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A high accuracy diffusion kinetics formalism for random 
multicomponent alloys: application to high entropy alloys

A. R. Allnatta, T. R. Paulb, I. V. Belovab and G. E. Murchb

aDepartment of Chemistry, University of Western Ontario, London, Canada; bCentre for Mass and Thermal 
Transport in Engineering Materials, The University of Newcastle, Callaghan, Australia

ABSTRACT
In this paper, a new, lighter, version of the highly accurate Moleko, 
Allnatt and Allnatt formalism for describing both tracer (self ) and 
collective diffusion kinetics in multicomponent random alloys is 
presented. Verification of the resulting expressions is performed by 
means of kinetic Monte Carlo simulation. The accuracy of the new 
formalism is much higher than that of the combined Manning and 
Holdsworth and Elliott formalism discussed recently. Using this 
formalism the possible range of the tracer diffusion ratio of the 
highest to the lowest atomic component is examined for equiatomic 
(or near equiatomic) binary, ternary, quaternary and quinary alloys. 
It is shown that in the random alloy model, the correlation effect 
is the highest with a reduction of the fastest tracer diffusion by 
40–55%, when moving from two pure metals to their equiatomic 
binary alloy. By adding the third component (with an intermediate 
mobility) this effect can be further increased with a possible total 
reduction of the fastest tracer diffusion by up to 70% (depending on 
the combinations of mobilities), while adding the fourth component 
brings this reduction up to 80% and with a possible maximum of up 
to 85% reduction for the 5-component alloy (again depending on the 
combinations of mobilities). But the slowest diffusing components 
are not affected by this. This suggests that kinetics arguments alone 
are not enough for explaining the sluggish diffusion observed of all 
atomic components in (equiatomic) high-entropy alloys.

1.  Introduction

Diffusion quantities can be categorised as either being characteristic of an individual atom 
(tracer) or characteristic of a species of atoms (collective). The former is accessible in tracer 
diffusion experiments while the latter is accessible in interdiffusion experiments. The main 
collective diffusion parameters are the Onsager phenomenological transport coefficients. In 
[1] it was shown how the correlated part of these coefficients, the diagonal and off-diagonal 
collective correlation factors, can be defined. The principal tracer diffusion quantity, the 
tracer diffusion coefficient, can be formally defined as a limiting case, with a vanishingly 
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small tracer content, of the corresponding diagonal Onsager phenomenological coefficient 
(Equation 14 below). The correlated part of the tracer diffusion coefficient is called the 
tracer correlation factor. While the Onsager phenomenological coefficients are very difficult 
to measure explicitly, the tracer diffusion coefficients can be measured using a number of 
techniques as presented, for example, in [2–10].

Theories of diffusion kinetics in random alloys are usually based on atom–vacancy 
exchange frequencies that can, in principle, be related to the atomic interaction energies 
and are usually assumed to be some average over possible local configurations around an 
atom. In an n-component alloy with n independent diffusion quantities available, it should 
be possible to solve an appropriate theory of diffusion kinetics in order to find the full set 
of average atom–vacancy exchange frequencies. The main assumption is that a particular 
diffusion mechanism is operating. In crystalline materials it is well accepted of course that 
the vacancy mechanism is operating.

In [11] a brief historic overview of the development of various theories of diffusion 
kinetics in random alloys with vacancy mechanism was presented. The majority of those 
theories lack accuracy especially for the fastest component which is also the most corre-
lated (lowest tracer correlation factor). Only one theory, that derived by Moleko, Allnatt 
and Allnatt (MAA) [12], provides a high accuracy, which was later confirmed by means of 
precision kinetic Monte Carlo simulations [13,14]. The main obstacle for using the MAA 
theory in the case of multicomponent alloys is its great complexity. It is almost impossible 
to push this theory beyond 3-component systems.

