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a b s t r a c t

Continuous paint cure ovens have many important industrial applications. In particular, convection ovens
are extensively used in auto industries. Radiation paint cure ovens have attractive features as well and
attempts have been made to design the oven and the radiation panels such that the moving loads
experience desirable, nearly uniform, heating process. Due to the motion of the load and the variation of
the radiation exchange factors during the curing process, the solution of this design problem corresponds
to the solution of a dynamic optimization problem. This is computationally demanding in a realistic
three-dimensional case and the computational cost needs to be minimized. Two-dimensional test
problems provide opportunities for algorithm development and quick evaluation. This paper focuses on
the convergence acceleration of this thermal optimization algorithm for a 2D test problem. By combining
the features of an optimization algorithm with the capabilities of the neural network method, a hybrid
design algorithm is obtained which is considerably faster than the original algorithm. It is shown that by
employing a neural network trained by a simplified physical model, the computational cost can be
reduced close to an order of magnitude without significant loss of accuracy.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cure ovens are extensively used in the industry to control the
drying process of the coatings and paint layers on various body
configurations. For example, the quality of the paint on an auto-
mobile body depends on the intensity, duration andmechanisms of
heat transfer in a series of cure ovens which comprise the body
paint shop. Useful information regarding the physical and chemical
aspects of the paint curing processes is provided in a number of
publications [1e3].

Continuous paint cure ovens can be generally categorized as
convection, radiation and radiationeconvection ovens. Tradition-
ally, radiationeconvection ovens have been used in auto industries.
In this type of ovens radiation panels are used near the entrance of
the oven and are responsible mainly for a relatively rapid heat-up
process during which the paint layer is heated up and dried.
Afterward, nozzles are used to blow in hot air. The convection
section of the oven is mainly responsible for the holding period of
the curing process. This latter part of the heat treatment process is
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highly energy consuming. Furthermore, there are safety concerns
associated with the curing of chemical-based paint materials via
convective heat transfer [4]. The other noticeable technical problem
relevant to the convective ovens is the management of the air flow
and temperature field such that a nearly uniform curing process
occurs on all body parts. For complex geometries it is often
necessary to block or change the caps of a number of nozzles to
achieve a desirable velocity field around the body. Obviously, the
objective is to control the heat transfer rate to the painted body by
modifying the convection heat transfer coefficient.

A radiation paint cure oven provides an attractive alternative
that overcomes some of the difficulties associated with the classical
convection and radiationeconvection ovens just described. In
terms of the energy consumption, radiation ovens are considerably
more efficient and in terms of the pollution and safety measures,
they posses obvious preferences. However, in spite of the fact that
the radiation panels can be more easily positioned toward hidden
parts of the body, convective ovens still provide a better solution for
the problem of uniformity of the heating process. Technological
advances in radiation ovens may overcome this relative short-
coming in the near future.

Radiation exchange between the heat source panels and
a stationary load is discussed in many text books [5,6]. Finite
element-based radiation exchange models [7e9] and the classical
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Nomenclature

C0 constant thermoephysical property in Eq. (4)
Ci total heat capacity of the element i (J/K)
CDOA classical dynamic optimization algorithm
Ekb;i emissivity power of element i at time level k (W/m2)
EIT equivalent isothermal time (s)
f transfer function
Fi�j radiation shape factor between elements i and j
Favg objective function
H heaviside function
~H The Hessian Matrix
l number of neurons in the NN
MDOA modified dynamic optimization algorithm
n total number of elements
nb number, total number of points on the body
nh number of heaters
nl number of neural network layers
nn number of neurons
nt time intervals that the body is placed in the oven
nx the number of inputs of the neural network
ny the number of outputs of the neural network
NA number of active elements
NCP Nominal Cure Point
NN Neural Network
Pi penalty term in Eq. (6)
pr search direction at iteration number r
Qi,rad net radiation from the element i (W)
si number of iterations to achieve the minimum point
st number of iterations of matrix solution due to non-

linearity
tc curing time (s)
Ti(t) temperature of element i (K)

Tr nominal curing temperature (K)
TH temperature history
TTT target transient temperature
xdi inputs of the NN model
yds anticipated outputs of the NN model
ys outputs of the NN model
v number of design variables
w weight functions

