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This paper reports the hydromagnetic stagnation point flow of thixotropic nanofluid towards an impermeable
stretching surface. Effects of Brownian motion and thermophoresis are present. Heat and mass transfer analysis
is performed in the presence of viscous dissipation, Joule heating and convective boundary conditions. Meaning-
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ficient, local Nusselt and Sherwood numbers are computed and analyzed.
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1. Introduction

It is well known that sustainable energy generation is one of the
most serious issues across the globe. Solar energy offers a solution
with the hourly solar flux incident on the earth's surface being more
prominent than the greater part of the human utilization of energy in
a year. Concentrated solar energy has become the input for an increas-
ing number of experimental and commercial thermal systems over
the past few years. Recent studies indicated that the addition of nano-
particles to conventional working fluids (i.e., nanofluids) can improve
heat transfer and solar collection. Solar energy is one of the best sources
of renewable energy with minimal environmental impact [1]. Solar
power is very important in our daily usage and it is a natural way of
obtaining heat, electricity and water with the help from the nature. In
the near future, we might be compelled to switch our controlling ap-
proaches to keep the aforementioned necessities. As we shall face
some fossil fuels crisis the solar power is a renewable source of energy
which never consumes. Power tower solar collectors are more effective
through the use of nanofluid as a working liquid.

The use of nanoparticles is currently a subject of abundant studies. It
is because of their Brownian motion and thermophoresis properties. A
new class of heat transfer liquids is known as nanofluids (a base fluid
and nanoparticles). The nanoparticles are used to improve the heat
transfer performance of the base liquids [2]. The cooling rate require-
ments cannot be obtained by the ordinary heat transfer liquids because
their thermal conductivity is not adequate. Brownian motion of the
nanoparticles enhances the thermal conductivity of base fluids. On the
other hand, the magnetohydrodynamic (MHD) nanofluid has key sig-
nificance in engineering, physics and chemistry. Particularly such liq-
uids have wide scope in the optical switches, tunable optical fiber
filters, optical grating, optical modulators, stretching of plastic sheets,
polymer industry and metallurgy. Several metallurgical processes in-
volve the cooling of continuous strips or filaments by drawing them
through a nanofluid. Such strips in processes of drawing, thinning of
copper wires and annealing are sometimes stretched. The quality and
desired characteristics of a final product in such cases strongly depend
upon the cooling rate by drawing such strips in an electrically
conducting fluid. The magnetic nanoparticles are also useful in the con-
struction of loudspeakers, magnetic cell separation, hyperthermia, drug
delivery etc. MHD flow and radiation heat transfer of nanofluids in po-
rous media with variable surface heat flux and chemical reaction are
presented by Zhang et al. [3]. Sheikholeslami et al. [4] studied MHD
CuO–water nanofluid with mixed convection. Influence of convective
heat and mass conditions in MHD flow of nanofluid is reported by
Shehzad et al. [5]. Abbasi et al. [6] studied the influence of heat and
mass flux conditions in hydromagnetic flow of Jeffrey nanofluid. Nu-
merical simulation of two phase nanofluid in the presence of time de-
pendent magnetic field is addressed by Sheikholeslami et al. [7].
Recently Farooq et al. [8] examined the MHD Falkner–Skan flow of
nanofluid.
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The phenomenon of non-Newtonian fluids has attracted the atten-
tion of recent researchers in view of several industrial and technological
applications. Many materials such as toothpaste, paints, polymer solu-
tions and melts, pharmaceuticals and chemical and biological liquids
are examples of non-Newtonian fluids. These fluids show nonlinear re-
lationship between the stress and the rate of strain which give rise to
much complicated, more nonlinear and higher order differential sys-
tems. Despite all such complexities, several researchers are still engaged
to examine the flows of non-Newtonian fluids under various aspects.
Thus various models of non-Newtonian fluids have been suggested.
Amongst these there is a thixotropic fluid model. The difference be-
tween thixotropic and shear thinning fluid is that a shear thinning
fluid shows a decrease in viscosity with increasing shear rate while
thixotropic fluid displays a decrease in viscosity over time at constant
shear rate. Few studies relevant to thixotropic fluid can be seen in the
refs. [9–12]. The stagnation point flow towards a stretching sheet
commonly appeared in paper production, the spinning of fibers, glass
blowing, continuous casting, manufacture of sheeting material through
extrusion process especially in the polymer extrusion in a melt
spinning process and aerodynamic extrusion of plastic sheets etc. Stag-
nation point flow of hydromagnetic viscous fluid over a stretching/
shrinking sheet with generalized slip condition and homogeneous–
heterogeneous reactions is studied by Abbas et al. [13]. Mabood et al.
[14] examined MHD stagnation point flow with chemical reaction and
transpiration. Malvandi et al. [15] analyzed the slip effects on unsteady
stagnation point flow of nanofluid over a stretching sheet. Hayat at al.
[16] investigated MHD stagnation-point flow of Jeffrey fluid over a
convectively heated stretching sheet. Heat transfer analysis in unsteady
boundary layer stagnation point flow towards a shrinking/stretching
sheet is reported by Bhattacharyya [17].

