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In this article, the nonlinear free vibration behavior of Timoshenko nanobeams subject to different types
of end conditions is investigated. The Gurtin—Murdoch continuum elasticity is incorporated into the
Timoshenko beam theory in order to capture surface stress effects. The nonlinear governing equations
and corresponding boundary conditions are derived using Hamilton’s principle. A numerical approach is
used to solve the problem in which the generalized differential quadrature method is applied to dis-
cretize the governing equations and boundary conditions. Then, a Galerkin-based method is numerically
employed with the aim of reducing the set of partial differential governing equations into a set of time-
dependent ordinary differential equations. Discretization on time domain is also done via periodic time
differential operators that are defined on the basis of the derivatives of a periodic base function. The
resulting nonlinear algebraic parameterized equations are finally solved by means of the pseudo arc-
length continuation algorithm through treating the time period as a parameter. Numerical results are
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given to study the geometrical and surface properties on the nonlinear free vibration of nanobeams.
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1. Introduction

During the last decade, many studies have been carried out on
the behavior and applications of nanobeams. They can be used in
nano-irradiation (Kirkby et al., 2007), fluctuation electron micro-
scopy (Daulton et al., 2010), strain sensors (Hu et al., 2010) and
optical nanocavities (Maksymov, 2011; Shambat et al., 2011). The
mechanical characteristics of nanobeams such as bending, buckling
and vibration are increasingly gaining interest in nanomechanics
due to their significance for nanobeam-based devices. Because of
high surface to bulk ratio, nanobeams behave in a different way
from beams at macroscale. Surface stress is one of the most
important effects which leads to unusual mechanical behavior of
these nanostructures. For example, according to atomic force mi-
croscope (AFM)-based bending tests on chromium nanobeams
(Nilsson et al., 2003, 2004), it was revealed that the nanobeam
response is considerably affected by surface residual stress. This
effect can be explained by the fact that atoms at or near a free
surface of nanobeam have various equilibrium requirements in
comparison with atoms within the bulk of material due to different
environmental conditions. Many researchers have investigated the
surface stress effect on the behavior of different nanostructures
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such as nanocavities, nanoplates, nanobeams and nanowires (e.g.,
see (Dingreville et al., 2005; Li et al., 2006; Wang et al., 2010; Miri
et al.,, 2011; Ansari and Sahmani, 2011a; Sadeghian et al., 2011;
Assadi, 2012; Liu et al., 2012; Narendar et al., 2012; Narendar and
Gopalakrishnan, 2012; Elishakoff et al., 2012)). Among different
theoretical approaches, the surface stress elasticity theory pro-
posed by Gurtin and Murdoch (1975, 1978)) has been widely
applied to study the surface stress effect on the mechanics of
nanobeams. Herein, some of the relevant published papers on the
surface stress models of nanobeams are cited.

Based on the Gurtin and Murdoch’s elasticity and Euler-
Bernoulli beam theory, Fu et al. (2010) studied the free vibration
and buckling of nanobeams in both linear and nonlinear regimes.
They used the Galerkin method to develop a reduced-order model
and applied the incremental harmonic balanced method to inves-
tigate the amplitude-frequency response of nanobeams. Bar On
et al. (2010) developed a continuum model for nanobeams,
including both surface stress effects and material heterogeneity and
compared it with atomistic simulations. They found that the con-
tinuum model needs a modification to account for regions of sud-
den change in material properties. To this end, they introduced an
effective length by correlating the beam deflections from both ap-
proaches. Ansari and Sahmani (2011b) used the Gurtin and Mur-
doch theory to investigate the bending and buckling of nanobeams
with different boundary conditions. They derived explicit formulas
for the Euler-Bernoulli, Timoshenko, Reddy and Levinson beam
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theories. Their study revealed that the bending and buckling re-
sponses of nanobeams are considerably affected by the surface
stress effects. Gheshlaghi and Hasheminejad (2011) analyzed the
nonlinear flexural vibrations of simply-supported Euler—Bernoulli
nanobeams via an exact solution method with the consideration of
surface stress effect. Using the Gurtin and Murdoch elasticity the-
ory and Euler—Bernoulli beam theory, Nazemnezhad et al. (2012)
studied the nonlinear free vibration of nanobeams under simply-
supported boundary conditions. Their work indicated that the
surface stress effect is independent of amplitude ratio. Ansari and
his co-workers (Ansari et al., 2013) presented a numerical study on
the vibrations of nanobeams accounting for surface stress effects.
They employed the Gurtin and Murdoch theory to consider the
surface effects and the formulation of the problem was based on the
Euler-Bernoulli beam theory. They showed that the effect of surface
stress is dependent on nanobeam’s aspect ratio and thickness.
Based on the Euler-Bernoulli beam theory, Asgharifard Sharabiani
and Haeri Yazdi (2013) studied the nonlinear free vibration of
functionally graded nanobeams subject to different boundary
conditions with the consideration of surface effects.