Greek symbols
ar step size
εi emissivity of element i
qr vector of design variables at the iteration r
Ftarget NCP
Fi equivalent isothermal time of element i

Subscripts
B body
E east boundary
i&j element number
i,r element i in iteration number r
H heater
h hidden layer of the NN model
N north boundary
o output layer of the NN model
r counter of optimization iteration
S south boundary
t time
W west boundary

Superscripts
k time level

Fig. 1. Three basic procedures in an optimization loop.
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network method [10] are well-known and widely used radiation
analysis techniques. This thermal analysis problem is mathemati-
cally modeled as a system of algebraic equations for the unknown
panel temperatures or heat fluxes. The coefficient matrix in the
algebraic set is dense; meaning that there are no, or very few, zero
elements in the matrix.

Radiation exchange analysis in ovens with moving loads is
computationally more demanding, because a sequence of fixed
load radiation analysis problems needs to be solved [11]. Even for
an oven with a non-participating medium, this radiation analysis
problem is computationally expensive. Frequent calculation of the
radiation view factors between different elements and also
frequent inversion of a dense coefficient matrix at different time
levels are the major computationally demanding tasks in solving
a dynamic radiation exchange problem.

Thermal design of radiation panels in enclosures with stationary
loads has also been discussed by many researchers. The formula-
tion and solution of the design problem as an inverse problem is
discussed in [7,12,13]. Iterative methods, which solve a sequence of
analysis problems, have also been developed in [3].

Compared to the enclosures with stationary loads, there are
fewer publications regarding the thermal design of continuous
radiation ovens with moving loads. Such design problems are often
formulated as dynamic optimization problems [11,14].

Three basic procedures in an optimization loop, i.e. procedures
A, B and C, are shown in Fig. 1. The first procedure, i.e. procedure A,
is basically a thermal analysis routine in which the field or state
variables are updated. In procedure B the objective function is
simply evaluated and checked against a convergence criterion.
Finally, in procedure C the design variables are updated to ulti-
mately nullify, up to a convergence criterion, the objective function.

In a Classical Dynamic Optimization Algorithm (CDOA) for the
design of continuous radiation ovens, the procedure A requires the



Fig. 3. View factors corresponding to the element e1 in Fig. 2.
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solution of a dynamic radiation exchange problem in which during
each time step the panel settings, i.e. the design variables, and the
load are kept fixed and the surface temperature distribution of the
load is calculated. This transient problem is usually one of the most
expensive parts of the CDOA inwhich a radiation exchange problem
in an enclosure has to be solved in each time step. Definition and
use of the paint cure window, discussed in [15], is now an industry
standard method for carrying out the procedure B. Finally, in
procedure C the design variables are updated to reduce an objective
function norm. Most commonly, the objective function gradient
information with respect to the design variables is used to provide
the search direction and the step size for the next move in the
design space [2]. Procedure C can also be a computationally
expensive procedure. To reduce the computational cost and time,
improvements can be proposed in all three procedures of a typical
optimization loop shown in Fig. 1. Such improvements relevant to
the procedures B and C have been proposed by the authors in [2].

In this paper a simplified physical model is used to train a Neural
Network (NN) and to achieve a Modified Dynamic Optimization
Algorithm (MDOA). The objective of the MDOA is to reduce the
computational cost of the procedure A in the design loop. While the
energy exchange between all elements, used to define the discrete
model of the load and the oven, is taken into the consideration, only
the information relevant to a fraction of the elements is employed to
train the corresponding neural network. The underlying idea is that
only a small number of elements have sufficiently large shape factors
so that they actually play important roles in the energy exchange.
Therefore, it is reasonable to only use these active elements in theNN
training process. Comparative studies reveal that the proposed
MDOA is considerably less expensive than the CDOA in terms of the
computational cost and time,while the computational results of both
methods are sufficiently close to each other.

2. The active elements

Fig. 2 shows a two-dimensional section of an oven used to dry
the paint layer on a cylindrical moving object. Full description of
the problem and the model assumptions can be found in [2].