Clearly Joule heating is produced due to the passage of electric cur-
rent through any conducting material. It is because of the collision be-
tween the moving particles. In this process some of the kinetic energy
is converted into the heat and as a result temperature of the body in-
creases. In recent years the engineers and scientists are interested to in-
crease the efficiency of various mechanical systems and industrial
machineries. Such kinds of difficulties can be handled to decrease the
temperature produced due to Ohmic dissipation or Joule heating. There-
fore many researchers investigated the flow problems with various
physical aspects. Effects of viscous dissipation and Joule heating in the
MHD flow of second grade fluid past a radially stretching sheet with
heat transfer is examined by Sahoo [18]. Hayat et al. [19] examined
the effects of Joule heating and thermophoresis in flow over a stretched
surface with convective boundary condition. MHD radiative stretched
flow of Jeffrey fluid in the presence of Joule heating is reported by
Shehzad et al. [20]. Hayat et al. [21] discussed the effects of Joule heating
and thermal radiation in flow of third grade fluid over a radiative sur-
face. Very recently Hayat et al. [22] studied MHD stagnation point
flow of Jeffrey fluid by a radially stretching surfacewith viscous dissipa-
tion and Joule heating.

The aforementioned investigationswitness that no attempt has been
made to study the flow of thixotropic fluid in the presence of nanopar-
ticles. Therefore our main objective is to explore the stagnation point
flow of thixotropic nanofluid in the presence of viscous dissipation,
Joule heating and convective conditions. Homotopic algorithm [23–30]
is used for the development of solutions. Convergence of the obtained
solutions is verified. Results for several sundry variables are examined.

2. Formulation

We consider the laminar hydromagnetic flow of an incompressible
thixotropic nanofluid over a stretching sheet. The flow is induced due
to the linear stretching of sheet. Thermophoresis and Brownian motion
effects are taken into account. Magnetic field of strength B0 is applied
in transverse direction to the flow. Magnetic Reynolds number is taken
small and thus the inducedmagnetic field is neglected. The flow analysis
is performed by considering the convective heat and mass conditions at
the surface. Two-dimensional boundary layer flow equations are:
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The subjected boundary conditions are

u ¼ Uw xð Þ ¼ cx; v ¼ 0;−k
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Here u and v denote the velocity components in the x and y directions
respectively, R1 and R2 the material constants, σ the electrical
conductivity, B0 the applied magnetic field, v the kinematic viscosity, ρ
the fluid density, μ the fluid dynamic viscosity, k the thermal conductiv-
ity,α ¼ k

ρcp the thermal diffusivity, T thefluid temperature, T∞ the ambient
temperature, C the fluid concentration, C∞ the ambient concentration,
uw(x) the stretching velocity, ue the free stream velocity, σ⁎ the Stefan–
Boltzmann constant, k⁎ the mean absorption coefficient, τ=(ρc)p⁄(ρc)f
the heat capacity ratio, DB the Brownian diffusion coefficient, DT the
thermophoresis diffusion coefficient, cp the specific heat, (h1, h2) the
wall (heat, mass) transfer coefficient respectively and (Tf, Cf) the
convective fluid (temperature, concentration) respectively. Using the
transformations

