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a b s t r a c t

Photovoltaic generation of electricity is an important renewable energy source, and large numbers of
relatively small photovoltaic systems are proliferating around the world. Today it is widely acknowledged
by power producers, utility companies and independent system operators that it is only through
advanced forecasting, communications and control that these distributed resources can collectively
provide a firm, dispatchable generation capacity to the electricity market. One of the challenges of
realizing such a goal is the precise forecasting of the output of individual photovoltaic systems, which is
affected by a lot of factors. This paper introduces our short-term solar irradiance forecasting algorithms
based on machine learning methodologies, Hidden Markov Model and SVM regression. A series of
experimental evaluations are presented to analyze the relative performance of the techniques in order to
show the importance of these methodologies. The Matlab interface, the Weather Forecasting Platform,
has been used for these evaluations. The experiments are performed using the dataset generated by
Australian Bureau of Meteorology. The experimental results show that our machine learning based
forecasting algorithms can precisely predict future 5e30 min solar irradiance under different weather
conditions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The world has abundant solar energy resources. Photovoltaic
(PV) technology has become one of several promising alternatives
for use in energy technology [1]. Yet many critics of the widespread
use of solar energy cite its intermittency, or the challenges around
predicting the future output of a solar generator. The Virtual Power
Station (VPS) [2e4] conducted by CSIRO aims to address such
concerns by combining a large number of geographically disperse,
and technically diverse, small scale renewable energy generators
that will allow them to present to the electricity market as a single
reliable dispatchable entity. The aggregated energy of the VPS can
be sourced from a large number of small energy generation and
storage systems, such as roof-mounted solar PV panels, and asso-
ciated grid-connected battery systems installed in individual do-
mestic houses. These individual systems are then aggregated
together, to form a “virtual power station”, with one coordinated
response, of benefit to the wider electricity network. However,
integration of large amounts of PV into the electricity grid poses
technical challenges due to the fluctuating characteristics of avail-
able solar energy sources. PV output is not easily predictable in
advance and varies based on both weather conditions and site-
specific conditions. Such variability of solar energy resources at
ground level thus raises concerns regarding how to manage and
integrate output from the VPS to the power grid.

Given the issues above, there is increasing interest in more
precise modeling and forecasting of solar power. Irradiance is a
measurement of solar power and usually measures the power per
unit area. Most researches consider the solar irradiance forecasting
at a site, which is essentially the same problem as forecasting solar
power. The ability to forecast solar irradiation will enable power
grid operators to be able to ensure the quality and control of solar
electricity supplies in an environment of greater solar panel usage,
allow them to better accommodate highly variable electricity
generation in their scheduling, dispatching, and regulation of po-
wer. In particular, the possibility to forecast solar irradiance can
became fundamental in making power dispatch plans, and also a
useful reference for improving the control algorithms of battery
charge controllers. Ultimately, the development of more accurate
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methods for modeling and forecasting solar irradiance remains a
key requirement of our future energy system.

Different solar irradiance forecast methodologies have been
proposed for various time horizons. Some of them forecast up to
24 h or even more [5]. Whilst useful for long-term forecasts, such
techniques don't meet the demands of many electricity markets, for
example the Australian electricity market uses 5-min dispatch
price and a 30-min trading price. Thus, accurate short-term forecast
are essential for energy market participation, both due to forward
contracting and the need for a predictable, stable and smooth
supply. Accurately forecasting direct normal irradiance or global
horizontal irradiance in the seconds-to-minutes time-frame ulti-
mately enables finely-tuned dynamic operational schedules that
can reduce fuel costs, increase network stability or maximize sys-
tem lifetimes.