The cylindrical body is discretized using 40 elements and 520
elements are used to discretize the walls of the oven. There are 6
elements on each one of the 10 heaters shown in Fig. 2. For each
element j on the body (j ¼ 1, ., 40) at an arbitrary location, the
shape factors Fij (i ¼ 1, ., 560) need to be calculated. Fig. 3 shows
that for the element e1, shown in Fig. 2, less than 100 wall elements
have non-zero shape factors. If one defines a threshold for the Fij to
distinguish between the active elements and the passive ones, i.e.
un-important elements from the energy exchange point of view,
only a limited number of elements might be considered as active
elements. Therefore, for each element j on the body at a given
position along the oven, there are NA active elements. The
Fig. 2. A two-dimensional radiation oven.
temperatures and view factors of the active elements are used in
the training process of the corresponding neural network model as
explained later.

3. The mathematical model of the curing process

The energy balance for an arbitrary element can be written as
follows [2]:

Ci
dTiðtÞ
dt

¼ Qi;g � Qi;rad (1)

Qi;rad ¼
XN
j¼1

"
Eb;iAi�Qi;rad

1� εi

εi
�Eb;jAiþQj;rad

�
1� εj

�
Ai

εjAj

#
Fij (2)

where Ci is the total heat capacity of the element i (J/K), Ti(t) is the
temperature of the element i at time t, Qi,g is the net heat transfer
rate into the element from an external thermal reservoir and Qi,rad
is the net radiation from the element into the enclosure. Parameters
εi and Ai are emissivity and area of the element i respectively.

As fully explained in [2], energy balances for all elements result
in a set of non-linear, coupled first order differential equations. By
linearizing the equations and using an explicit time marching
approach, a set of linear algebraic equations is obtained that can be
solved for the elements’ unknowns. This means that at the time
step tk all view factors need to be calculated and a full matrix needs
to be inverted to obtain the temperatures or heat fluxes of the
elements at tk.

4. The optimization algorithm

Fig. 4 shows the classical optimization algorithm which employs
the mathematical model, just described, to update the temperature
field and the objective function [2]. In this algorithm a gradient-
based optimization method is used in which the information
regarding the gradient of the objective function is needed to calcu-
late the search direction ð P!rÞ and the step size (ar) at the rth design
iteration. The objective function, Favg, is calculated based on the
definition of the equivalent isothermal time [2]. As shown in Fig. 5,
a paint curewindowand a Nominal Cure Point (NCP) are defined and
the objective is to make sure that the curing times, i.e. the F values
corresponding to different elements on the load shown in Fig. 5, are
as close as possible to the NCP. Further information can be obtained
from [2]. Looking at the design flow chart in Fig. 4, it is clear that the
most expensive parts of the loop are the calculation of the unknowns
(Tki and Qk

i;rad) and the sensitivity coefficients (vEb,j/vqi,r and vQj,rad/
vqi,r). Instead of using the actual mathematicalmodel of the problem,
described in the previous section, a neural network is trained to
provide a non-linear function as a substitute for the mathematical
model. To reduce the number of the inputs, only a number of



Fig. 4. The classical thermal optimization algorithm (CTOA).
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selected active elements are used in the NN training process.
Assuming that a trained NN is available and used for the estimation
of the energy exchange in the oven, the computational time is
drastically reduced. The training of the NN for the radiation oven
design problem is discussed in the following section.
Fig. 5. Temperature history (TH) curves for arbitrary body points A and B (a), correspond
5. The Neural Network model

A single layer NN model, shown in Fig. 6, is used in this study.
Using the back propagation method [16], the weight functions, i.e.
wh

ji and wo
kj, are determined during the training process. The
ing EITs (b), and A user-specified NCP in a factory-provided paint cure window (c).



Fig. 6. The single layer nueral network used in this study ([16]).
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weight functions are obtained so that the function E(w) is
minimized:

EðwÞ ¼ 1
2

Xm
s¼1

ðyds � ysÞ2 (3)

In Eq. (3),yds represents the available data for the training and ys
is the following non-linear equation:

ys ¼ f os

2
4Xl

j¼1

wo
sjf

h
j

 Xn
i¼1

wh
jixdi

!2
3
5 (4)

Parameter l represents the number of neurons, i.e. the number
of nodes in the hidden layer, f os and f hj are the transfer functions and
xdi and ys are the inputs and outputs of the NN model respectively.
Other relevant information regarding the training of the NN model
for the element j is as follows:

5.1. Inputs

(1) Emissive powers of 16 wall elements hotter than the jth
element on the body, i.e. Ej;i ¼ Fj�iðsT4

j � sT4
i Þ, (16

parameters).
(2) Emissive powers of 8 wall elements colder than the jth element

on the body, i.e. Ej;i ¼ Fj�iðsT4j � sT4
i Þ, (8 parameters).
Fig. 7. Comparison between the results obtained from the NN model and the
(3) Temperature of the jth element at the previous time step (1
parameter).

