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Abstract 

In this study, the transient responses of a composite laminated plate and cylindrical shells 

subjected to low-velocity impacts were investigated numerically. The shear deformation theory of 

a doubly curved shell and von Karman’s large deflection theory were used to develop a 

geometrically nonlinear finite element program. It is well-known that in the case of a flat plate 

with fixed boundary edges, a geometrically nonlinear analysis yields larger contact forces and 

smaller deflections than a corresponding linear analysis. However, in the case of cylindrical shells, 

an opposite result was found in this study; a geometrically nonlinear analysis exhibited smaller 

contact forces and larger deflections than a corresponding linear analysis. The reason for this 

opposite result is described in this study. Conversely, with a plate and shells that have the same 

size, shells with a larger curvature exhibited smaller deflections and larger contact forces. The 

strain distribution at the bottom surface of the plate/shells using the geometrically nonlinear 

analysis exhibited markedly or only marginally larger tensile areas than those produced using the 

linear analysis.  
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1. Introduction 

Many studies of the transient response and damage prediction of composite laminated flat 

plates subjected to low-velocity impacts have already been published [1]; authors have also 

presented certain papers on this field [2-9]. A geometrically nonlinear dynamic finite element 

program to analyse the impact response of composite laminated plates has been developed in 

references [2-4]. Generally, directly coding a finite element program to analyse impact response 

was not easy; thus, the author proposed a novel and simple method that could predict the 

approximate contact force history including its second-order fluctuations [5]. To use a general-

purpose finite element code to analyse the impact response of laminated plates and sandwiches, 

the author proposed a new analytical method using a spring element and the linearized contact 

law concept [6, 7]. Generally, thin plates with in-plane pre-stress show different stiffnesses during 

out-of-plane deflections from the original plate without pre-stress. The author developed a new 

finite element formulation considering in-plane pre-strain and investigated the impact response of 

composite laminated plates with in-plane tensile and compressive pre-strain via numerical 

calculations and experimentation [8, 9]. In those studies, the author reported that in-plane tensile 

pre-strain increased the stiffness of a laminate during deflections caused by impacts, and in-plane 

compressive pre-strain could decrease the stiffness.  

Recently, the impact response and damage of pressure vessels manufactured using composite 

material have been investigated in detail [10-12]. To accurately analyse the dynamic response and 

damage of pressurized vessels subjected to a drop impact or foreign object impact, we must 

consider the change in stiffness, which is described above, because the cylindrical wall of such a 

vessel is under in-plane pre-stress that is induced by the vessel’s internal pressure. However, no 

analytical result that considers the change in stiffness has been identified to date. Thus, the 

author is in the process of developing a new finite element program that considers the change in 

the stiffness of a cylindrical shell structure experiencing in-plane pre-strain. However, in this 

preliminary study, a finite element program for the impact analysis of laminated curved shells 

without in-plane pre-stress was developed. In a subsequent study, the author will present the 

analytical result of the impact response of an in-plane pre-stressed cylinder wall caused by 

internal pressure. 

Conversely, many studies in addition to the author’s previous papers investigate the impact 

influence response of composite laminated flat plates. Based on those papers, geometrically 

nonlinear analysis that considers von Karman’s large deflection theory produces larger contact 

forces and smaller deflections than a corresponding linear analysis because a geometrically 

nonlinear analysis can consider the membrane effect. The membrane effect describes how in-

plane tensile deformations that are induced by the deflection of a flat plate due to an impact 

 

 

 



  

influence can make the plate stiffer during the deflection. Such a membrane effect typically 

appears more strongly at plates with fixed boundary edges. 

However, it is not well known what occurs if the von Karman’s large deflection theory is 

considered in the analysis of composite laminated curved shells subjected to low-velocity impacts. 

Few papers consider the impact response of composite laminated curved shells [13-16]. 

Unfortunately, these studies don’t provide much information regarding the abovementioned 

question. Thus, in this study, the author has developed an understanding on what phenomenon 

will occur in this case when von Karman’s large deflection theory is applied to the analysis of the 

impact response of composite laminated curved shells, particularly cylindrically curved shells with 

all fixed boundary edges.  

In summary, this study numerically examines the impact response of composite laminated 

plate and cylindrically curved shells with various curvatures and investigates geometrically 

nonlinear and linear analyses. 