Machine learning methods have been used to solve complicated
practical problems in various areas [6e11] and are becoming more
and more popular nowadays. Several machine learning based
methodologies, such as genetic algorithm (GA) [12] and neural
networks (NNs) [13,14], have been proposed and applied for
modeling and forecasting of solar irradiance [15e22]. Quaiyum
et al. [15] presented a neural networks and genetic algorithm
model to predict the solar irradiance data from both endogenous
and exogenous variables. Mellit et al. [16] developed a neural
network-based genetic algorithm model for generating the sizing
curve of stand-alone photovoltaic systems. Mellit et al. [17] devel-
oped a multilayer model to forecast the solar irradiance 24 h ahead.
The inputs of proposed model use mean daily irradiance and mean
daily air temperature and the output is solar irradiance data 24 h
ahead. Mellit et al. [18] also developed radial basis function based
neural network model for prediction solar radiation data. Kem-
moku et al. [19] used a multistage neural network to predict irra-
diance of the next day. The input data to the network are the
average atmospheric pressure, predicted by another neural
network and various weather data of the previous day. Irradiance
forecast by the multi-stage and the single-stage neural networks
are compared with measured irradiance. Sfetsos et al. [20] used
neural network to make one-step predictions of hourly values of
global irradiance and to compare them with linear time series
models that work by predicting the clearness index. They intro-
duced an approach for forecasting hourly solar irradiance using
various neural network based techniques and also investigated
other meteorological variables such as temperature, wind speed,
and pressure. Mihalakakou et al. [21] developed a total solar irra-
diance time series simulation model based on neural network and
applied it in Athens. The neural network was identified as the
model with the least error. Hocaoglu et al. [22] incorporate multi-
stage to time-delay neural network models for the prediction of
hourly solar radiation. But the problems for these methods are as
follows.

� Genetic algorithm (GA) [10] is an optimum search technique
based on the concepts of natural selection and survival of the
fittest, has been successfully applied to many difficult problems
[9e11]. But for our solar irradiance forecasting issue, the first
and one of the most difficult questions is the physical model
definition, which describes the physical state and dynamic
motion of the atmosphere defined by mathematical equations.
Current GA based solar irradiance forecasting algorithms [15,16]
couldn't give such physical properly.

� Neural Networks (NNs) are an information processing paradigm
that is inspired by the way biological nervous systems, such as
the brain, process information. The key element of this para-
digm is the novel structure of the information processing sys-
tem. It is composed of a large number of highly interconnected
processing elements (neurones) working in unison to solve
specific problems. The same as GA, NN has been successfully
applied in a lot areas [22,23]. But for our application it cannot
easily be determined which variables are the most important
contributors to future solar irradiance, what novel structure of
the network is optimal, and a neural network model may
contain a number of unimportant input variables that the
developer fails to appreciate.

To avoid the problems of GA and NNs, this paper introduces our
short-term solar forecasting algorithms using Hidden Markov
Model and SVM regression based on the dataset gathered from the
Australian Bureau of Meteorology (BOM). In order to evaluate the
generalizability of the forecasting algorithms, the evaluations are
performed under different weather conditions for forecasting
future 5e30min solar irradiance. The paper is organized as follows.
Section 2 briefly presents our Matlab interface, the Weather Fore-
casting Platform, for evaluating our developed solar irradiance
forecasting algorithms. Section 3 introduces the BOM dataset used
for comparison. Section 4 introduces our solar forecasting algo-
rithms in details. Section 5 provides a series of experimental results
to evaluate solar irradiance forecasting performance. Finally, a
conclusion is drawn in Section 6.
2. Solar irradiance forecasting platform

We developed a Matlab interface e the Weather Forecasting
Platform (WFP), which is shown in Fig. 1. The WFP is designed so
that historical and forecast data - data that is necessary to perform a
forecast - can be delivered to the different forecasting algorithms
(an example of which is a neural networks algorithm) in a consis-
tent manner. Another primary purpose of the WFP, is to ensure the
forecasting algorithms act in a causal manner, so algorithms don't
accidentally ‘cheat’ by looking at future data (from the perspective
of the WFP). The arrows in Fig. 1 represent the flow of the data e

not simply communication between the modules, as communica-
tion between all of the connected modules is bidirectional.