5.2. Output

(1) Temperature increment for the element j (1 parameter).
5.3. Transfer functions

(1) Heaviside step function is used for all transfer functions.
6. Training of the NN model

Training of the neural network is accomplished byemploying the
results of the thermal analysis of the moving load in a test oven via
the finite element analysis method. The results of the thermal
analysis are organized in adatamatrixwith16,000 rows. Each rowin
the data matrix contains 26 parameters, i.e. the inputs and outputs
used for the training of the element at a particular time. Among the
data, 500 rows are randomly selected for the training. The weight
functions are calculated so that theNNmodel generates the selected
data with an average deviation of about 0.1%. The outcome of this
procedure is a model capable of estimating the temperature varia-
tionof eachuser-specified element in the testoven. The applicability
of the model was evaluated through the following three steps:

(1) The model was used to re-generate the original 16,000 set of
data. The maximum deviation from the original data was
about 5%.

(2) The model was then used to predict the temperature variation
of an arbitrary element in an oven with arbitrary temperature
settings (setting number 2). To examine the validity of the NN
model, the temperature histories of two different elements,
shown in Fig. 7, were calculated using both the NN model and
the radiation analysis via the finite element method for the
setting number 2. The model had the maximum deviation of
about 9% in this case. Note that in this test case the NN model,
trained for an element in the initially used oven (setting
number 1), is employed in spite of the fact that the temperature
settings and the orientation of the element have both been
changed as compared to the initial model.

(3) Finally, the trained NN model was used for a different body
shape; i.e. a rectangular cylinder. The maximum deviation of
the model for an element on this geometry was about 16%. The
panel settings were chosen similar to the case used for the
training of the NN model.
finite element method in an oven test case for two different elements.



Fig. 8. The neural network model employed in the design procedure.
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Now that an estimation of the errors associated with the NN
model in different applications is available, it would be interesting
to compare the computational times of the element-based radia-
tion exchange analysis method and the neural network approach.
The design example will be presented following some explanations
regarding the optimization method.
1 Broyden-Fletcher-Goldfarb-Shanno.
7. The optimization algorithm

As mentioned before the optimization algorithm consists of
three main procedures. We have already discussed the application
of the NN model in the procedure A. Fig. 8 shows the data transfer
process between the NN model and the optimization algorithm.
Some details regarding the procedures B and C, as implemented in
this study, are discussed in this section. Further details can be
obtained in [2].

To define the objective function and to check the optimality
condition, i.e. the Procedure B, the paint cure window and the
Equivalent Isothermal Time (EIT) are used as suggested by [17]. The
EIT at the reference temperature Tr for an arbitrary point i on the
body, also shown by Fi, is defined as [17]:

Fi ¼ EITijTr ¼
Ztc
0

exp
�
C0

�
TiðtÞ � Tr
TiðtÞTr

��
Dt (5)

In Eq. (5), C0 is a constant thermoephysical property related to
the paint material. Using the definition of the EIT, the objective
function can now be defined as follows:

FavgðqÞ ¼ 1
nB

XnB

i¼1

a1
�
FiðqÞ � Ftarget

	2þPiðqÞ (6)

The last term in Eq. (6), Pi(q), is a penalty term defined as
follows:

PiðqÞha2½Fmax � FiðqÞ�2H½Fmax � FiðqÞ�
þ a3½FiðqÞ � Fmin�2H½FiðqÞ � Fmin� ð7Þ

In Eq. (7), H(,) stands for the Heaviside step function. Fig. 5c
shows the cure window, the user-specified Ftarget as well as Fmin
and Fmax.

