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Resource-efficient Mobile Multimedia Streaming
with Adaptive Network Selection
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Abstract—From the advancements of mobile display and
network infrastructure, mobile users can enjoy high quality
mobile video streaming anywhere anytime. However, most mobile
users are still reluctant to use high quality video streaming
when they are mobile due to costly cellular data and high
energy consumption. In this work, we develop scheduling al-
gorithms for resource-efficient mobile video streaming, which
minimize the weighted sum objective of cellular cost and energy
consumption. We first model the scheduling problem as a
Markov decision process and propose an optimal scheduling
algorithm based on dynamic programming. Then, we derive a
heuristic algorithm that approximates the optimal algorithm.
To evaluate the performance of proposed algorithms, we run
simulation over YouTube video traces with audience retention
graphs and mobility/connectivity traces in public transportation
(e.g., commuting). Through extensive simulations, we show that
our proposed scheduling algorithm has negligible performance
loss compared to the optimal scheduling algorithm, where it
saves 59% of cellular cost and 41% of energy compared to the
YouTube default scheduler. We also implement our scheduling
algorithm on an Android platform, and experimentally evaluate
the performance compared to existing streaming policies.

I. INTRODUCTION

Mobile video is expected to dominate the Internet traffic in
near future according to a traffic forecast report [1]. This is
plausible given that the screen size and resolution of mobile
devices are getting larger and higher, and wireless networks
are getting faster by the adoption of new technology such as
LTE-Advanced networks. The report forecasts that the portion
of video traffic will reach 66 percent of the total mobile data
traffic, where the per-smartphone video traffic is projected to
be 1.7GB/month in year 2016.

This trend of demanding more video traffic while being
mobile is increasingly burdening users for significant inflation
in the cellular cost as well as energy consumption. For
instance, the streaming of 720p or 1080p YouTube video for
an hour eats up 1.8GB or 4GB. Given that 15GB monthly
data plan costs $100 at AT&T as of October 2015 [2], the
streaming cost over LTE networks is never negligible. Note
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that unlimited data plan is provided only to a limited number
of countries, but with significant throttling of data rates after
a certain data quota. This is a major hurdle for users who
want to watch high quality videos even outside WiFi coverage.
The energy consumption for streaming videos is also of a
critical issue. This is because streaming videos uses the most
energy-hogging chipsets of mobile devices such as LTE, LCD,
CPU, and GPU all at the same time [3]. According to [4],
streaming applications (e.g., YouTube and Vimeo) drain the
battery of Samsung Galaxy Note (2500mAh) and Motorola
RAZR MAXX (3300mAh) within 4 or 5 hours. Another
report [5] also revealed that when streaming video, the battery
lifetimes are only 5 and 7 hours in Galaxy S4 (2600mAh) and
S5 (2800mAh) smartphones, respectively.

We tackle these problems in mobile streaming by exploiting
the following two characteristics: (1) link rate fluctuation from
multi-modal networking interfaces (e.g., LTE, WiFi) and (2)
user churning behaviors while streaming videos. The former is
observed as frequent switching between WiFi and LTE inter-
faces especially when users roam around an indoor complex
or pass by subway platforms providing WiFi coverage. The
latter describes a typical user behavior of stopping watching
a video in the middle of its streaming due to various reasons
(e.g., loss of interest). The measurement study in [6] revealed
that 60% of the YouTube videos are watched for less than 20%
of their duration. These characteristics in mobile streaming
are important as they provide huge opportunities in saving
data cost and energy. For instance, if a device connected to a
cellular network is expected to get a faster WiFi connection
in near future, deferring the buffering of streaming saves both
energy and cellular cost. In the same manner, if the video
being watched is soon to be stopped, minimizing the amount
of playback buffer saves both cellular cost and energy.

In this work, we propose a new scheduler for non-live
streams that is far more resource-efficient than existing stream-
ing algorithms being used in YouTube or Vimeo. Our sched-
uler utilizes a known statistics, retention graph to extract user
churning behavior. The retention graph that shows the variation
of views for each moment of a video is readily available in
YouTube for the owner [7]. Link rate variation can be extracted
from the history of the user or crowdsourced data rates over
the user’s mobility path.

Based on the user churning and link rate variation model,
we formulate our scheduling problem as a Markov decision
process, where the objective is to minimize the weighted sum
of average cellular cost and energy consumption in streaming.
We first derive an optimal scheduling algorithm using dynamic
programming that is unusable in practice due to the curse
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of dimensionality. We then develop an approximate algorithm
that demands significantly lower information overheads and
computational complexity. Through trace-driven simulation
over real mobility and video streaming traces, we show that
our proposed scheduler saves 59% of cellular cost and 41%
of energy consumption compared to the current YouTube
scheduler. We also implement our scheduler on an Android
platform, and show that a similar level of saving as in trace-
driven simulations is achievable in practice.