The WFP is designed to work as follows:

1. The user application provides the WFP with a forecast request.
The request includes such details as:
a. Which of the forecasting algorithms is to perform the fore-

cast. Note that potentially all of the forecasting algorithms
can be requested to perform the forecast, because of the
common forecast output format from the WFP, makes a
comparative analysis of the differing forecasting algorithms
easy.

b. The weather parameter to be forecasted e e.g. irradiance,
temperature. It is irradiance that is the focus of the remainder
of the paper.

c. The present time. By ‘present’ it is meant the time for which
the WFP can consider to be the current time, such that any
request to get data from a future time is inhibited. This is
necessary to enforce the real-world requirement that the
forecasting algorithms be causal.

d. Any forecasting algorithm parameters of interest. Parameters
such as frequency of the forecast data, forecast horizon, or
any other configuration parameters are all valid parameters.

2. TheWFP passes on the relevant data from the request to the one
or many forecasting algorithms identified in (1a).

3. The algorithms then make independent decisions on what data
is necessary for them to perform their requested forecasting
task. The forecasting algorithms then respond to the forecast
request by sending a data request to the WFP.



Fig. 1. Weather forecasting platform.
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4. TheWFP, after checking causality is not breached, sends the data
request to the appropriate databases to gather as much data as
possible in an attempt to fulfill the request in its entirety. The
database interface layer (identified in Fig. 1) acts to ensure that
all data received by the WFP is in a consistent format.

5. TheWFP passes the data back to the forecasting algorithms. The
forecasting algorithms now perform their respective forecasting
tasks independently.

6. Once forecasting is complete, the forecast is sent to the WFP.
7. The WFP passes the forecast to the user application.
3. BOM data

Climate is the typical weather conditions experienced at any
location or area. To better understand our climate, the Bureau of
Meteorology (BOM) collects information from across Australia,
including rainfall, wind, temperature, fog, thunder, humidity,
pressure, ocean temperatures and sunshine data. BOMdata is based
on past weather and climate datasets provided online, which in-
cludes data from around 18,000 sites. The BOM provides free access
to historical climate (weather) data from these sites. The daily
weather observations for the previous 14 months of the area of
interest can be downloaded. Two kinds of data are used in our al-
gorithms, i.e. weather data and solar data. They are both sampled in
1 min. There are 44 parameters in weather data, covering tem-
perature, humidity, atmospheric pressure, through to irradiance
and the statistical qualities of these measured values.

Fig. 2 shows examples of BOM data for the days of 3rd and 4th of
January 2012, weather data (top) and solar data (bottom). Fig. 3 is
the examples of irradiance distribution data for different days. From
the figures we can see that the data is not smooth. It varies with
time because of weather and factors such as cloud changes.

4. Short-term solar irradiance forecasting algorithms based
on BOM data

Short-term solar irradiance forecasting is to use sensor data
both for solar and weather information from BOM database intro-
duced in Section 3 to predict future 5e30 min irradiance.

4.1. Forecasting based on hidden Markov model

4.1.1. Hidden Markov model
Hidden Markov Models (HMMs) [24e26] are a good
methodology for time series analysis, modeling and prediction
because the models can encode statistic relationships among var-
iables of interest. These models are constructed via a learning
process on some training data from past observations. The learnt
models can then be used for forecasting.

Weather is time series information. HMMs are chosen to model
the output of PV system because they can infer optimal hidden
states from observation sensor data while other modeling tech-
nologies, such as genetic algorithm [12] and neural networks
[22,23], can only model what will be observed from what has
already been observed. Generally speaking, a HMM is a statistical
model in which the system being modeled is assumed to be a
Markov process with unknown parameters. A Markov process is a
mathematical model for the random evolution of a memoryless
system. That is, the likelihood of a given future state at any given
moment depends only on its present state and not on any past
states.

Themost commonHMM structure is a finite set of states, each of
which is associatedwith a (generallymultidimensional) probability
distribution [27]. Transitions among the states are governed by a set
of probabilities called transition probabilities. In any given state,
there is some probability that an outcome or observation is
generated, according to an associated probability distribution. It is
only the outcome, not the state, that is visible to an external
observer and therefore states are “hidden”.

To define a HMM, three basic components are needed:
A vector containing the prior probability of each hidden state:

the initial state distribution, p ¼ pi, where pi ¼ p{q0 ¼ i}, for
1 � i � N. Here N is the number of states of the model, and q0
denotes the initial state.

