dw

1 0l
—TT'Eq/I(ij/fiﬁjdv—jfé/1<ijﬁiﬁjdy
B B

1 o .
_ jrg /B (kij + ToKy) pipidv — j‘rﬂ:g /B kpip;dv. (30)

A series of simple calculations leads to rewrite in the following way
some selected integral terms of the right-hand side of Eq. (30):

/K,]ﬁ pldv = — 2dt/K"ﬂ pidv;

—‘ET./B Icijﬁ§[}jd1/:— > d /k,,[}/fjdv

2
Tq d°

frq/BK,-jﬁ,-ﬁ}’/dz/— _t /I(U/};'ﬁj”dv+rq/ Kififido,

/ T d el
—Tq /B (kij + TotKij)ﬁiﬁjdy = 2q at / (kij + TotKij)ﬁiﬁjdy§

1 . p" 2 /1l
—irf,/BKijﬂiﬁde:—Xq—/KUﬂ,ﬁjd += rth/Kuﬁﬂ]dv;

1 - 7 & »
— jfg /3 (k,‘j + 'C;(K,'j)ﬁ,'[))jdl/ = — Zq F /B (k,] + Tchjj),Biﬁde/

T2
+5 /B (kij + TKyj) BiBidv;

[
‘Ta/,gk”ﬁfﬁfd”'

Coming back to Eq. (30) and, backward, to Eq. (29), integrating three
times with respect to the time variable and taking into account the
initial conditions (27), we observe the validity of the following
relation:

1 R
—Z‘ETTZ/Bk,‘jﬁ,‘[fde/:
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1 / c<8°‘) dvdzds + = / / / Ky B dvdzds
2 0 0 B 2 J
t S
+ / / / [kij + (T — Tq)Kyj] Bifjd vdrdzds
0 0 B

Ky dvds

(=]

)
o\_’
C\mm\»

/ {(‘L’T + Tq) ki + 1 <r“ - %@) KU} pipidvdzds
JB
/ Tq [ﬁk,-j L (kyj + T.,_Kij)] Bipidvdrdzds
B

+ / / kb, ﬁ,dydzds+— / KB, pldv
4 0 0
2
q

/ (kj + TKy) pipidvds

4
////<R8a+‘}’°ﬁ,+rq‘l’°/3,+ 12‘P°ﬁ1>dvdrdzds

+t2%/8c(T°) dv. (31)

+

S— NI NS
ﬁ'
c\.

At this point, we must perform an appropriate evaluation, through
an integration by parts, of the only integral term of Eq. (31) contain-
ing the vector f;:

t S z t S
113 / / / / ‘P?ﬁidvdrdzds:lrj / / / Y8, dvdzds
2 0 0 0 B 2 0 0 B
t S z .
—%rj/ﬂ /O /0 /B‘P?ﬁidvdrdzds (32)

which, in turn, makes essential a further estimate of the term

TN
=T W pdvdzds.
2 0 0 B Iﬂ

To this aim, we remind the validity of the subsequent relation for
the conductivity tensor kj, being ki, related to the smallest eigen-
value of k;

k& < ky&g, forall & (33)

An application of the arithmetic-geometric mean inequality gives

0 0\py0
—r///‘P/)’,dvdzds e ///, WOPOd pidzds
+ngrT / / / kipipdvdzds, Ve > 0. (34)
0 0 B

From Egs. (31), (32) and (34) for ¢ = 1/2, we have

2 / / / ( >dvdzds+2 / / / KB dvdzds

/ / / / v fidvdrdzds + =2 / / Kyf! B dvds
/ / / Ky dodzds + / / / / © 1 fif, dvdrdzds
fT/ / / Ky pydvdzds + ] / Ky B dv
=

Ik
o,

+
P\[\J\

i + TaKij) ﬁﬁdvds

ot
/ / { e (‘P" ;rqti’?> ﬁ,}dvdrdzds
s

/ i ‘PO‘POdvdzds+t216 / T° (35)

\ .h\m\, Oo

N‘(_‘
ESIN)

Remark 2. At this point, it would be possible to apply again the
arithmetic-geometric mean inequality to the right-hand side of Eq.
(35) in order to treat the terms containing B; and B; as we
previously did for 3; (Eq. (32)). Nevertheless, a specification is
appropriate: in what immediately follows we will suppose, among
the other assumptions, that the tensor »; = k; + (T4 — Tq)Kj is
positive definite, while the tensor rj = trk; — Tq(kj + T4Kj) /2 is
positive semi-definite. To proceed as described in this Remark
would force instead both the tensors to be positive definite, with a
clear strengthening of our hypotheses.