η ¼ y

ffiffiffiffiffiffi
c
ν
;

r
u ¼ cxf 0 ηð Þ; v ¼ −

ffiffiffiffiffi
cv

p
f 0 ηð Þ; θ ηð Þ ¼ T−T∞

T f−T∞
;ϕ ηð Þ

¼ C−C∞

C f−C∞
; ð6Þ

the continuity of Eq. (1) is identically satisfied and the resulting prob-
lems in f, θ and ϕ are
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f ¼ 0; f 0 ¼ 1; θ0 ¼ −γ1 1−θ 0ð Þð Þ;ϕ0 ¼ −γ2 1−ϕ 0ð Þð Þ at η ¼ 0;
f 0 ¼ A; θ→0;ϕ→0 as η→∞:

ð10Þ

In the above equations K1 and K2 are the non-Newtonian parame-
ters, A the ratio of rate constants, Ha2 the Hartman number, Pr the
Prandtl number, Nb the Brownian motion parameter, Nt the thermo-
phoresis parameter, R the radiation parameter, Ec the Eckert number,
Sc the Schmidt number, γ1 the thermal Biot number and γ2 the concen-
tration Biot number. These quantities are given by
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The skin friction coefficient, local Nusselt and Sherwood numbers
are
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Dimensionless expressions of skin friction coefficient, local Nusselt
and Sherwood numbers are
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with Rex=uw(x)x/ν as the local Reynolds number.

3. Homotopic solutions

The initial approximations and linear operators are selected as
follows:
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The above linear operators satisfy the following properties
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where Ci (i = 1–7) indicate the arbitrary constants.
The corresponding problems at the zeroth order are:

Lf C1 þ C2eη þ C3e−ηð Þ ¼ 0; Lθ C4eη þ C5e−ηð Þ ¼ 0;
Lϕ C6eη þ C7e−ηð Þ ¼ 0;