In the present paper, we present a much ‘lighter’ version (here called MAA-light) of the 
MAA theory. It nonetheless remains much more complex than the combined Manning [15] 
and Holdsworth and Elliott (HE) [16] theory that was recently suggested [11]. The princi-
pal advantage of MAA-light, however, is in its very accurate predictions of the correlation 
factors for the fastest atomic component. These correlation factors are usually small. This is 
rather more valuable for analysis of diffusion processes than obtaining highly accurate cor-
relation factors that are usually close to unity for the slowest diffusing atoms. Furthermore, 
MAA-light is a self-consistent theory in the sense that both collective and tracer correlation 
factors are calculated using the same system of equations. It should be pointed out that 
for quinary and higher alloys MAA-light will require application of iterative numerical 
methods and therefore rather more computational effort will be needed compared with 
the approach described in [11].

In addition, in the present paper, we apply MAA-light to analyse the possible slowing 
down of the diffusion kinetics of multicomponent alloys with up to five components. This 
is done in the following way. We first consider hypothetically pure metals, the fastest and 
the slowest ones in the alloy. We assume that their tracer diffusion coefficient differ by an 
order of magnitude. Then we consider them being put together into an equiatomic binary 
alloy. The ratio of their tracer diffusion coefficients will be significantly reduced. By add-
ing a third, fourth and fifth component with intermediate tracer diffusion coefficients and 
keeping equiatomic compositions (as in high-entropy alloys (HEAs)) the ratio of the fastest 
tracer diffusion coefficient to the slowest one will be further reduced. In the present paper, 
this effect is analysed in detail.

Finally, in the present paper, the MAA-light random alloy approach is applied to the case 
of the CoCrMn0.5FeNi high-entropy alloy. It is found that for the fastest atomic compo-
nents, Mn and Cr, the corresponding tracer correlation factors contribute about 4% of the 
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total activation energy. For the intermediate Co and Fe components there is no detectable 
contribution from the tracer correlation factor to the total activation energy, whereas for 
the slowest atomic component, Ni, a small negative contribution of about 0.6% was found 
to the total activation energy.

2.  MAA-light theory

Let us consider a random alloy of n atomic species, labelled i = A, B, …, N. The collective 
correlation functions f (i)

ij
 ( f (i)

ii
 is used for the diagonal collective correlation factors fii) are 

to be calculated using the following relations that were derived originally in MAA [12]:
 

where δij is the Kronecker delta, ci, cv are the compositions of an atomic component i and 
vacancies v, wi is the frequency of the vacancy exchange with an atom of type i. In MAA 
[12] the functions hvi:vj were derived on the basis of linear response theory and the use of 
time correlation functions. They satisfy the exact relations:
 

which, by Equation (1), are equivalent to the Sum-rule in the random alloy that was derived 
in [17]:
 

Approximate kinetic equations in [12] lead to equations for hvi:vj which turn out to con-
tain new functions hik:vj (k is an atom species). The central result in MAA is an approximate 
equation (Equation (48) in [12]), from which all the h functions can, in principle, be found. 
Unfortunately its structure makes it very difficult to use for the case of alloys with more than 
three atomic components. In the following sections, a lighter version of the MAA formalism 
is developed and presented in a way that can be easily used for calculations. (Please note that 
we have deposited all the suitable matrices [aij], suitable for solving diffusion kinetics in up 
to n = 5 atomic component alloys, [aij](15 × 15), into a supplementary material folder together 
with a working Mathematica® program for solving the equations for a 5-component alloy.)

2.1.  MAA-light central result

Equation (48) in MAA [12] has the following form:
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where h0il:vj can be calculated using special relations that are simple and are given in [12]. 
The above equation in [12] is replaced by:
 

where
 

 

 

 

and M0 = 2f0/(1 − f0), where f0 is the geometric tracer correlation factor for the lattice and
 

When solving Equation (4) it should be noted that the h functions obey the Sum-rule, 
Equation (2), together with being symmetric with respect to their subscripts:
 

For a n-component alloy we will then consider n(n−1)/2 equations for the same num-
ber of unknown hvi:vj functions. Note that unlike Equation (48) of [12], no hik:vj functions 
appear in Equation (4).

The way to proceed is to first eliminate hvj:vj by using the Sum-rule, Equation (2). This gives:
 

For each particular choice of j there are n such equations of which (n–1) are independent; 
we will take the (j–1) independent equations to be the ones with i 〈j, j〉 1 and i < n.