  

 

 

 



  

2. Geometrically Nonlinear Dynamic Finite Element Equation of a Composite Laminated Shell 

A shear deformation theory of a doubly curved shell and von Karman’s large deflection 

theory were used to develop a geometrically nonlinear finite element program. J. N. Reddy 

presented a finite element formulation for solving such a problem [17]. In this study, the same 

formulation was used to code the finite element program. 

The strain-displacement relation of the shear deformation theory of a doubly curved shell 

and von Karman’s large deflection theory is given by: 
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Hamilton’s principle, which is the principle of virtual work including dynamic behaviour can 

be written as: 

0 = � [	N�δε�� +Nδε� + N�δε�� +M�δκ�� + Mδκ� +M�δκ�� +Q�δε�� + Qδε��	
%  

        +&P�u)� +Pϕ) �+δu�+&P,�u)  + P,ϕ) +δu+I�u) .δu.     (2) 

        +&I.ϕ) � +Pu) �+δϕ�+&I.ϕ)  +P,u) +δϕ- qδu.]α�αdξ�dξ 
where: 
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�	 , 		P=I+ 2�

�	, 		P,�=I�+2�
�� , 		P,=I+ 2�

��      (3) 

The meaning of each term and notation in equation (2) is described in J. N. Reddy’s paper 

[17]. Equation (2) can be used to derive the following finite element equation (4), which can be 

used for the dynamic analysis of a composite laminated plate or curved shell. The detailed mass 

and stiffness matrices can be found in J. N. Reddy’s paper and in the Appendix of this paper 

because a typing error was found in J. N. Reddy’s paper in one term of the stiffness matrices, 
23

L[K ] : 
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Conversely, an impactor was assumed to be a point mass; thus, the dynamic equation for the 

impactor can be written as equation (5). The two dynamic equations for the plate/shell and 

impactor were calculated simultaneously using the modified Hertzian contact law (6). The detailed 

solving procedure for the three equations and the meaning of each term and notation in 

equations (5) and (6) can be found in the author’s other studies [2-6]: 

AB).+F=0          (5) 

F=kαC, where  k=�
.

�	 �⁄
&�EFG�+ HGI� HJ⁄K        (6) 

All of the laminated composite plate/shells considered in this study had the same dimension 

of 31.4 x 31.4 x 0.228 cm, where the dimension indicates the curved length in the case of a 

curved shell. The stacking sequence of the plate/shells is [90/0]4S. As shown in Fig. 1, the 

plate/shells were assumed to be impacted at the centre by a steel impactor with a contacting 

spherical cap with a radius of 0.635 cm, which was used as the value of R in the modified Hertzian 

contact law of equation (6). The stacking sequence of the laminates only included 0˚ and 90˚ (i.e., 

there is no angle ply like ±30˚ or ±45˚). Thus, only a quarter of the plate/shells can be meshed and 

calculated, as shown in Fig. 1.  

As described in Fig. 1, all of the boundary edges of the plate/shells subjected to the low-

velocity impact were assumed to be fixed. The curvature in the x2-coordinate was zero, and the 

curvature in the x1-coordinate had a given value between zero (i.e., a flat plate) and a maximum 

value (i.e., a complete cylinder).  

The elastic properties of a graphite/epoxy lamina were assumed to be as follows: 

E1 = 129 GPa, E2 = 8.1 GPa, ν12 = 0.31, ν23 = 0.52,  

G12 = G13 = 3.59 GPa, G23 = 1.87 GPa, ρ = 1.58 x 10-5 N s2/cm4 

The impact condition considered in this study included a impactor mass of 1.366 kg and an 

impact velocity of 3.61 m/s; thus, the impact energy was approximately 8.9 J.  

The finite element used in this program is a nine-node iso-parametric plate element. To check 

for convergence on the mesh size, meshes between 4 x 4 and 24 x 24 for a quarter of the 

plate/shell was tested; a fine mesh great than 12 x 12 was found to be sufficient for convergence. 

Thus, in this study, a 16 x 16 mesh was selected for use. Another convergence of the dynamic 

solution was checked with a varying time interval from 10 to 160 μsec. An time interval of less 

than 80 μsec always produced good convergence, and thus, 40 μsec was selected for use in this 

study. The author also checked what different results were derived between the full integration 

method and the reduced integration method for the calculation of the inter-laminar shear stiffness 

 

 

 



  

matrices. Reduced integration of the inter-laminar shear stiffness matrices showed faster 

convergence than the full integration method; however, it produced divergent contact forces in 

certain cases, even with a fine mesh near 16 x 16; thus, the full integration method was used in 

this study.  