ð19Þ

1−pð ÞLθ θ̂ η;pð Þ−θ0 ηð Þ
h i

¼ pℏθNθ f ̂ η;pð Þ; θ̂ðη;pÞ;ϕ ̂ðη;pÞ
h i

; ð20Þ
1−pð ÞLϕ ϕ̂ η;pð Þ−ϕ0 ηð Þ
h i

¼ pℏϕNϕ f ̂ η; pð Þ; θ̂ðη;pÞ; ϕ̂ðη;pÞ
h i

; ð21Þ

f ̂ 0;pð Þ ¼ 0; f
0̂
0; pð Þ ¼ 1; f ̂

0
∞; pð Þ ¼ A; ð22Þ

θ
0̂
0; pð Þ ¼ −γ1 1−θ ̂ 0; pð Þ

� �
; θ̂ ∞;pð Þ ¼ 0; ð23Þ

ϕ̂
0
0;pð Þ ¼ −γ2 1−ϕ̂ 0;pð Þ

� �
;ϕ ̂ ∞;pð Þ ¼ 0; ð24Þ

N f f ̂ η; pð Þ
h i

¼ ∂3 f ̂ η; pð Þ
∂η3

þ ð f ̂ η; pð Þ ∂
2 f ̂ η;pð Þ
∂η2

−
∂ f ̂ η; pð Þ

∂η

 !2

þ K1 xð Þ ∂2 f ̂ η; pð Þ
∂η2

 !2
∂3 f ̂ η;pð Þ

∂η3

þ K2 xð Þ
∂ f ̂ η;pð Þ

∂η
∂2 f ̂ η;pð Þ

∂η2

� �2
∂3 f ̂ η;pð Þ

∂η3 þ ∂2 f ̂ η;pð Þ
∂η2

� �4
− f ̂ η; pð Þ∂2 f ̂ η;pð Þ

∂η2
∂3 f ̂ η;pð Þ

∂η3

� �2
− f ̂ η; pð Þ ∂2 f ̂ η; pð Þ

∂η2

� �2
∂4 f ̂ η;pð Þ

∂η4

0
BBB@

1
CCCA

−Ha2
∂ f ̂ η; pð Þ

∂η
þ Ha2Aþ A2; ð25Þ

Nθ f ̂ η; pð Þ; θ̂ η;pð Þ; ϕ̂ η;pð Þ
h i

¼ 1þ 4
3
R

� �
∂2θ̂ η; pð Þ

∂η2
þ Pr Ec

∂2 f ̂ η; pð Þ
∂η2

þ Ha2 Pr Ec
∂ f ̂ η; pð Þ

∂η

 !2

þ1
3
K1 xð Þ Pr Ec ∂2 f ̂ η; pð Þ

∂η2

 !4

þK2 xð ÞPr Ec ∂ f ̂ η;pð Þ
∂η

∂2 f ̂ η;pð Þ
∂η2

 !4

− f ̂ η; pð Þ ∂
3 f ̂ η;pð Þ
∂η3

∂2 f ̂ η;pð Þ
∂η2

 !3
0
@

1
A

þPrNb
∂θ̂ η; pð Þ

∂η
∂ϕ̂ η; pð Þ

∂η
þ PrNt

∂2θ ̂ η; pð Þ
∂η2

þPr Ec
∂2 f ̂ η;pð Þ

∂η2

 !2

þ Pr EcHa2
∂ f ̂ η;pð Þ

∂η

 !2

; ð26Þ

Nϕ f η; pð Þ; θ η; pð Þ;ϕ η; pð Þ½ � ¼ ∂2ϕ η; pð Þ
∂η2

þ Scf η; pð Þ ∂ϕ η;pð Þ
∂η

þ Nt

Nb

∂2θ η;pð Þ
∂η2

:

ð27Þ

Here p∈ [0,1] is an embedding parameter andNf,Nθ andNϕ the non-
linear operators.

The general solutions (fm, θm, ϕm) in terms of special solutions
(fm∗ , θm∗ , ϕm

∗ ) are

f m ηð Þ ¼ f �m ηð Þ þ C1 þ C2eη þ C3e−η; ð28Þ

θm ηð Þ ¼ θ�m ηð Þ þ C4eη þ C5e−η; ð29Þ

ϕm ηð Þ ¼ ϕ�
m ηð Þ þ C6eη þ C7e−η: ð30Þ

3.1. Convergence of the developed solutions

Convergence of the developed solutions for the nonlinear differen-
tial systems is necessary. For this purpose the ℏ-curves are displayed
for the 12th order of approximation in Fig. 1. Permissible values for
the derived solutions are found in the ranges −1.05≤ℏf≤ −0.45,
−1.25≤ℏθ≤ −0.5 and −1.25≤ℏϕ≤ −0.22.

3.2. Analysis

The aim of this subsection is to analyze the behaviour of various pa-
rameters on the velocity, temperature and concentration distributions.



Fig. 2. Impact of K1 on f′.

Fig. 4. Impact of A on f′.
Fig. 1. Curves for the functions f, θ and ϕ.