In the remaining part of the optimization loop a procedure is
needed to update the design variables. Here a gradient-based
optimization method is used to find the optimum values of design
variables, q*, that minimizes the objective function Favg(q). A
correctionvector cr is needed toupdate thevectorofdesignvariables
in the rth design iteration. There are many methods available to
specify the search direction, pr, and the step size, ar, in the following
formula:

qrþ1 ¼ qr þ cr ¼ qr þ arpr (8)

The step size is set equal to a non-vanishing power series in this
study [12]:

ar ¼ a0
r1:2

(9)

Gradient-based optimization methods use the objective func-
tion gradient with respect to the design variables, i.e. g(q), to
calculate the search direction vector pr. The steepest descent
method simply takes pr¼�g(qr). A better search direction is usually
obtained using higher order derivatives, thereby reducing the
required minimization steps, but the computational cost of calcu-
lating these terms could be prohibitive. An alternative approach is
the quasi-Newton method, in which the second-order curvature
information contained in the Hessian matrix is estimated based on
how the gradient vector changes between successive iterations. For
example, the BFGS1-implementation of the quasi-Newton method,
used in the present study [16], calculates the search direction
according to the following formula:

pr ¼ �~H
�1
r gr (10)

where the Hessian is approximated by

~Hr ¼ ~Hr�1 þ ~Mr�1 þ ~Nr�1; r ¼ 1;2;.
~H0 ¼ I

~Mr�1 ¼
 
1þ yTr�1

~Hr�1yr�1

yTr�1Pr�1

!
pr�1pTr�1

pTr�1yr�1

~Nr�1 ¼ �pr�1yTr�1
~Hr�1 þ ~Hr�1yr�1pTr�1

yTr�1pr�1

yr�1 ¼ gr � gr�1

(11)

The elements of the gradient vector are the objective function
sensitivities with respect to the design variables, i.e. the panel
temperatures:

giðqrÞ ¼
�
vFðFiðqrÞÞ

vq1;r

vFðFiðqrÞÞ
vq2;r

/
vFðFiðqrÞÞ

vqv;r

�T

¼ ½gi1ðqrÞ gi2ðqrÞ/givðqrÞ�T (12)

The sensitivity elements are found by differentiating the
objective function:

gi1ðqrÞ ¼ vFðFiðqrÞÞ
vq1;r

¼ 2a1
�
Fi � Ftarget

� vFi

vq1;r

þ 2a2HðF1 � FiÞ ðFi � F1Þ
vFi

vq1;r

þ a2dðF1 � FiÞ ðFi � F1Þ2þ2a3HðF2 � FiÞ

� ðFi � F2Þ
vFi

vq1;r
þ a3dðF2 � FiÞðFi � F2Þ2

(13)



Fig. 9. Convergence of the optimization loop; comparison between the CDOA and
MDOA.

Table 1
Comparison between MDOA and CDOA in terms of the computational time and
accuracy for the test case shown in Fig. 2.

MDOA CDOA

Time(s) F(ave) Time(s) F(ave) Iteration Point

460 5.157038 2790 0.00022 28 B
719 0.000225 6120 7.39E-05 65 C
964 0.000213 9270 7.39E-05 100 D
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where d is the Dirac delta function. The derivative terms at the right
hand side of Eq. (13) are calculated as follows:

vFi

vq1;r
¼
Ztc
0

"
exp

 
C0

�
TiðtÞ � Tr
TiðtÞTr

�
C0
T2i

 
vTiðtÞ
v
�
ql;r
�
!!#

dt (14)

Note that both Ti(t) and vTi(t)/vq1,r need to be calculated.
Similar sets of equations are solved to obtain gi2(qr), gi2(qr),.,

giv(qr) in Eq. (12). After calculating the components as just
described, g(q) is obtained and used to update the design variables.