  

 

 

 



  

3. Results and Review 

Fig. 2 shows the deformed meshes of composite laminated plate/shells when a deflection due 

to an impact (i.e., a central deflection) reached is maximum value, which was calculated via 

geometrically nonlinear analysis. Fig. 3 shows the undeformed and deformed cross sectional 

curves along the x1 axis (i.e., x2=0) of the composite laminated plate/shells subjected to a low-

velocity impact, which were calculated via geometrically nonlinear and linear analysis. Fig. 4 shows 

the overlapped curves of the deformed cross sectional curves along the x1 axis (i.e., x2=0) of the 

composite laminated plate/shells.  

In the figures, the deflections in the thickness direction were exaggerated by a magnification 

of five times to easily distinguish the deformed shapes. From the figures, it is shown that the 

larger curvature exhibited smaller deflections; a larger resistance to deflection is evident in a 

curved shell with a larger curvature because the two curved sides along the x1 axis of the shell 

support a given portion of the vertical directional contact force similar pillars supporting a bridge. 

In addition, a shell with a larger curvature has a shorter portion of its structure that corresponds 

to the top of a bridge; thus, the resistive property of the specimen to the deflection of the curved 

shell should be higher.  

The above interpretation is based on the geometric shape of the cylindrical shell. In addition, 

it can also be interpreted more theoretically. In the Appendix, certain terms including the radii (R1 

and R2) of the curved shell are present in the stiffness matrices, particularly 33

L[K ]  and 33

N[K ] . 

The upper index (33) in the matrix terms indicates the stiffness to displacement in the thickness 

direction (i.e., deflection) induced by a force in the thickness directional (i.e., a contact force). If a 

cylindrically curved shell has a larger curvature, a matrix with an index of 33 should be larger due 

to the smaller radius, R1; thus, a shell with a larger curvature should show a smaller deflection. 

Fig. 5 shows the central deflection (i.e., the deflection of the impacted position) histories of 

the composite laminated plate/shells subjected to low-velocity impacts. Fig. 6 shows the contact 

force histories of the composite laminated plate/shells. From Figs. 3 through 6, it is shown that 

geometrically nonlinear analysis produces smaller deflections and larger contact forces than the 

corresponding linear analysis in the case of a composite laminated flat plate with fixed boundary 

edges; this is a well-known phenomenon that can be found in many studies, including the 

author’s other studies.  

However, in the case of cylindrically curved shells, a phenomenon that is opposite to that 

produced by the geometrically nonlinear analysis exhibits larger deflections and smaller contact 

forces than the corresponding linear analysis, even though the specimen has fixed boundary 

edges. Generally, when we want to obtain more accurate results in the response analysis of a 

 

 

 



  

plate/shell, we consider the von Karman’s large deflection theory, which considers in-plane 

tensile/compressive displacements that are induced by out-of-plane deflections of the plate/shell. 

The calculation of the in-plane tensile/compressive displacements in a geometrically nonlinear 

analysis indicates the calculation of different deflections from the corresponding linear analysis. 

In the case of a flat plate, in-plane tensile displacement induced by deflection increases the 

resistance of the specimen during deflection (i.e., stiffening effect), where the tensile displacement 

is induced primarily due to the fixed boundary condition of the plate/shell. However, in the case 

of a curved shell, even though it has fixed boundary condition, in-plane compressive displacement 

is induced by deflection due to the geometric characteristics of its curved shape; it thus exhibits 

increasing amounts of deflection (i.e., softening effect). The deflection of a shell induces the shell 

to be compressed in the in-plane direction, and the induced compressive displacement finally 

produces a marginally larger deflection of the shell. Generally, with the same impact condition, a 

larger deflection indicates a larger contact duration, and a larger contact duration indicates a 

smaller contact force based on the impulse-momentum conservative theory. In summary, in the 

case of a curved shell, the membrane effect is reversed.  