2.2.  Case of a low-vacancy composition

When the vacancy composition is very small (cv → 0), as is usually the case in real alloys, 
the above equations should be rearranged to make them suitable for computations. First, 
we introduce
 

(4)
∑

k
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and then, multiplying Equation (5b) by cv, we have that at the limit cv → 0:
 

Next, we introduce
 

which then allows us to rewrite Equation (1) as:
 

Note that Equations (4) and (9) remain the same, with a′ik, h
′
vi:vj simply replacing aik, hvi:vj.

2.3.  Solution for the tracer correlation factor

The formal definition of the tracer correlation factor will be used in this section and it can 
be described as follows. We introduce (n + 1)st atomic species that will represent the tracer 
atoms of one of the main atomic component, its composition cn+1 will be treated as vanishingly 
small, namely cn+1 → 0. We will need to keep all (n + 1)n/2 equations in modified Equation (4). 
But some of the terms in those equations can be dropped taking into account the smallness 
of some quantities. For example, bi(n+1) and b(n+1)i are small as well as a�(n+1)i and h�vi:v(n+1). The 
formal definition of the tracer correlation factor [18] can be then employed as (wn+1 = wi):
 

When applied to the matrix Equation (4) when re-written for the low-vacancy case is:
 

The following compact expression for the tracer correlation factor fi can be obtained:
 

where we need to use the following modifications to functions bin+1 and a�jn+1: instead of Fi 
we will use fi, such as:
 

The reason for this correction is explained in Appendix 1 below by making comparison 
with the derivation of the tracer correlation relations in the original MAA formalism [12]. 
The form of relations (Equations (16) and (17)) dictates that the collective correlation 
factors must be calculated first by solving a set of (n + 1)n/2 linear equations, Equation (9), 
in the following form:
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Next, the relations (Equations (16) and (17)) can be solved. Both sets of equations for the 
case of multicomponent alloys can easily be solved using iterative method. In addition, 
Equation (18) can be solved analytically for up to the quinary alloy when using appropriate 
symbolic algebra software (Mathematica® and similar). The starting values for this method 
can be used as the solution to the hypothetical case when all the exchange frequencies are 
equal. For the functions h′vi:vj the starting values are:
 

and for all the tracer correlation functions the starting value is f0.

3.  Binary alloy result

3.1.  Collective correlation factors

For a binary alloy consisting of species A and B, the form for the collective correlation 
factors is just the same as in MAA,
 

with the following definition of Ω:
 

which is the same as MAA for cv → 0 but differs for cv ≠ 0. For cv → 0 we have, as in MAA,
 

where H in terms of jump frequencies is given in [14]. The loss of accuracy is similar to that 
for the tracer result in the following section.

3.2.  Tracer correlation factors

We take cv → 0 everywhere in this section. Equation (9) becomes two equations for an alloy 
of three components (A, B, C); we put component C as the tracer and take the limitcC → 0. 
The result is:
 

where
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cAΛCB(M0
wAFA + 2wC) + cBΛCA(M0

wBFB + 2wC)
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For an (A, B) alloy with C being a tracer of B, Equation (22) gives the tracer correlation 
factor as
 

where
 

Finally, following [13], we substitute from Equations (7), (20), (21b) and simplify a little 
to obtain
 

where
 

 

Figure 1 shows, for the face-centred cubic lattice, fB vs. cB for wA/wB = 0.001, 0.1, 10, 1000. 
Red is MAA-light and blue is MAA.

4.  Multicomponent alloys

To further test the present formalism we performed a series of Monte Carlo (MC) simulations 
for 3, 4 and 5-component alloys. For the details of our MC simulations see, for example, [11]. 
In all cases, the agreement between the MC results and MAA-light approach is similar to the 
binary alloy: the diagonal collective correlation factors agree very well, the off-diagonal corre-
lation factors agree to a good degree with an overall agreement that can be rated as very good, 
see Figures 2(a) and (b) (ternary alloy) and 3(a) and (b), (quaternary alloy) and Table 1 (quinary 