Fig. 5. Impact of Ha2 on f′.
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Figs. 2 and 3 describe the effects of thixotropic parameters K1 and K2 on
the velocity profile f′. It is observed from these plots thatK1 and K1 cause
an increase in fluid velocity. Physically K1 and K2 are the thixotropic pa-
rameters (having the shear thinning properties which show time-
dependent change in viscosity). The longer the fluid undergoes the
shear stress causes the reduction in the viscosity finally results into an
increase in the velocity of the fluid. Fig. 4 is plotted to see the influence
of ratio of rates on velocity profile. It is concluded that velocity profile
increases for larger A. Boundary layer thickness increases for A b 1 be-
cause rate of stretching dominates the rate of free stream. For A N 1 i.e.
the rate of free stream velocity is greater than the rate of stretching ve-
locity. Here the boundary layer thickness decreases while the velocity
distribution increases. It is also observed that there is no boundary
Fig. 3. Impact of K2 on f′.
layer for A=1. Variation of the Hartman numberHa2 on velocity distri-
bution is shown in Fig. 5. Both velocity and momentum boundary layer
thickness are reduced for larger Ha2. Physically with an increase in
Hartman number, the Lorentz force increases and thus the velocity of
fluid decreases. Fig. 6 illustrates the influence of Pr on temperature pro-
file θ(η). It is observed that the temperature profile decreases by in-
creasing Pr. It is noticed that both the temperature and thermal
boundary layer thickness are decreasing functions of Pr. In fact when
Pr increases then thermal diffusivity decreases. This indicates reduction
in energy transfer ability and ultimately it results in the decrease of
thermal boundary layer. Influences of thermophoresis parameter Nt

and Brownian motion parameter on the temperature are observed in
Fig. 7. Temperature profile enhances for larger Nt and Nb. This is due to
Fig. 6. Impact of Pr on θ.



Fig. 7. Impacts of Nt and Nb on θ. Fig. 10. Impacts of γ1 and γ2 on θ.
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the fact thatwhenNt is increased then difference between thewall tem-
perature and reference temperature increases. It causes an increase in
temperature while with an increase of the Brownianmotion parameter
Nb the randommotion of particle increaseswhich results in an enhance-
ment of temperature. Characteristics of Eckert number Ec on tempera-
ture profile is observed in Fig. 8. It is found that the temperature and
thermal boundary layer thickness increase for larger Ec. With the in-
crease of Ec the heat energy is stored in the fluid due to friction forces
which enhances the temperature profile. Fig. 9 depicts the influence of
radiation parameter R on temperature profile θ(η). Here temperature
distribution is increasing function of radiation parameter R. Physically
Fig. 8. Impact of Ec on θ.

Fig. 9. Impact of R on θ.
an increase in thermal radiation parameter reduces the mean absorp-
tion coefficient which enhances temperature. Fig. 10 is sketched to see
the impacts ofγ1 andγ2 on temperature profile. It is examined that tem-
perature and associated thermal boundary layer thickness are enhanced
for higher values of γ1 and γ2. Analysis of thermophoresis parameter Nt

on concentration profile is shown in Fig. 11. It is noted that both the
boundary layer and concentration profile ϕ(η) are increasing functions
of Nt. The presence of nanoparticles enhances the thermal conductivity
of fluid. An increase in Nt gives rise to the thermal conductivity of fluid.
Such higher thermal conductivity shows larger concentration. Effects of
Brownian parameter Nb on the concentration profile ϕ(η) is illustrated
Fig. 11. Impact of Nt on ϕ.

Fig. 12. Impact of Nb on ϕ.



Fig. 13. Impacts of γ1 and γ2 on ϕ.

Fig. 14. Impact of Sc on ϕ.

Table 2
Numerical values of skin friction coefficient for various values of parameterswhenNt=Nb=

0.1, Ec= γ2 = 0.5, Pr = Sc = 1.0, γ1 = 0.7 and R= 0.4.

K1 K2 A Ha2
ffiffiffiffiffiffiffiffi
Rex

p
C f

0.0 0.1 0.2 0.1 −0.9062
0.2 −0.8588
0.4 −0.8183
0.1 0.0 −0.9388

0.1 −0.9072
0.2 −0.8815
0.1 0.0 −0.9047

0.2 −0.8423
0.4 −0.7199
0.1 0.0 −0.8784

0.2 −0.8907
0.4 −0.9261

Table 3
Impacts of Pr,Nt,Nb,γ1, Ec,Ha2 and R onNusselt numberwhenK1=A=0.1,K2=0.2,γ2=
0.5 and Sc= 1.0.