In the present paper, the nonlinear free vibration of Timoshenko
nanobeams with various boundary conditions is studied. To
consider the surface stress effect, the Gurtin—Murdoch continuum
elasticity is used. Derivation of the nonlinear governing equations
and boundary conditions is based on Hamilton’s principle and von
Karman geometric nonlinearity. To numerically solve the problem,
first, the generalized differential quadrature (GDQ) method is used
so as to discretize the governing equations and boundary condi-
tions on space domain. In the next step, a Galerkin scheme is
numerically applied for reducing the size of problem by using a
small number of generalized variables. The resulting generalized
governing equations on time domain are also discretized by a set of
time periodic differential operators which are derived on the basis
of the derivatives of a periodic base function. The pseudo arc-length
continuation method is finally used to obtain the nonlinear fre-
quency response of nanobeams.

2. Governing equations and boundary conditions

The schematic view of a nanobeam with length L and rectan-
gular cross-section of thickness h shown in Fig. 1. A coordinate
system x, y, z is used on the central axis of the beam, in which the x
axis is taken along the length of the nanobeam, the y axis along the
width direction and the z axis is taken along the height direction.
The origin of the coordinate system is also chosen at the left end
of the nanobeam. Based on the Timoshenko beam theory
(Timoshenko, 1921, 1922), the displacement filed (uy, uy, u;) is
given by
Ux = U(t,X) —Zl//(t,X), Uy = 07 Uz = W(t,X) (1)
where u(tx), w(tx), and y(tx) respectively represent the axial
displacement of the center of cross section, transverse deflection,

and the rotation angle of the cross section with respect to the
vertical direction. Using the von Karman hypothesis, the nonlinear
strain—displacement relations can be written as

ou Y 1/ow\? 1 /ow
5—2&4‘5(&) ) €xz—§(§—1//) (2)

According to the linear elasticity, the stress components are
expressed by

ou oy 1/ow\? 9
O = “”“)(a—i‘%*z(%) ) o = “"S(%“’)
(3)

In Eq. (3) ks is the shear correction factor. Also, A and p are the
Lamé parameters which are defined as
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where E and » stand for Young’s modulus and Poisson’s ratio of the
nanobeam, respectively.

To consider the size effects, the Gurtin—Murdoch theory (Gurtin
and Murdoch, 1975, 1978) is used herein. Because of interaction
between the elastic surface and bulk material, in-plane forces in
different directions act on the nanobeam. The surface constitutive
equations can be given as

0l = T0ug + (T + X )eyyOug + 2(0° — T)egp + T g (5)

UzSJtZ = Tsug,av (0176 =XY)

in which 2° and u® show the surface Lamé parameters and t° is the
residual surface stress under unstrained conditions. Also, 0 de-
notes the Kronecker delta. Using Eq. (5), the surface stress com-
ponents can be derived as

ou  1/ow\?2 oy T [OW 2
S _ el i s _ T 27
Tax = (A5+2’u5)<6x+2(6x) Zax> 2(6){) + %