From Figs. 4 to 5, it is shown that the plate/shells with larger curvatures exhibit smaller 

deflections in sequence. However, in Fig. 6, it is shown that only the curved shells, not including 

the flat plate, with larger curvatures exhibited higher contact forces in sequence. This appears to 

be an exceptional phenomenon, where the flat plate shows a higher contact force than the curved 

shells with R1 = 10 and 20. It can be estimated that the flat plate had a considerably softer 

stiffness during deflection; thus, the magnitude of the second-order fluctuation in the contact 

force history curve was large compared to that of the first-order fluctuation. Then, the peak value 

of the contact force history of the flat plate became markedly higher via superposition of the two 

fluctuations. This type of characteristic on the fluctuation of the contact force history curve is 

described in the author’s other study [5]. 

Figs. 7 and 8 show the x1- and x2-directional strain distributions at the bottom surface of a 

quarter of the composite laminated plate/shells, which were obtained from the geometrically 

nonlinear analysis and the linear analysis. In the figures, a thick solid line indicates zero strain; a 

thin solid line indicates a tensile strain; and a thin dashed line indicates a compressive strain. The 

contour interval shown is 1,000 μ-strain. From the figures, it is shown that in the case of flat plate, 

a large difference between the two analyses is shown. The linear analysis shows that nearly half of 

the plate was in tensile strain area, and the other half was in compressive strain area; however, the 

geometrically nonlinear analysis shows that nearly all of the area of the plate was in tensile strain 

area. This large difference between the two analyses indicates that it is necessary to apply von 

Karman’s large deflection theory, particularly in the case of a flat plate.   

 

 

 



  

However, in the case of curved shells, the two analyses showed relatively small differences, 

which could have been caused primarily near the impact location. However, these small 

differences may be important when accurately predicting the impact’s damage area because small 

differences in the strain components may estimate different sizes of the damaged area.  

Conversely, even though certain displacement components are considerably different between 

the two analyses, the numerically calculated strain values are similar; this occurs because the 

displacement terms that create the strain component are different between the geometrically 

nonlinear analysis and linear analysis. In equation (1), the detailed displacement terms that 

construct the strain components for the geometrically nonlinear analysis are shown; if the three 

terms, ������
	�
 , �

 �����
��
 and		 ����
	 	����
� are ignored in equation (1), we obtain the strain-displacement 

relation for the linear analysis. Because the strain components were constructed differently in the 

two analyses, the strain components can be similar, even though the displacement values in the 

two analyses are different. 

  

 

 

 



  

4. Conclusions 

In this study, the transient responses of composite laminated plate and cylindrical shells 

subjected to low-velocity impacts were investigated numerically. In the case of a flat plate with 

fixed boundary edges, the geometrically nonlinear analysis showed larger contact forces and 

smaller deflections than the corresponding linear analysis. However, in the case of cylindrical shells, 

it showed an opposite result: the geometrically nonlinear analysis showed marginally smaller 

contact forces and marginally larger deflections than the corresponding linear analysis; this occurs 

because the deflection of the curved shell induces an in-plane compressive displacement, which 

produces a marginally larger deflection. In summary, the membrane effect appears to be reversed 

in the case of a curved shell. 

The plate/shells with larger curvatures consistently exhibited smaller deflections. The curved 

shells, not including the flat plate, with larger curvatures also consistently showed larger contact 

forces. However, the flat plate showed a larger peak value in the contact force history than the 

curved shells with R1=20 or 10 due to superposition of certain fluctuations. The strain distribution 

at the bottom surface of the flat plate produced by the geometrically nonlinear analysis exhibited 

a large difference from that produced by the linear analysis; however, the strain distributions of 

the curved shells showed relatively small differences between the two analyses. Although this 

different is small in the curved shells, a geometrically nonlinear analysis should be performed to 

obtain a more accurate strain field for more accurate predictions of the impact damage area. 
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APPENDIX 

The mass and stiffness matrices are written as: 

[M3=
OP
PP
PQ
P�[S��3 0 0 P[S��3 0

	 P,�[S��3 0 0 P,[S��3	 	 I�[S��3 0 0
	 TUA. 	 I.[S��3 0
	 	 	 	 I.[S��3WX

XX
XY
 

[K[3=
OP
PP
PQ
[K[��3 [K[�3 [K[�.3 [K[��3 [K[��3	 [K[3 [K[.3 [K[�3 [K[�3	 	 [K[..3 [K[.�3 [K[.�3	 TUA. 	 [K[��3 [K[��3	 	 	 	 [K[��3W