Now, similarly to what has been said for Eq. (33) and having in
mind the inequality (18), let K, be a scalar related to the smallest
eigenvalue of Ky = (tr + 7q)kyj + T4(Tx — 37¢/2)Kj. Again referring

to the right-hand side of Eq. (35), the following further estimate
is obtainable, invoking the Cauchy-Schwarz inequality:

'RZ YW 4 o1 o\ fwe 1o o] s
< /0 { [ /0 /B R %(wi,Efq\pi)(xpi,ﬁyi> dudrd:
s oz o[ 94, 1/2
X // / c(—) +1Cm/$[f+ kmﬁﬁ dvdrdz; ds
o Jo Ja ar
t s pz 'Rz PpoO 4 1 1. b 1/2
</ ///—Jr it (‘PU ‘P°>(‘I‘?7—rq‘l’?) dvdrdz
o |JoJo Jo|c Km knTr ]
_— 12
S z 0“
x ///c,— +}C,Jﬁ1/3+ b | dudrdz b ds.
o Jo J ar !

W+ (‘PO —i‘rq‘i"’) B; ] dvdrdzds

2% 2

(36)
Moreover, we simply have to recall the definitions (21) and (22) of
P9 to write:

/ / / WOPOd ydzds
2'L'T ’
t? e t
er/km< a;a; + a,b +—= bb)dv. (37)

Theorem 1 (Continuous dependence). Let S = {a,q;} be a solution of
the initial boundary value problem P corresponding to the given data

D= {r; 79, q?.4q?%;0, 0} . Under the hypotheses:

i. k;j positive definite, Ky positive semi-definite, ¢ >0,

ii.  wy=kyj+ (Tu—Tq)Ky  positive  definite, i = Trky—
74 (ki + 1,Kj7) /2 positive semi-definite, and for any fixed time
S € (0,+00), the following inequality holds true

W<¢(0)+%/;g(s)d57 teo,s], 38)
where

2/ / / { (&) +’Cv‘ﬁ§/f}+@kyﬁ,ﬁj}dydzds7

39

A e vmmmds s 5 [ (S iani s Sobb | d
*/Og() (s) +E/BE§|”‘+§HZ/

172
S2 " L{t aia; + 1 c<T°> ]du} , (40)

R LS 7 S 0 _Ta\po 0_Tayo
_JA /0 /B [7+ Kom +m(‘yi *j\Pi)(\Pi *7‘1’5) dvdzds.

(41)
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Proof. From a direct comparison of Egs. (35)-(37) we obtain, for t
belonging to the bounded interval [0, 5],

L o o8 ’ / ol TérT
j/o /o /g {C<8z> + Kyl + =g~ kibifsj o dvdzds
t s z
</ g(s){ Il
0 o Jo JB
7 1(s s st T4 2
q s . .
+27r/km< @it abil+ 77 bb>dv+5 16/BC<T) dv

and so we are directly led to the Gronwall-type inequality

ety < [ as)vzEmds 1 [ (S 1abi) 1 S buby | do
\/g( ) Z—‘L-T/BE§|‘!‘§II

1/2

o0\ LTy
C(g) +’Cyﬁ;ﬁj+qTI<fjﬁiﬂj}dvdrdz} ds

4
2 q
+3 16 l:kaT

from which it is evident that
E(t) < ¢*(t) = VE(D) < §(0). (42)
On the other side, from Eq. (40),

20(t)p(t) = g(t)v/2E(D) (43)
and so, from Eqs. (42) and (43), we obtain

aa; +7T c(TO) }dv, for tel0,S)],

which integrated with respect to the time variable between 0 and ¢t
provides, for t € [0,5] ,

1 t
t) < ¢(0) +— / s)ds. 44
#(t) < ¢(0) 7 Jo &(s) (44)
Finally, from Egs. (40), (42) and (44) we arrive to the inequality

1(s st
\/_/ g(s {2TT/ km <§a,‘bi|+ﬁb,~b,~>dv

12
zﬁ/ 4 5 (70)?
+S 16 /, —kmﬁa,a,-s—rqc(T> dv , for te]0,S

that proves the theorem at issue, showing in fact the desired contin-
uous dependence with respect to the initial data and to the external
heat supply. O

A direct consequence of the above theorem is the following
uniqueness result.

Theorem 2 (Uniqueness). Under the hypotheses of Theorem 1, it
follows that the initial boundary value problem P has at most one
solution.

Remark 3. The above theorems remain provable when we replace
the hypothesis ii. by the following one: iii. w; =k + (T4 — 74)Kj
positive semi-definite, #;=1trk;—1,(kj+1.Ky)/2 positive definite.