_ v
Xz — Sax

(6)

Since the stress component ¢, is small as compared to gxx and
Oxz, it is neglected in the classical beam theories. By such assump-
tion, the surface conditions cannot be satisfied. Thus, in order to
satisfy the surface conditions of the Gurtin—Murdoch model, it is
assumed that o, varies linearly through the thickness of nanobeam
and satisfies the balance conditions on the surfaces (Lu et al., 2006).
Therefore, g, is given as follows

Fig. 1. Schematic view of a nanobeam with the selected coordinate system.
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in which ¢3} and ¢3; are stresses at the top and bottom surfaces,
respectively. Using Eq. (5), one can arrive at

2z 0w *w 8
7= = \Fae o (®)

where p; is called surface mass density. By using 7., given in Eq. (8),
the components of stress for the bulk of nanobeam can be modified
as
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The strain energy of nanobeam is written as
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in which
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Moreover, the kinetic energy can be expressed as
m —1/ bk 26+ mpey | (24) 4 (Y
=2 /1% P\ et ot
X (12)
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in which p is the bulk mass density. The work done by the axial
force Ngx can be obtained by

L
17 ow\ 2
Mp — j/NOX(&) dx (13)
0
By employing the Hamilton principle
t
6/(HT 1T+ Tp)dt = 0 (14)
t
the following equations of motion are derived
o (Mo + o) bh + 2(b + ) O 15
T*(P +(+)P)a?7 (15a)
a(Q+ Q) 0 N ?w
0x T 0x ((NXX + NXX) ax) NOXW (15b)
02w
2
= (pbh +2(b+ h)p*) —- Yol
Q+Q,G(MXX+MXX> _ pbh382_¢ (150)
ax 12 o2
Furthermore, the associated boundary conditions are obtained
as
ou =0 or 6(NXX+NXX) -0, (16a)
ow =0 or 6(<NXX+NXX) +Q+Q> (16b)
o =0 or a(MxerMxx) = 0. (16¢)
Eq. (15) in terms of displacements are rewritten as
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where

A11 = bh(A+2p) +2(b + h)(4s + 2u5), Asz = 2(b+ h)1s,

Aq3 = bhuks,

I, = pbh+2(b+ hyp’, I = %+ s(bzizﬂg),
2

€= _sy(lihfp;)

(18)
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Also, the boundary conditions are

e Simply-supported boundary condition (SS)

U=W= My-+My =0 at ends (19)

e Clamped boundary condition (C)

u=w=y =0 at ends (20)

3. Solution procedure

First, by introducing the following dimensionless parameters

T =—y|— (21)

u=1LU w=hw, x=2% g1
L\ Tyo

L

==
-
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S

the dimensionless form of Eq. (17) can be represented as follows

0°U 20WPEW 02U

e Simply-supported boundary condition:

W
U=w= el —dnd¥ — 0 (24)

e Clamped boundary condition:
U=W=y=0 (25)

3.1. GDQ Method

On the basis of the GDQ method (Shu, 2000) the rth derivative of
flx) can be obtained as a linear sum of the function, i.e.

N

arf(x) Z 1}f X] (26)

ox"

X=X,

in which N is the number of total discrete grid points used in the
process of approximation in the x direction and %r] shows the