A set of state transition probabilities L ¼ aij. Define

aij ¼ pfqtþ1 ¼ jjqt ¼ ig; 1 � i; j � N; (1)

where qt denotes the current state. Transition probabilities should
satisfy the normal stochastic constraints, 0 � aij � 1 for 1 � i, j � N,
and Saij ¼ 1 for 1 � i � N, 1 � j � N.

The probability of the observation given a state, B ¼ {bj(k)}.
Define

bjðkÞ ¼ pfOt ¼ nkjqt ¼ jg; 1 � j � N;1 � k � M; (2)

where vk denotes the kth observation, M the number of observa-
tion, and Ot the current parameter vector. The following stochastic
constraints must be satisfied: 0� bj� 1 for 1� j�N,1� k�M, and
S bj(k) ¼ 1 for 1 � j � N, 1 � k � M.
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Fig. 2. Examples of BOM data.
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4.1.2. Hidden Markov model for solar irradiance forecasting
The main purpose of HMM is to develop a proper model to

predict the precise future solar irradiance under variable climatic
conditions. In modeling solar irradiance, transitions between the
same or different hidden states can be forecasted using state
transition matrix A and state-dependent observation matrices B.
For forecasting, the state transition matrix A and state dependent
observation matrices B are based on measurement of the system.
An irradiance forecasting process for a PV system can be easily
implemented. The only pre-defined parameters of the HMM are the
number of observation states and the number of hidden states.
Generally speaking, the observation states are what can be
measured. The hidden states may not have real-world/physical
meaning, and are generally selected based on experience and/or
experimentation. Fig. 4 shows an example of a HMM with five
sensor readings as the observe states (above the dash line), and four
hidden states (below the dash line). The arrows show the transition
probabilities between hidden states. The training process is used to
find the HMM parameters that maximize the proba-
bilityP(Oj(p,A,B)). This process is performed using the recursive
Baum-Welch algorithm as described in Ref. [27].

The future solar irradiance depends upon several factors, espe-
cially the meteorological conditions such as current and/or past
solar irradiance, relative humidity, ambient temperature and wind
speed. In our irradiance forecasting process, observation states
include a) past, current and forecasted air temperature, b) past,
current and forecasted relative humidity, c) past, current and
forecasted wind speed d) past and current irradiance. The HMM
calculates the likelihood of the new data's fitness to the learnt
HMM. If the likelihood is high, the irradiance selected from possible
range of irradiances is used for predicted irradiance. Fig. 5 is a
schematic diagram of the idea, in which the blue line represents
data weather forecasting; the black line represents past weather
and irradiance data. The forecasting data is generated by past
30 min data.
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4.2. Forecasting based on irradiance gradient regression using SVM

Solar irradiance changes during the day. Under the same cloud
and weather conditions, this change follows a general pattern. At
any time, there exists a proper irradiance gradient. If we know this
gradient, we can forecast the irradiance in the future easily. This
process is the irradiance gradient regression, which is implemented
by SVM.
Fig. 6. SVM - solve the binary classification problem, separating red balls from blue balls. (Fo
the web version of this article.)
4.2.1. Support vector machine
The basic idea of SVM is to map the training data from the input

space into a higher dimensional feature space (Fig. 6) via functionF
and then construct a separating hyperplane with maximummargin
in the feature space. Given a training set of data xi3Rn; i ¼ 1;2; :::; l,
where l corresponds to the size of the training data and yi¼±1 class
labels, SVMwill find a hyperplane directionW and an offset scalar b
such that f(x) ¼ W � F(x) þ b � 0 for positive examples and
f(x) ¼ W � F(x) þ b � 0 for negative examples. Consequently,
although we cannot find a linear function in the input space to
decide what type the given data is, we can easily find an optimal
hyperplane that can clearly discriminate between the two types of
data.

Consider a set of training data where each xi3Rn denotes the
input space of the sample and has a corresponding target value
yi3R for i ¼ 1,2,…,l, where l corresponds to the size of the training
data. The idea of the regression problem is to determine a function
that can approximate future values accurately.