(24)fB =
HB

2wB + HB

(25)HB = M
0
wB

(fB(cAwAFA + cBwBFB) + wAFAFB)

wBfB + cAwBFB + cBwAFA

(26)HB =
HwB(M0

wfB + wA(2 +M
0
)) + 2M

0
wAw

2

BfB

2(fBwBw
� + wAwB) +H(w� + fBwB)

(27)w = cAwA + cBwB

(28)w� = cAwB + cBwA

Figure 1. Tracer correlation factor fB as a function of composition for different values of ratio wA/wB (marks 
at the lines). Dashed lines – MAA, solid lines – MAA-light.
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Figure 2.  (a–e) Diagonal collective correlation factors (a), and off-diagonal collective correlation factors 
(b), Tracer correlation factors fA (c), fB (d), fC (e), as function of cA for ternary (ABC) alloy with wB = 0.1wA, 
wC = 0.01wA. Symbols represent results of MC simulation and lines represent results of application of 
MAAlight. In (a) and (b) cC = 0.1. In (c), (d) and (e) lines and symbols corresponds to cC = 0.1 (the top 
line), …, 0.8 (bottom symbol).
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alloy) the tracer correlation factors for the fastest atoms are all in excellent agreement with MC 
results and slight deviations can be observed for the slowest diffusion atoms, see Figures 2(c)–(e) 
(ternary alloy), 3(c) (quaternary alloy) and Table 1 (quinary alloy). The excellent agreement 
with Monte Carlo-simulated tracer correlation factors for the fastest atoms (MAA-light) is 
much more valuable than the excellent agreement for the slowest atoms (HE [16]) for the 
purposes of an in-depth diffusion kinetics analysis in multicomponent alloys. In summary, it 
can be concluded that the current formalism gives a much better accuracy than the combined 
Manning and HE approach proposed in [11]. However, from a practical point of view, appli-
cation of the present formalism requires rather more computational effort compared to [11].

5.  Applications of MAA-light formalism

5.1.  Decrease of atomic mobilities due to the tracer correlation factors in 
multicomponent alloys

In recent years, there has been growing interest in multicomponent metallic alloy with 
equiatomic or near equiatomic compositions [19–26]. These alloys are now called HEAs 

Figure 2. (Continued).



10    A. R. Allnatt et al.

Figure 3.  (a–c) Diagonal collective correlation factors a), and off-diagonal collective correlation factors 
b), and all tracer correlation factors c), as function of cC for 4-component system (ABCD) alloy with wB = 
0.1wA, wC = 0.01wA, wD = 0.001wA and for the compositions cA = 0.1, cB = 0.1, cD = 1 − cA − cB − cC Symbols 
represent results of MC simulation and the lines represent results of application of MAA-light.
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as their stability at higher temperatures is apparently dictated by the resulting high-entropy 
term in the expression for the free energy. At low temperatures, where the entropy term 
must decrease, their continued stability is proposed to be due to sluggish diffusion. In [27] 
a study of the diffusion mobilities in CoCrMn0.5FeNi alloy was presented together with a 
comprehensive comparison with the corresponding mobilities in the pure metal and binary 
and ternary alloys (where experimental data is available). One of the possible reasons for 
the sluggish diffusion is a result of diffusion kinetics, specifically, tracer correlation effects.

In this section, we propose that tracer correlation effects in any alloy (as opposed to the 
pure element metal) would produce the effect of the slowing down of the apparent mobilities 
(given by the tracer diffusion coefficients) of some (but not all) of the atomic components. 
With all other parameters as equal as practically possible, the increase of the total number 
of the atomic components in an alloy will decrease the highest tracer diffusion coefficients, 
and, consequently, their ratios to the slowest. The degree to which this decrease happens 
will depend on a number of factors. The correlation effect for the fastest atoms will always 
be the greatest, thus resulting in the largest decrease of the diffusion efficiency. For the 
slowest atoms, the correlation factor will be very close to unity, resulting in little change in 
the diffusion efficiency and, consequently, mobility. All of the other atoms will have their 
correlation factors stacked in between according to their place in the mobility hierarchy.