a”a)Tz + (ay1 — as3)8 X ox2 a2 (22a) weighting coefficients. A column vector F can be defined as
T
(a13 +3a33) — 5 e a136X+a“5<6X6X2 +6X26X> . .
where f(x;) denotes the nodal value of f{x) at x = x;. A differential
n 3 (aq1 — )53 2W (oW 2 Y g62W _ I*ga2w matrix operator based on Eq. (26) can be written in the form
20— B35 e\ X *ox2 T a2
(22b) axr (F) = DIF = [D{];;{F} (28)
°wW ow 202y 30°W where
52 (013 +a33)S 5 — Y Hdnd s —end ooy (220)
012 0120X
f ¢ In Eq. (29) r is the order of differentiation and ”/lr] is obtained by
Iy, r=20
@ 'f:_()xf/)()() i#jand i,j =1,...,Nand r = 1
i—Aj )2 J
T = r|7hoit — 4|, i#jand ij=1,.,Nandr =23, .N—1 (30)
N . . . .
- X 75 i=jandij=1,..,Nand r =1,2,3,..N-1
j=1j=i
N
where in which 2(x;) = H —X;j), and I is a NxN identity matrix.
j=1;j#i
3.2. Discretization
A110 = bh(A+2u), Lo = ph . _ .
Diy One-dimensional functions U(X),W(X) and y(X) are defined on0
{a11,a13,033} = {A11,A13,A33}/A110,  d11 = Aioh? <X < 1.Previous studies (e.g., (Tornabene and Viola, 2008)) revealed
ey — _En that the Chebyshev—Gauss—Lobatto grid point distribution has the
1= Anoh? most convergence and stability among the other grid distributions.
1;‘ - 111_107 1; - Iulﬁﬂ - 110(;127 w = QL\/T;0/A110 Thus, using this grid distribution, the mesh can be generated as

(23)

Boundary conditions can also be expressed in dimensionless
forms in a similar way;

Xi:%(l—coslt]__lln), i=1:N (31)

By introducing column vectors UW and W.
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UT = [Uy,....UN], WT = Wy, .. Wy, BT = [, .. Wy

(32)

in which U; = U(X;), W; = W(X;),¥; = ¥(X;), Eq. (22) can be dis-
cretized as follows

MX + KX+ RV (X) = 0, XT = [U], wf, Wi (33)
where
LDy 0o 0
M=| 0 LD}y 0O
0 g&Dy LEDY
anDg 0 0
K= 0 (a13 + 3a33)éDg —a;3Dy ,

0 (a13+0a33)iD} — 18D} —ay3DY +dy,£°D3

Ry
Rw] (34)
0
in which
Ry = (aj; —as3)é? (D)2<W> ° (D)1<W>
R - o (030)- () + (5W)- (030
+§ (a11 — az3)?> (D§w) o (D}(w) o (D}(w) (35)

In Eq. (35) o denotes the Hadamard matrix product (see
Appendix A). The boundary conditions (Egs. (24) and (25)) can also
be discretized in a similar procedure. By neglecting the nonlinear
term, RN!, and by assuming harmonic solution X = Xe!!, one can
arrive at

—w?MX + KX = (1(7 wZM)X -0 (36)

After substituting the boundary conditions into the stiffness and
inertia matrices and then rearranging the governing equations and
the boundary conditions within a standard eigenvalue problem, it
is possible to obtain

Kia Kap][Xg] _ [0?MggXy (37)
Kpg Kpp Xp 0

where subscripts b and d denote the boundary and domain grid
points, respectively. Eq. (37) can be uncoupled as the following
form

{ (Kdd - de(1<bb)7led>Xd = w*MyXq (38)
Xp = (Kpp) ™' KpaXa
By solving the set of linear equations of Eq. (38), the natural

frequencies w and their associated vibration mode shapes are
obtained.