Pr Nt Nb γ1 Ec Ha2 R NuxRex
−1/2

1.2 0.1 0.1 0.7 0.5 0.1 0.4 0.3051
1.4 0.3154
1.6 0.3235
1.0 0.0 0.2971

0.2 0.2862
0.4 0.2759
0.1 0.2 0.2872

0.4 0.2772
0.6 0.2684
0.1 0.4 0.2265

0.5 0.2527
0.6 0.2611
0.7 0.6 0.2665

0.7 0.2411
0.8 0.2159
0.5 0.0 0.2942

0.2 0.2843
0.4 0.2542
0.1 0.6 0.3271

0.7 0.3438
0.8 0.3600

Table 4
Impacts of Pr, Nt, Nb, γ2, Ec and Sc on Sherwood number when K1 = A= Ha2 = 0.1, K2 =
0.2, γ1 = 0.7 and R = 0.4.

Pr Nt Nb γ2 Ec Sc ShxRex
−1/2

1.2 0.1 0.1 0.5 0.5 1.0 0.2412
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in Fig. 12. It is exposed that as Nb increases the collision between the
fluid particles results in decrease of concentration and associated layer
thickness. Fig. 13 is presented to see the characteristics of γ1 and γ2 on
concentration. It is analyzed that concentration and its associated
boundary layer enhances for larger values of γ1 and γ2. Fig. 14 portrays
the influence of Schmidt number Sc on the concentration profile ϕ(η).
Since Sc is the ratio of momentum to mass diffusivities so an increase
in Sc leads to a decrease in mass diffusivity which caused a reduction
in concentration ϕ(η).

Table 1 shows the convergence of the series solutions. It is analyzed
that momentum equation converges at 10th order of approximations
while temperature and concentration equations converge at 17th and
20th orders of approximations respectively. Table 2 presents the impact
of various physical parameters on skin friction coefficient. It is demon-
strated that skin friction coefficient increases for larger Ha2. However
Table 1
Convergence of series solutions for different orders of approximations when K2 = 0.2,
K1 = A = Ha2 = Nt = Nb = 0.1, Ec = γ2 = 0.5, Pr = Sc = 1.0, γ1 = 0.7 and R = 0.4.

Order of approximations −f ″(0) −θ′(0) −ϕ′(0)

1 0.8862 0.2779 0.2495
5 0.8934 0.2003 0.2471
10 0.8934 0.1911 0.2429
15 0.8934 0.1899 0.2418
17 0.8934 0.1899 0.2417
20 0.8934 0.1899 0.2417
30 0.8934 0.1899 0.2417
40 0.8934 0.1899 0.2417
50 0.8934 0.1899 0.2417
Table 2 shows decreasing behaviours for A, k1 andK2. Features of several
parameters of interest on Nusselt number are studied in Table 3. Tabu-
lated values clearly indicate that theNusselt number enhances for larger
Pr, γ1 and Rwhile it decreases via Nt, Nb, Ec and Ha2. Analysis of several
1.4 0.2401
1.6 0.2392
1.0 0.0 0.2745

0.2 0.2120
0.4 0.1602
0.1 0.2 0.2590

0.4 0.2673
0.6 0.2702
0.1 0.4 0.2125

0.6 0.2663
0.8 0.3051
0.5 0.6 0.2500

0.7 0.2578
0.8 0.2657
0.5 0.6 0.1871

0.7 0.2040
0.8 0.2183
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parameters on Sherwood number is presented in Table 4. As expected
the value of Sherwood number increases for larger Nb, γ2, Ec and Sc
however it reduces via Pr and Nt.

4. Final remarks

Here effects of viscous dissipation and Joule heating in magnetohy-
drodynamic (MHD) flow of thixotropic nanofluid past a stretching
sheet have been investigated. The main points of the present analysis
are listed below:

• Impacts of K1 and K2 on velocity f′ are similar.
• Magnetic field corresponds to lower velocity and weaker momentum
boundary layer thickness.

• Temperature enhances for larger Eckert number Ec.
• There are similar effects of thermophoresis parameter Nt on tempera-
ture and concentration while effects of Brownian motion parameter
Nb on temperature and concentration are opposite.

• Concentration boundary layer thickness is thinner for higher values of
Schmidt number Sc.
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