The tracer correlation effect on the diffusion mobilities in the multicomponent alloys 
can be analysed in the following way. First, let us assume that the exchange frequency for 
the fastest component wA and the exchange frequency of the slowest component wN differ 
by some factor, say 10 (100). If they both were in the pure element metals their respective 
tracer correlation factors would be equal.

But, simply putting these metals into an equi-atomic binary alloy will always make the 
tracer correlation factor for the fastest atoms lower than the tracer correlation factor for the 
slowest atoms. This will result in the decrease of the ratio of the tracer diffusion coefficients 
(highest to the lowest – let us call this ratio as R). This will be equal to approximately half 
of the ratio of their exchange frequencies, in our case about 6.0 (45). In this process, the 
slowest tracer diffusion coefficient will remain almost the same while the fastest tracer 
diffusion coefficient will be reduced by about half. If we consider now the situation with 
three pure elements present with the ratio of the exchange frequencies for the fastest and 
the slowest being the same, 10 (100); putting them together into a ternary alloy will further 
reduce the R ratio down to as low as about 5.0 (25). The exact extent will, of course, depend 

Table 1.  MAA-light comparison with Monte Carlo simulation for the quinary system (ABCDE) with 
wA = 1.0, wB = 0.2, wc = 0.04, wd = 0.008, we = 0.0016 and equiatomic composition.

Method fA fB fC fD fE
Monte Carlo 0.213 0.502 0.746 0.882 0.952
MAA light 0.221 0.521 0.762 0.890 0.961

fAA fBB fCC fDD fEE
Monte Carlo 0.355 0.720 0.925 0.981 1.002
MAA light 0.352 0.663 0.846 0.938 0.988

f
A

AB
 f A
AC

 f A
AD

 f A
AE

 f B
BC

Monte Carlo 0.030 0.007 0.001 0.0005 0.019
MAA light 0.040 0.008 0.001 0.0002 0.024

 f B
BD

 f B
BE

 f C
CD

 f C
CE

 f D
DE

Monte Carlo 0.004 0.0005 0.008 0.001 0.006
MAA light 0.004 0.0006 0.013 0.002 0.009
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on the all intermediate atomic component exchange frequencies. If these components (one 
intermediate for the case of ternary alloy, two intermediate for the case of quaternary alloys 
etc.) are close to the fastest one then adding them to the alloy (equi-atomic) will not change 
the R ratio very much. On the other hand, if these components are close to the slowest one, 
then adding them to the alloy will significantly reduce the R ratio. These types of scenarios 
were simulated with the use of the MAA-light formalism presented here. Results of the 
calculations are shown in Figure 4(a) and (b). The ratios of the intermediate exchange 
frequencies in the 4 and 5-component alloys were kept in the following fashion: for the 
4-component alloy (ABCD) wB = 2.0wC with wB varying between 0.5wA and 2.0wD . Ratio of 
wA/wD = 10 in (a) and 100 in (b); for the 5-component alloy (ABCDE) wB = 2.0wC = 4.0wD 
with wB varying between 0.5wA and 4.0wE. Again wA/wE = 10 in (a) and 100 in (b). It is 

Figure 4.  (a, b) Ratio of the fastest component (A) to the slowest component (N) tracer diffusion coefficients 
R for equi-atomic alloys with different numbers of atomic components (3 – circles, 4 – squares, and 5 – 
triangles) as a function of the scaled atomic component (B) exchange frequency. In (a) ratio of the fastest 
to the slowest atom mobilities is 10; in (b) this ratio is 100. For further explanation, see text. Solid lines 
– calculations using MAA-light; dashed lines (in b) only) – calculations made by using HE formalism [11].
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clear that there is always some reduction in the R ratio when another atomic component 
is added. This reduction could be as low as a factor of 0.15 (or 85% reduction) for the case 
of 5-component alloy; 0.20 (or 80% reduction) for the case of 4-component alloy; 0.30 (or 
70% reduction) for the case of 3-component alloy; 0.45 (or 55% reduction) for the case of 
binary alloy.

It should be noted here that in the above consideration, all the reductions in mobilities 
are possible only for the components that are not the slowest ones. For the slowest atomic 
mobility there will not be a detectable change in mobility that is kinetically caused by 
additional atomic components.