8. A design example

Fig. 9 shows the convergence histories for the CDOA and MDOA
used to solve the thermal design problem in an oven similar to the
one discussed in Section 2. The panel setting number 2 is used as
the initial guess and the element-based NN model trained with the
panel setting number 1 is employed in the MDOA calculations.
Computational times for the two methods are also shown in Fig. 9.
Fig. 10. Temperature history curves, (a) the fi
Table 1 summarizes some of the relevant information regarding the
results shown in Fig. 9 as well. It is seen that 28 iterations of the
CDOA (point B in Fig. 9) corresponds to 65 iterations of the MDOA
(point C in Fig. 9) to meet the convergence criterion shown by the
solid horizontal line in Fig. 9. The corresponding times for the two
methods are 2790 s for the CDOA (point b) versus 719 s for the
MDOA (point c). Note that even though the number of iterations of
the MDOA is higher than the CDOA, the computational time for the
MDOA is considerably less than the CDOA. This is expected knowing
that the execution time per iteration for the NN model is much
smaller than the corresponding time for the full radiation analysis.
A detailed analysis has shown that when all of the 40 elements
around the circular cylinder are taken into the consideration, the
finite element method needs about 90 s for a typical intermediate
design iteration while this task takes only 7 s if the NN model is
employed. This is close to one order of magnitude gain in the
convergence rate. However, it is important to note that the NN
model also allows the user to consider just a few selected elements.
For example if 4 elements are used to evaluate the objective func-
tion, the NN model just needs about 1 s for each design iteration.
This means that the actual gain in the computational speed can
even be close to two orders of magnitude for this design example.

To take care of both computational efficiency and accuracy it is
wise to use the NN model before the final iterations and switch to
the full thermal analysis mode when the objective function is
sufficiently small. This is the hybrid optimization method proposed
in this paper. Fig. 10 shows the initial and final, i.e. optimum,
temperatures of the 40 elements around the circular cylinder
shown in Fig. 2. Note that the optimizer changes the temperatures
of all elements considerably to comply with the given paint cure
window and the NCP.
9. Remarks regarding the application of the NN model

There is a fixed initial computational cost associated with the
training of the NN model which has not been discussed so far. As
a general guideline, application of the NN model is advisable
whenever a computationally expensive field solver is frequently
called. Another noticeable application of NN models is in design
problems in which the geometry and/or boundary conditions
associated with a given physical phenomenon are changed during
the design considerations. For example the proposed NN model in
this study can be used in the radiation oven design problems
regardless of the panel temperatures and the load geometry.
However, in such cases the accuracy of the model needs to be
considered to make sure that the computational results are prac-
tically acceptable. A remedy to the conflict between the computa-
tional speed and accuracy, suggested in this study, is to use the NN
rst iteration, (b) the converged solution.
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model in the intermediate iterations and switch to the actual
mathematical model afterwards. It should also be reminded that
experimentally obtained data can be used in NN models as well.
This latter flexibility of the method is particularly important when
the physical phenomena associated with the problem are very
complex.

Finally, it is worthwhile to do an order of magnitude analysis to
compare the computational costs associated with the element
method, proposed in [2] and here called the CDOA, and the oven
design method assisted with the NN model (the MDOA).

Further studies, not discussed here, show that the computa-
tional cost associated with the CDOA is proportional to the
following quantity:

o


sint



st


ð2nÞ3þð2nÞ2

�
þn2

�
þ sintnh




ð2nÞ3þð2nÞ2

��
þ sinhntnb

� (15)

where, nh, n, st, nt, nb and si represent the number of heaters, total
number of elements, number of non-linear iterations for a matrix
solution, number of time intervals, total number of elements on the
body and the number of iterations required to obtain the optimum
solution respectively. Considering the actual values of these
numbers, Eq. (15) is roughly proportional to:

oðst þ nhÞsintn3 (16)

In comparison, a similar analysis for the MDOA reveals that the
computational cost in this case is proportional to the following
quantities depending on the number of elements:

o
�
n2ntnb

�
for a fine mesh

oðnntnbnhsiÞ for a coarse mesh
(17)

Comparing Eq. (17) with Eq. (16), reveals that the computational
expense reduces about one or two order of magnitudes depending
on the mesh coarseness when the MDOA is employed.

10. Conclusion

A hybrid optimization algorithm for the design of a radiation
paint cure oven with a moving load was proposed in this paper.
Instead of using a heat transfer analysis code in a gradient-based
optimization algorithm, a trained neural network was used to
update the temperature field and the objective function. Further-
more, instead of the real physical model, a simplified model was
employed in the neural network training process. In the simplified
model only the energy exchange of a fraction of the elements is
taken into the consideration. A design example was presented
which showed that the computational cost could be reduced up to
two orders of magnitude, without sacrificing the accuracy in an
unacceptable manner, when the proposed neural network model
was employed.
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