3.3. Reduction of the number of space-domain variables

Here, a Galerkin-based method is numerically applied so as to
reduce the set of nonlinear equations of Chan and Hsiao (1985) into
a Duffing-type set of ordinary differential equations. In this regard,
one can reduce the size of problem by using of a small number of

generalized variables q (Chan and Hsiao, 1985). For this purpose,
the large number of displacement freedoms X can be represented
in the form of following transformation

X = &g (39)

where @ is a sparse matrix assembled by basis vectors which
contains the first m eigenvectos. It should be mentioned that as the
first few eigenvectors dominate the preliminary stages of the
nonlinear behavior of structure and in addition satisfy both types of
boundary conditions (i.e. essential and natural), they can be
regarded as suitable candidates for the reduced analysis (Chan and
Hsiao, 1985). The reduced generalized coordinates vector and
transformation matrix ® are written as

qz‘Bm)x] = {q;117q377qum7q\1v7q5v77qvmv7q\;7qi77q$} (40)
@,
D3y om) = Dy
Py
vl +in
q)uNxm = [{XU}NX17""{XU }NX]] (41)

Puy = [Kudyers o Kt

—1 —
Py = [{XW}NX] e {X$ }le}

Substituting Eq. (39) into (33) gives the residual as

R = M®q + K&q + RV (®q) (42)

In the present numerical Galerkin method, multiplying each
equation by associated eigenvectors and integrating over the
domain can be simultaneously done using the following matrix
operator

Gmx3n = (SO‘I’T)7 S = {Sx.Sx,Sx}1x@3n) (43)

in which Sy is an integral operator (see Appendix B). Through
multiplying Eq. (43) by the residual vector (Eq. (42)), the reduced
form of Eq. (33) can be expressed by

M + Kq+R"(q) = 0 (44)

which is a set of nonlinear ordinary differential equations.
Moreover

M = GM®, K = GK®, N(q) = GRN'(®q). (45)

It is seen that the general coordinates are reduced from 3N
discrete points to 3m ones, where N and m respectively show the
number of discrete points in the GDQ method and the number of
selected mode shapes in the Galerkin method and 1 < m < N. Also,
it should be noted that both essential and natural boundary con-
ditions are satisfied in the present approach since the linear mode
shapes used in the Galerkin method are obtained from a numerical
procedure. Additionally, it should be remarked that the surface
stress effects are incorporated into the analysis as the linear mode
shapes employed in the solution method are obtained from the
surface elasticity theory. Thus, one can conclude that with the
present numerical Galerkin method the desired accuracy can be
achieved using a small number of mode shapes and therefore the
computational effort considerably is reduced.
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3.4. Time-Domain solution

By defining t = 1/T, Eq. (44) can be rewritten as

1o o
ﬁMq+1(q+R""(q) -0 (46)

For a periodic motion, the following conditions must be satisfied

q|r:0 = q‘r:]
do| _ dq (47)
dej—o — dr|i—q

To find out the periodic response of nanobeam in the time
period T, the general governing equation is discretized over the
time domain via time differential matrix operators. The main idea
for the solution of Eq. (46) under the periodic conditions of Eq. (47)
is to select a specific grid and differential matrix operator for time
domain which naturally satisfy the periodic conditions rather than
imposing the periodic conditions on time domain differential op-
erators. To accomplish this aim, an unbounded grid with periodic
grid points between 0 and 1 is utilized in which only functions with
fix periodicity are authorized. Also, spectral differentiation matrix
operators are obtained from derivatives of periodic sinc function,
sin(wt/h)/((2m/h)tan(t/2)), as a base function in a collocation
method where h = 27t/n (Trefethen, 2000). The periodic grid points
are given by

i .
Ti:ﬁ’ 0<1,<1, i=1,2,... .k (48)
where k shows the number of discrete points in the time domain.
By extending the field vector in time as
Quk = [@).1.G%,1. - 4%,.;], the general governing equations
are discretized in the following forms

%MQ +KQ +RMQ) = o, (49a)

%MQDS)T +RQ +Ry(Q) = 0 (49D)

in which f)iz) and f)il) are differential matrix operators for second
and first time derivatives, respectively. Consider the relation
(BT®A)vec(X) = vec(AXB) in which A and B are constant matrices,
and X is an unknown matrix. Also, vec(X) stands for the vectori-
zation of the matrix X and ®. notes the Kronecker product (see
Appendix A). Using this relation, the vectorized form of Eq. (49) can
be expressed as