XX
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Y
 

[K\3=
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0 0 [K\�.3 0 0
0 0 [K\.3 0 0

[K\.�3 [K\.3 [K\..3 [K\.�3 [K\.�30 0 [K\�.3 0 0
0 0 [K\�.3 0 0 WX

XX
XY
 

The mass coefficients are written as: 

11 00 14 00 22 00 25 00

1 2 1 2[M ]=P [S ],  [M ]=P [S ],  [M ]=P [S ],  [M ]=P [S ]   

41 14 52 25 33 00 44 55 00

1 3[M ]=[M ],  [M ]=[M ],  [M ]=I [S ],  [M ]=[M ]=I [S ] , all other αβ[M ]=0   

The linear stiffness coefficients are written as: 

11 11 12 21 22

L 11 16 66[K ]=A [S ]+A ([S ]+[S ])+A [S ] 

12 21 22 22 0055
0 16 66 0 66 2

1

A
-c B ([S ]+[S ])+2B [S ]-c D [S ])+ [S

R
( ]  

12 12 11 22 21

L 12 16 26 66[K ]=A [S ]+A [S ]+A [S ]+A [S ]   

22 11 21 0045
0 26 16 0 66

1 2

A
-c (B [S ]-B [S ]+c D [S ])+ [S ]
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13 10 20 10 20

L 11 16 12 26

1 2

1 1
[K ]= (A [S ]+A [S ])+ (A [S ]+A [S ])

R R
 

      20 20 02 0116 26
0 45 55

1 2 1

B B 1
-c ( [S ]+ [S ])- (A [S ]+A [S ])

R R R
 

14 11 12 21 22 21 22 00

L 11 16 66 0 16 66 55

1

1
[K ]=B [S ]+B ([S ]+[S ])+B [S ]-c (D [S ]+D [S ])- A [S ]
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15 12 11 22 21 22 21 00

L 12 16 26 66 0 26 66 45

1

1
[K ]=B [S ]+B [S ]+B [S ]+B [S ]-c (D [S ]+D [S ])- A [S ]

R
 

( )22 22 12 21 11 11

L 22 26 66 0 66[K ]=A [S ]+A [S ]+[S ] +A [S ]+2c B [S ]  

       12 21 11 0044
0 26 0 66 2

2

A
+c (B ([S ]+[S ])+c D [S ])+ [S ]

R
  

23 20 10 20 10

L 12 16 22 26

1 2

1 1
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34 10 20 01 0216 2611 12
L 55 45

1 2 1 2

B BB B
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L 11 16 66 55[K ]=D [S ]+D ([S ]+[S ])+D [S ]+A [S ]  

45 12 11 22 21 00

L 12 16 26 66 45[K ]=D [S ]+D [S ]+D [S ])+D [S ]+A [S ]   
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αβ βα T
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The nonlinear stiffness coefficients are written as: 

13 11 12 21 22 12 11 22 21
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Fig. 1  Finite element meshes of composite laminated plate/shells with various curvatures. 

 

 

 



  
 

 

 

 

*Deformation in thickness direction was magnified by five times. 

Fig. 2  Deformed meshes of composite laminated plate/shells calculated by geometrically 

nonlinear analysis. 

 

 

 



  

 

 

 

 

 

 

 

 

*Deformation in thickness direction was magnified by five times. 

Fig. 3  Undeformed and deformed cross sectional curves along x1 axis (x2=0) of composite 

laminated plate/shells. 
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*Deformation in thickness direction was magnified by five times. 

Fig. 4  Overlapped deformed cross sectional curves along x1 axis (x2=0) of composite 

laminated plate/shells. 
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Fig. 5  Central deflection histories of composite laminated plate/shells. 
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Fig. 6  Contact force histories of composite laminated plate/shells. 
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Fig. 7  X1-directional strain distributions at bottom surface of a quarter part of composite 

laminated plate/shells. 
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Fig. 8  X2-directional strain distributions at bottom surface of a quarter part of composite 

laminated plate/shells. 

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

linear (R=∞) 

nonlinear (R=∞) 

linear (R=20) 

nonlinear (R=20) 

linear (R=5) nonlinear (R=5) 

 

 

 