The generic SVM regression (SVR) estimating function takes the
form

f ðxÞ ¼ ðw$FðxÞÞ þ b (3)

where and F denotes a nonlinear transformation from Ref. Rn to
high-dimensional space. Our goal is to find the value of W and b
r interpretation of the references to color in this figure legend, the reader is referred to



06:00 09:00 12:00 15:00 18:00
0

500

1000

1500
Irradiance of training data

Time

)
m

qs/
W(

ecnaidarrI

Fig. 8. Training data for Irradiance Gradient Regression.

1500
Regression Irradiance of Traing Data

J. Li et al. / Renewable Energy 90 (2016) 542e553 547
such that values of x can be determined by minimizing the
regression risk

Rregðf Þ ¼ C
Xl
i¼0

Gðf ðxiÞ � yiÞ þ
1
2

�����
�����W
�����
���2 (4)

where is a cost function, C is a constant, and vectorw can bewritten
in terms of data points as

w ¼
Xl
i¼1

�
ai � a*i

�
FðxiÞ (5)

By substituting Eq. (5) into Eq. (3), the generic equation can be
rewritten as

f ðxÞ ¼
Xl
i¼1

�
ai � a*i

�ðFðxiÞ$FðxÞÞ þ b ¼
Xl
i¼1

�
ai � a*i

�
kðxi; xÞ þ b

(6)

In Eq. (6), the dot product can be replaced with functionk(xi,x),
known as the kernel function. Kernel functions enable the dot
product to be performed in high-dimensional feature space using
low-dimensional space data input without knowing the trans-
formation F. All kernel functions must satisfy Mercer's condition
that corresponds to the inner product of some feature space. For
nonlinear SVM, there are a number of kernel functions which have
been found to provide good performance, such as polynomials and
radial basis function (RBF). The RBF is commonly used as the kernel
for regression

kðx; xiÞ ¼ exp

 
�

������x� xi
������2

2s2

!
(7)

The ε-insensitive loss function is the most widely used cost
function (7). The function is in the form

Gðf ðxÞ � yÞ ¼
� jf ðxÞ � yj � ε; forjf ðxÞ � yj � ε

0; otherwise
(8)

By solving the quadratic optimization problem, the regression
risk in Eq. (4) and the ε-insensitive loss function Eq. (8) can be
minimized

1
2

Xl
i;j¼1

�
a*i � ai

��
a*j � aj

�
k
�
xi � xj

��Xl
i¼1

a*i ðyi � εÞ � aiðyi þ εÞ

subject to
Fig. 7. SVR to fit a tube with radius ε to the data and positive slack variables zi
measuring the points lying outside of the tube.
Xl
i¼1

ai � a*i ¼ 0;ai;a
*
i 2½0;C� (9)

The Lagrange multipliersai andai* represent solutions to the
above quadratic problem, which act as forces pushing predictions
toward target valueyi. Only the nonzero values of the Lagrange
multipliers in Eq. (9) are useful in forecasting the regression line
and are known as support vectors. For all points inside the ε tube,
the Lagrange multipliers equal to zero do not contribute to the
regression function. Only if the requirement jf(x)�yj�ε(see Fig. 7) is
fulfilled, Lagrange multipliers may be nonzero values and used as
support vectors.

Now, we have solved the value of w in terms of the Lagrange
multipliers. For the variable b, it can be computed by applying the
KarusheKuhneTucker (KKT) conditions that, in this case, imply
that the product of the Lagrange multipliers and constrains has to
equal to 0.
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Fig. 9. Regression irradiance of training data.



Fig. 10. Irradiance forecasting results based on HMM.
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aiðεþ zi � yi þ ðw; xiÞ þ bÞ ¼ 0
a*i
�
εþ z*i � yi þ ðw; xiÞ � b

� ¼ 0 (10)

And

ðC � aiÞzi ¼ 0�
C � a*i

�
z*i ¼ 0 (11)

where zi and zi
* are slack variables used to measure errors outside

the ε tube. Sinceai;a*i ¼ 0, and z*i ¼ 0 fora*i 2ð0;CÞ; b can be
computed as

b ¼ yi � ðw; xiÞ � ε; forai2ð0;CÞ
b ¼ yi � ðw; xiÞ þ ε; fora*i2ð0;CÞ (12)

Putting it all together, SVM and SVR can be used without
knowing the transformation.