5.2.  Estimation of the tracer correlation factors and associated energies in 
CoCrMn0.5FeNi alloy

As was mentioned above, in [27] an experimental investigation of the intrinsic diffusion 
coefficients in CoCrMn0.5FeNi alloy was performed using quasi-binary diffusion couples 
with composition difference between 12 and 22 at%. The resulting diffusion coefficients 
were assumed to coincide with tracer (self) diffusion coefficients in this alloy and found to 
be almost constant, independent of composition, at a given temperature. Furthermore, the 
experiments were carried out at different temperatures and Arrhenius parameters for all 
diffusion coefficients were obtained. In this section, we apply MAA-light to these alloys at 
two temperatures, 1200 and 1300 K using tracer diffusion coefficients from the experiments 
in [27] as the input and find corresponding sets of the exchange frequencies and tracer 
correlation factors. The iterative numerical process was set up in the following way. The first 
approximation was that all the tracer correlation factors were equal to unity and the scaled 
exchange frequencies were then obtained as the ratios of the tracer diffusion coefficients 
to the highest, DMn. With this set of exchange frequencies, the tracer correlation factors 
were calculated and corrected scaled exchange frequencies were used as the next iteration 
input. The iterations were stopped when the tracer correlation factors calculated for the 
next iteration differ from the previous iterations by not more than 0.001. It was found that 
this iterative process converges quite quickly, requiring 8 iterations for the fastest diffusing 
atoms (Mn), 4 iterations for Cr, and 3 iterations for Fe, Co and Ni. The resulting sets of 
tracer correlation factors are presented in Figure 5 as functions of 1/T.

Figure 5. Arrhenius plot of tracer correlation factors in CrCoMn0.5FeNi alloy calculated using diffusion 
coefficients data from [27] and MAA light.
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The energy associated with the tracer correlation factors for Mn and Cr are 10.9 and 
12.0  kJ/mol respectively which is about 4% of their total activation energies [27]. The 
tracer correlation factors for Fe and Co are both almost constant, independent of tem-
perature. Whereas the tracer correlation factor for Ni has a very small negative energy of  
−1.8 kJ/mol which is about 0.6% of total Ni activation energy. These results are consistent 
with the conclusions in Section 4.2 that not all atomic components are significantly slowed 
down in a multicomponent alloy. In the case of CrCoMn0.5FeNi only Mn and Cr have some 
detectable reductions in their mobilities. In Figure 6 we presented uncorrelated parts of 
the diffusion coefficients in this alloy (thick dashed lines). Total diffusion coefficients are 
shown by thin dashed lines.

6.  Summary

In this paper, a light version of Moleko, Allnatt and Allnatt formalism has been introduced 
and its origin explained. It was shown by means of computer simulations that the resulting 
expressions give very high accuracy values for the tracer correlation factors for the fastest 
diffusing atoms and deviate slightly for the slowest diffusing atoms.

Overall, the accuracy of this formalism is much higher than that of the combined 
Manning and HE formalism. Using this formalism we examined the possible range of the 
tracer diffusion ratio of the highest to lowest atomic component for equiatomic binary, 
ternary, quaternary and quinary alloys. It was shown that, in the random alloy model, 
the kinetic (correlation) effect is the highest with the reduction of the fastest tracer dif-
fusion by about 40–55%, when going from two pure metals (with different mobilities) 
to their equiatomic binary alloy. By adding the third component (with intermediate 
mobility) this effect can be further increased with possible total reduction of the fastest 
tracer diffusion by up to 70% (depending on the mobilities combinations), while adding 
the fourth component brings this reduction up to 80% with the possible maximum of 
up to 85% reduction for the 5-component alloys (again depending on the mobilities 
combinations). But the slowest diffusion is not affected in this exercise. This means that 
a kinetics argument alone is not enough to explain the sluggish diffusion of all atomic 
components observed in HEAs.