Tl—zuec(MQf)ﬁz)T) +vec(KQl) +vec(Ry(Q)) = 0 (50a)

(%Diz) ®M + 1t®f<) vec(Q,) + Ry (vec(Q,)) = 0 (50b)

The explicit formulation 2for the first and second differential
matrix operators D, * and Di are given as

a =0

_ (it w1
a1 =" cot=x-
N L ij=234,..N;, DIV =2x[a;]
alj:<721> o COtn(NtIg[H])

Ait1j+1 = dij

(51a)
2
b = —15—4
_1)i-2
bi’l = m 2

N ij=23,4,...,N, DP = 2m)?[b;]

-1 Ne—j

brj = 5ot

bit1j41 = bij
(51b)

Note that D" and D{”’ are Teoplitz matrices. After substituting
Eq. (51) into (50b), the set of nonlinear equations of the domain can
be shown as

H: R™k 4 R R™K H(T  vec(Q ) = 0 (52)

Finally, by treating the period T, as a parameter, Eq. (52) is solved
using the pseudo arc-length method (Keller, 1977) and Qpy is
readily obtained from 27/T.

4. Results and discussion

In this section, numerical results are presented for the nonlinear
vibration behavior of nanobeams with simply supported—simply
supported (SS—SS), clamped—clamped (C—C) and simply
supported-clamped (SS—C) boundary conditions. It is assumed that
the material of nanobeams is silicon (Si) with the following bulk
and surface properties (Miller and Shenoy, 2000; Zhu et al., 2006)

E = 210GPa, p = 2331kg/m3, v = 0.24,
Js = —4.488 N/m, u, = —2.774N/m, 15 = 0.605 N/m,
ps = 3.17 x 1077 kg/m?

The dimensionless fundamental frequencies w; as a function of
nanobeam'’s thickness predicted by the surface stress model are
given in Table 1. The results of the classical model are also presented
in this table. It is seen that with increasing the thickness of nano-
beam, the frequency decreases and tends to that of classical model
for large magnitudes of thickness. Moreover, Fig. 2 is given to
highlight the difference between the results obtained based on the
surface stress model and the ones obtained by its classical coun-
terpart at different thicknesses. In this figure it is assumed that the
length-to-thickness ratio, 7 = L/h, is equal to 10. It is observed that

Table 1

Dimensionless fundamental frequency w; of nanobeams with various thicknesses.
Thick. (nm) c—C SS—C SS—SS
1 0.2524 0.2148 0.1830
2 0.2323 0.1904 0.1557
5 02117 0.1643 0.1255
50 0.1928 0.1388 0.0937
Classic 0.1902 0.1351 0.0887
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Fig. 2. Comparison between classical and non-classical beam models in predicting the nonlinear vibration behavior of nanobeams (7 = 10).

the classical model tends to underestimate the frequency of
nanobeam especially for small thicknesses. However, as the thick-
ness of nanobeam increases, the surface stress effect diminishes so
that the results of both models tend to converge.

Presented in Figs. 3—7 are the frequency—amplitude curves of
nanobeams with different geometrical and surface properties. Fig. 3
shows the effect of thickness variation on the nonlinear free vi-
bration behavior of nanobeams. As can be seen, with the increase of
nanobeam’s thickness, the normalized frequency increases espe-
cially for large magnitudes of dimensionless deflection, and in the

limit the results of classical theory are obtained. Also, it is found
that the effect of thickness is dependent on the type of boundary
conditions. Fig. 4 is given to highlight the nonlinear free vibration
characteristics of the nanobeams at short lengths using the Timo-
shenko beam theory which cannot be predicted by the Euler—
Bernoulli beam theory. Illustrated in this figure are the frequency—
amplitude curves for various length-to-thickness ratios, and it is
seen that the normalized frequency becomes larger when 7 de-
creases. Figs. 5—7 show the effects of surface properties, i.e.,
As + 2us, Ts and ps on the nonlinear vibration behavior. From Figs. 5
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Fig. 3. Variation of normalized frequency versus dimensionless deflection for nanobeams with different thicknesses (n = 10).