4.2.2. Solar irradiance gradient regression using SVM
SVMs can be applied to regression problems. To collect the data

under the same cloud and weather conditions is not easy due to
variability between days As such, we choose sunny and no cloud
days as our training data as shown in Fig. 8. Then, an irradiance
regression is carried out using SVM. The result is shown in Fig. 9.
This regressed irradiance will be saved in the library for calculating
irradiance gradients.

4.2.3. Solar irradiance forecasting based on regressed irradiance
gradient

Since gradient at time t, vt, can be calculated by future and
current irradiance as Eq. (13), then based on the regressed irradi-
ance shown in Fig. 9, gradient at any time t can be generated by Eq.
(13). In prediction process, this generated gradient of certain time
interval can be applied to get predicted irradiance by Eq. (14).

dt ¼ rtþN � rt
N

(13)

where dt is gradient at time t, rt and rtþN are regressed irradiance
values at time t and t þ N respectively.

ctþN ¼ dt � N þ iN (14)

where ctþN is the forecast irradiance at time t þ N; it is current
irradiance values at time t and dt is gradient at time t based on
regressed solar irradiance.

5. Experimental results

To investigate the accuracy of two solar irradiance forecasting
algorithms, a series of simulation experiments were run. All ex-
periments are run under the same platform and test datasets. In
this section we report the experimental results.

Data of site number 3003 (Western Australia) from the BOM is
selected for testing our irradiance forecasting algorithms. The data
in Feb 2012 is used for training and data in March 2012 is used for
testing. In order to see how the forecasting algorithms work under
Table 1
Forecasting with more than 90% accuracy for HMM based method.

Test day 5-min Prediction

1st March 2012 (sudden cloudy) 96%
2nd March 2012 (sunny) 93.2%
4th March 2012 (cloudy) 92.9%
10th March 2012 (raining) 65.4167%
different weather conditions, the data in four different days are
selected for comparison, i.e., data on 1st, 2nd, 4th and 10th ofMarch
2012. The data on 1st March has large irradiance changes, related to
a sudden weather change; the data on 2nd March is very smooth,
which is a sunny day; the data on 4th March varies throughout the
day, as it is a cloudy day; and the data on 10th March has very
unstable irradiance, as it is a raining day.

5.1. Forecasting based on HMM

The prediction step used in the algorithm can be varied for
different time, e.g. 5e30 min. To verify the developed prediction
model, the predicted results from the model must be compared
with the performance of an actual solar irradiance. Firstly, training
data for each day is cut into 8 periods. For each period the range of
irradiance variation is generated and also HMM model is trained.
These 8 HMM models and ranges of irradiance variations are used
for irradiance forecasting in 8 time intervals.

Fig. 10 shows the forecasting results for future N minutes, e.g. 5,
15, 30 min, on the date of 1st, 2nd, 4th and 10th March, 2012. The
future N minutes forecasting means the algorithm forecasts what
the irradiancewill be Nminutes from now. Table 1 gives forecasting
performance under different weather conditions. From the figure
and table we can see that for sunny and cloudy HMM based fore-
casting has no big performance differences, for very unstable irra-
diance (raining) day its performance is dropping down. We also see
that the forecasting results are promising, especially for 5 min
forecasting, for which more than 93% forecasts (sunny and cloudy
days) and 65% forecasts (raining days) have prediction accuracy
lager than 90%. However, a significant forecasting error comes from
irradiance large changes due to clouds. For example at approxi-
mately 14:00 on 1st March 2012, there is a massive drop off in the
irradiance prediction with no corresponding drop off in the actual
irradiance. This is because these large changes are an occasional
situation due to clouds, the HMM couldn't pick these up efficiently.
If cloud information, such as height, thickness and density, is
available, the model on the relationship between cloud and irra-
diance could be built up. Based on this cloudeirradiance model we
would know how the cloud affects the irradiance. Therefore more
accurate future irradiance could be predicted. Hopefully these
irradiance large changes would be picked up.