6. Other continuous dependence results

In order to provide a more complete description about the con-
tinuous dependence of the solutions of the initial boundary value
problem 7P with respect to the initial data as well as to the external
heat supply, in this section we will abandon the hypothesis of
validity of the thermodynamic restrictions TR1 and TR2. That
means that at least one of the tensors w; = k;j + (7, — Tq)Kj; and

Kij = Trkij — Tq(kij + T4Kj5) /2 is assumed to be of indefinite sign. As
an alternative, the tensor Kj = (Tr + Tq)kij + Tq(Ta — 37¢/2)Kj is
here assumed to be positive definite (we remind that, previously,
the inequality (18) was a direct consequence of TR1 and TR2).
For our subsequent analysis we will assume, for convenience, that
both the tensors »; and k; are of indefinite sign. On this basis we
can establish the following theorem.

Theorem 3 (Continuous dependence). Let S = {a,q;} be a solution of
the initial boundary value problem P corresponding to the given data

D= {r; 7,49, ¢9; 0,0} . Under the hypotheses:

i. ky positive definite, Kj positive semi-definite, ¢ >0,
ii. Kij = (Tr + Tq) Ky + Tq(Tx — 374/2)Kj; positive definite,

and for any fixed time S € (0, o0

VED < (0 )exp() \/_/ exp( ) (s)ds, t€[0,S], (45)

is defined through Eq. (39), g(t) through (41), @(t) is

), the following inequality holds true

where £(t)
defined by

- {% /()tS(s)dSJr/[g(s)Mds

o1 (S st
+2_‘gr/k <3|a1b|+ bib; |dv
12
I-Z
+521—q/ L{4Ta,a,+r c(TO) }dz}} , (46)
m
and
/
~ =max {max (%) ,imax (Krs1rs) ]
K TrTlq B Km

Proof. First of all we note that

;i B fdvdrdzds
B

0 o Jo
t s oz 12
</ / / /M[/le?;ﬂﬂdvdrdzds
0
< max 2Urs%s) %rs%rs / / / / Kipipdvdrdzds,
B 2 j

rq/t /s /Z/Kgﬂiﬁjdvdrdzds
/ I

<—max K’SK” / / / / e qkuﬂ B;dvdrdzds.

Trlq B

kmp;Bildvdrdzds

Further, we use these estimates into the inequality (35) and
then use the notations (39), (41) and (46) and the estimate (36)
in order to obtain

2 t t
g(t)<5/0 E(s)ds+\/§/0 2(s)\/E(s)ds

‘[:2 3
+—q/1 S |a,b\+54bb dv
2'[1"_ km

2
2 g

+S 16

L 4 aia; + T c(TO) }dv, tel0,s],
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that is equivalent to

E(t) < @* () = VED) < p(0),

considering the definition (46). On the other side, again from Eq.
(46), we have

tel0,5], (47)

20(0p(0) = 2 £(t) + V2g(t) V&

and from Eq. (47)

P(0) 5 P(0) < 500

Multiplying both sides of the above result by exp (-t/J) , we have

d t 1 t

a {so(t) exp (— 5)} S pE0exp (— 5)

which integrated with respect to the time variable between 0 and ¢
provides, for t € [0, S],

£ < 00exp (£) = [ssrexp (7 )as

where we have suitably multiplied both the members by exp (t/a),
and then recalled Eq. (47). The theorem at issue is then proved,
expressing once again the continuous dependence with respect to
the initial data and to the external heat supply. O

We conclude this Section observing that, unlike the case treated
in the Theorem 1, the estimate (45) is representative of a continu-
ous dependence with respect to which it is possible that also solu-
tions exponentially growing in time exist.

7. Concluding remarks

We treated the thermodynamic compatibility of the time differ-
ential three-phase-lag model of heat conduction by means of the
fading memory theory, and so we obtained the thermodynamic
restrictions (16) and (17) upon the delay times and the thermal
constitutive coefficients. With this appropriate approach, we stud-
ied the compatibility of the model in concern with the thermody-
namical principles. We further used these restrictions in order to
establish the estimate (38), describing the continuous dependence
of the solution of the considered initial boundary value problem
with respect to the given initial data and with respect to the supply
term. The same estimate also implies the uniqueness result
described in Theorem 2. In order to provide a more complete over-
view about the problem at issue, we also proved an additional con-
tinuous dependence theorem, this time conveniently relaxing the
thermodynamic compatibility hypotheses TR1 and TR2, replacing
them by the inequality (18) and thus obtaining the estimate (45).
We underline here that the uniqueness result continues to hold
true in this new considered case. These results were achieved
thanks to a suitably formulated initial boundary value problem
P defined by the relations (24)-(28). In fact, it can be seen that
£(t), appearing in both the continuous dependence theorems, rep-
resents a measure of the solution S = {«, g;} of the initial boundary

value problem 7 defined by means of the solution S = {a,q;} of the
problem P".

We finally remark that a natural agreement exists between the
thermodynamic constrains for the model in concern and the
hypotheses required to prove the well-posedness of the related ini-
tial boundary value problems.
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