150 R. Ansari et al. / European Journal of Mechanics A/Solids 45 (2014) 143—152

cC SS-C
—, 15 —, 15
£ £
S 14 S 14
> >
2 2 ]
g 13 g 13
g g
o, =12
° °
g g
T 11 T 11
E £
] ] .
=z 1c - L L = 1c S L n
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Nondimensional Deflection Nondimensional Deflection
SS-SS
—, 2
3
S~
S 13
oy
C
g 16
jon
o
To14
o
'r_é 1.2
] e
= 1t f . R
0 0.5 1 15 2

Nondimensional Deflection

Fig. 4. Variation of normalized frequency versus dimensionless deflection for nanobeams with different length-to-thickness ratios (h = 2 nm).

L

Normalized Frequency (Q/®,)

1
0 0.2 0.4 0.6 0.8 1
Nondimensional Deflection

N

L
=
n

Ing
~

-
w

[
[

Normalized Frequency (Q/®,)
[
N

1 .
0 0.2 0.4 0.6 0.8 1
Nondimensional Deflection

SS-SS

18

1.6

14

1.2

Normalized Frequency (Q/wL)

—e— ks+2u5:6 (N/m)

k5+2u5:0 (N/m)

—_— ks+2u5:—6 (N/m)

1 A
0 0.2

0.4

0.6 0.8 1

Nondimensional Deflection

Fig. 5. Variation of normalized frequency versus dimensionless deflection for nanobeams with different values of 2* + 2u° (t° = p* = 0, h = 2 nm).

and 6, it can be observed that the normalized frequency decreases
as As + 2us and 15 increase. In addition, according to Fig. 7 one can
find that the dimensionless fundamental frequency increases with
the increase of ps.

5. Conclusion

In this work, the free vibration analysis of nanobeams was
presented in the nonlinear regime using the surface stress elasticity
and Timoshenko beam theory. Hamilton’s principle was used to
obtain the nonlinear equations of motion and associated boundary

conditions which were then discretized by the GDQ technique. The
space-domain variables were reduced by a pseudo-Galerkin
method and the set of partial differential governing equations
were converted to a set of ordinary differential equations of
Duffing-type. For the solution in the time-domain, after dis-
cretization via periodic time differential operators, the pseudo arc-
length method was utilized to solve the resulting nonlinear alge-
braic parameterized equations. The numerical results showed that
the surface stress effect is more important for thin nanobeams and
the difference between the results of classical and non-classical
model decreases as the thickness of nanobeam increases. Also,
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the effects of surface properties on the nonlinear vibration behavior
were examined and it was revealed that increasing the residual
surface stress leads to increasing the dimensionless fundamental
frequency while it decreases as the surface density becomes larger.

Appendix A. Hadamard and Kronecker Products

Definition 1. Let A = [Aj]y, and B = [Bjj]y,. then the Hada-
mard product of these matrices take the form as A°B = [A;Bjj]N. -

Definition 2. Let A be a m-by-n matrix and B a p-by-q matrix, then
a;B a;nB

A®B = : : indicates the Kronecker product

am B amnB mpxngq

of matrices A and B which is a mp-by-nq block matrix.

Appendix B. Integral Operator

The trapezoidal rule can be employed as an integral matrix
operator in the following form



152 R. Ansari et al. / European Journal of Mechanics A/Solids 45 (2014) 143—152

b
/f(x)dxz%XWF — SxF, X = {x1,%2, ... XN},
a

Sx = {Sx}ixn

where Sy denotes the integral operator and W is an N x N matrix
with the non-zero elements of

- l,i—j=1lori=j=N
W'Jf{—l,i—]:—l ori—j=1
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