Figure 6. Uncorrelated parts of diffusion coefficients (thick dashed lines) in CrCoMn0.5FeNi alloy calculated 
using diffusion coefficients data from [27] and MAA-light. Corresponding total diffusion coefficients are 
shown by thin dashed lines.
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Appendix 1. Relationship of Equation (4) (MAA-light) to Equation (48) (MAA) 
[12]

Equation (4) can be written down by taking the form of Equation (48) in MAA [12] (the very first 
equation in Section 1.1 above) and making two kinds of substitutions to the left-hand side only:

(i) � drop all off-diagonal correlation functions, i.e. f (j)
kj

= 0 for all k ≠ j.
(ii) � replace all diagonal correlation functions fii by Fi (where Fi is exactly as defined in 

Equation (7)).

A consistent set of approximations that leads to the MAA-light can be presented in the following way.
In [12] equations for the various h functions are obtained from approximate solutions of kinetic 

equations of certain time correlation functions (tcfs) denoted by ψ. A key quantity is ψij(l, m; t), 
which is a tcf proportional to the probability that sites l and m are occupied respectively by atoms 
of species i and j at time t, conditional on a certain initial condition. The exact expression for the 
time derivative of this quantity (its ‘kinetic equation’) contains similar tcfs which, however, specify 
the occupancies of three particular sites, for example ψijv(l, m, n; t) which is proportional to the 
probability that sites l, m, and n are occupied respectively by an atom of species i, an atom of spe-
cies j, and a vacancy v. (This is Equation (47) of [12], but note, for example, that in their notation 
our ψij(l, m; t) would be denoted ψlm(ij; t), and so on.) There is of course a hierarchy of ψ-functions 
concerned with the occupancies of 1, 2, 3, … sites which we refer to as one-site, two-site, three-site, 
… functions; the kinetic equation for an n-site ψ-function contains contributions from (n + 1)-site 
ψ-functions and can only be solved by making an approximation for these contributions in terms 
of n-site ψ-functions.

To solve their kinetic equation MAA followed a procedure modelled on that used originally 
by HE [16] in a similar context. They noted that the kinetic equation for a one-site function 
ψi(l) similarly contains contributions from two-site functions, but here we know that the one-
site equation in the limit of microscopically long times and long wavelengths must reduce to the 
macroscopic diffusion equation for atom species i. This places a restriction on the form of the 
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two-site contributions to the kinetic equation for ψi(l) in this limit and it is assumed that this can 
be a useful approximation at all times and wavelengths. The result is Equation (30) of [12]; in the 
present notation this is:
 

where θ(l, n) is unity if sites l and n are nearest-neighbours and zero otherwise, and the f (j)
jk

 are 
the correlation functions introduced in Equation (1). (n.b. A subscript Δk in an ψ-function, as for 
example ψΔk(l), means that this ψ is proportional to the probability of a fluctuation of the occupancy 
by species k of the site l from the equilibrium probability ck that it would be so occupied.) It is now 
assumed that if we insert in each ψ-function appearing in this equation an additional fluctuation Δi 
at some nearby site m then the resultant equation,
 

will also be a useful approximation. The left-hand side is of exactly the form of a typical contribution 
of three-site functions to the kinetic equation for two-site functions in MAA; the right-hand side 
provides an approximation for this contribution in terms of two-site functions. Using this approxi-
mation leads to the central result of MAA, their Equation (48) in [12].

It is possible that a simpler structure than MAA might result if, instead of using the kinetic equation 
for an atomic species to suggest a relation between one- and two-site functions, Equation (A1), one 
used the corresponding result from the kinetic equation for the vacancy species. On the other hand, 
this equation, replacing Equation (A1), follows much quicker by just summing Equation (A1) over 
atom species j. Either way, the equation replacing Equation (A1) is then:
 

and, as before, it can be assumed that if we insert in each ψ-function appearing in this equation an 
additional fluctuation Δi at some nearby site m then the resultant equation connecting 3-site and 
2-site ψ-functions will still be a useful approximation. However, this resultant equation contains a 
summation over species j on both sides and is only useable if we make the additional assumption that 
a useful relation still holds if we simply drop the summations over species j everywhere in Equation 
(A3). If this is done, then an equation replacing MAA Equation (48) in [12] can be found and, from 
it, the MAA-light result, Equation (4), quickly follows.
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