5.2. Forecasting based on irradiance gradient regression using SVM

Fig. 11 shows the 5, 15 and 30 min forecasting results on four
different weather condition days, 1st, 2nd, 4th and 10th March,
2012. Table 2 gives forecasting performance. From the figure and
table we can see that for different weather conditions SVM
regression based forecasting has different performance. It works
best for sunny days with more than 94% forecasts have prediction
accuracy lager than 90%, even for 30 min forecasts.

5.3. Comparison summary of HMM and SVM regression forecasting
algorithms

In order to clearly compare the forecasting results of HMM and
15-min Prediction 30-min Prediction

78.2% 64.6%
85.7% 61.8%
84.2% 66.8%
47.8029% 36.3515%



Fig. 11. Irradiance Prediction Results based on Gradient Regression using SVM.
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SVM regression algorithms, Table 3 gives same day forecasting
performance comparison for 2 methods. Figs. 12e15 show 30-min
forecasting results applied to the same day. From the results, we
can see that HMM and SVM regression based methods both work
well for 5-min forecasting of different weather conditions. For
sunny days, 15-min forecasting SVM regression works better than
HMM. For 30-min forecasting, SVM regression works better than
HMM for all weather conditions. Overall, for sunny days and long
time forecasting, SVM regression works better than HMM. For
cloudy days, HMM could better track some small irradiance



Table 2
Forecasting with more than 90% accuracy for SVM regression based method.

Test day 5-min Prediction 15-min Prediction 30-min Prediction

1st March 2012 (sudden cloudy) 92% 80.4% 73.1%
2nd March 2012 (sunny) 98.3% 95.6% 94%
4th March 2012 (cloudy) 92.2% 83.3% 76.3%
20th March 2012 (raining) 66.9444% 50.4167% 48.4722%

Table 3
Forecasting with more than 90% accuracy for HMM and SVM regression based
methods.

Test day HMM SVM regression

5-min forecasting
1st March 2012 (sudden cloudy) 96% 92%
2nd March 2012 (sunny) 93.2% 98.3%
4th March 2012 (cloudy) 92.9% 92.2%
10th March 2012 (raining) 65.4167% 66.9444%
15-min forecasting
1st March 2012 (sudden cloudy) 78.2% 80.4%
2nd March 2012 (sunny) 85.7% 95.6%
4th March 2012 (cloudy) 84.2% 83.3%
10th March 2012 (raining) 47.8029% 50.4167%
30-min forecasting
1st March 2012 (sudden cloudy) 64.6% 73.1%
2nd March 2012 (sunny) 61.8% 94%
4th March 2012 (cloudy) 66.8% 76.3%
10th March 2012 (raining) 36.3515% 48.4722%
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changes than SVM regression, though needs to be improved for
large irradiance changes.
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Fig. 12. Irradiance Prediction Results of HMM (left)
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Fig. 13. Irradiance Prediction Results of HMM (left) a
6. Conclusions

HMM and SVM regression based short-term irradiance fore-
casting algorithms have been investigated and compared under
three different weather conditions using the same test platform
and datasets. Such forecasting techniques are critical to control
solar thermal power levels, schedule fossil fuel powered generators
or storage in hybrid renewable mini-grids, reduce fuel costs, in-
crease network stability or maximize system lifetimes. The pro-
posedmethods are specifically designed for short-term predictions.

From the results, we can see that two methods work well for
sunny days. The performance could be further improved by
including irradiance-cloudmodel in the prediction process by using
sky-camera. Data fusion technologies have been widely used to
extract useful information from multiple observations and results.
These have been applied in various applications such as target
tracking, surveillance, robot navigation, signal and image process-
ing [28]. As follow-up work, we will focus on data fusion technol-
ogy, e.g. Dempster-Shafer [29], to combine these two
methodologies to improve the forecasting accuracy under all
different weather conditions.
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and SVM regression (right) for 1st March 2012.
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nd SVM regression (right) for 2nd March 2012.
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Fig. 14. Irradiance Prediction Results of HMM (left) and SVM regression (right) for 1st March 2012.
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Fig. 15. Irradiance Prediction Results of HMM (left) and SVM regression (right) for 10th March 2012.
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