II. RELATED WORK

There are several categories of previous studies related
to our paper. Many researchers studied mobile streaming
to improve QoS (Quality of Service) without considering
resource consumption. Examples of QoS metrics are the video
stalling probability and video quality (e.g., PSNR (Peak Signal
to Noise Ratio)). Recently, cost minimization (mainly energy)
in mobile streaming has received a lot of attention in many
papers. To improve cost efficiency, these works used additional
information such as channel variations or user viewing statis-
tics. Another line of research in delayed offloading exploited
mobility and additional delay to alleviate cellular network
congestion opportunistically. We summarize each category in
the following paragraphs.

In a decade ago, early studies on multimedia streaming [8],
[9] mainly focused on providing a better video quality guar-
antee and gave little attention to the energy efficiency because
non-mobile streaming devices are typically not battery con-
strained. Chou et al. [8] developed nearly optimal streaming
over a lossy packet network. In [9], Jurca et al. considered
multipath networks and solved the problem of joint path
selection and source rate allocation in order to maximize the
video streaming quality. The proposed scheduling algorithms
are shown very effective in quality control over lossy channels,
but they may suffer from achieving high resource efficiency
because it was not considered in the framework. Considering
that mobile streaming users are sensitive to energy consump-
tion as well as data cost, our work is filling the gap between
[8], [9] and a more realistic user satisfaction.

As mobile streaming gets prevalent and energy/cost become
scarce resources, scheduling and controlling mobile video
streaming traffic has attracted much attention recently [10]–
[23]. The common goal in recent studies is to obtain the
best trade-off between resource consumption (e.g., energy,
cellular cost) and user experience (e.g., video quality, rebuffer
rates). Go et al. [10] developed an energy-efficient HTTP adap-
tive streaming algorithm that provides seamless high-quality
video streaming services with networking cost constraints over
heterogeneous wireless networks. Similarly, Guruprasad et
al. [11] developed an adaptive steaming techniques including
stopping video download at times, depending on mobile device
buffer levels and the channel conditions experienced, to max-
imize battery life. Almowuena et al. [12] efficiently utilized
both unicast and multicast in cellular networks to minimize
the energy consumption of mobile devices and minimize the
cellular load. Hoque et al. [13] studied the impact of traffic
burst size on power consumption of smartphones in TCP,

and showed that the power consumption of a smartphone
decreases when the receiving burst size increases. Using this
knowledge, they developed EStreamer that minimizes the
wireless communication energy spent by mobile devices for
TCP-based multimedia streaming. To improve the energy-
efficiency of cellular communication in general mobile data,
Bartendr [24] exploited network traces to schedule traffic over
better channel conditions.

In [14], Hoque et al. additionally exploited crowd-sourced
video viewing statistics about the audience retention graph to
develop an energy-efficient scheduling algorithm, eScheduler.
In [15], the same authors also proposed two versions of
eSchedule, optimal one based on dynamic programming and
another heuristic with less computational complexity. They
also implemented an Android prototype of the scheduler and
showed that the energy saving is up to 80% compared to the
default Android YouTube application. GreenTube [16] also uti-
lizes user-dependent (but not video-dependent) viewing history
to calculate the expected remaining viewing time. Then, they
developed a heuristic algorithm to dynamically manage the
downloading cache based on the expected viewing time and
network condition, for energy and data waste reduction.

Huang et al. [17] proposed “buffer-based” rate selection
algorithms that adaptively control the delivered video quality
based on the amount of the playback buffer. Their algorithms
reduce rebuffer rates (i.e., the probability that the playback
buffer becomes empty) by 10-20% compared to Netflix while
delivering a similar video rate. Bokani et al. [19] controlled
the quality level of the mobile HTTP-based adaptive streaming
to optimize three dimensions of streaming performance (i.e.,
picture quality, deadline miss, and the frequency of quality
change) based on a Markov decision process (MDP). They
applied three simplification approaches to reduce the overhead
of MDP, where the best performance is achieved with x-MDP
that recomputes the optimal strategy for every x meters of the
travel using offline statistics for each x-meter of the road MDP.
Although these papers can improve QoS by chunk scheduling,
resource consumption for chuck downloading were not con-
sidered and thus they have no guarantee in restricting the costs
of energy and cellular data.

Chen et al. [20] proposed to adaptively change the video
quality to use cellular data more efficiently. They developed
an online video quality adaptation system, QAVA, that dynami-
cally controls the quality (e.g., resolution) of a streaming video
that maximizes user experience under a given data quota (i.e.,
data plan) of the user. An optimal policy is derived from stan-
dard backward induction techniques for finite-horizon Markov
decision processes. Chen et al. [21] also designed AVIS that
schedules HTTP-based adaptive video flow on cellular base
stations. It optimally computes bit-rate allocation of each user
for the optimal resource allocation in consideration of user
quality of experience (QoE).

For general mobile data traffic including video traffic,
several papers [25]–[28] have studied mobile data offloading
through WiFi networks to reduce the amount of cellular data
(i.e., cellular costs), where they exploit mobility and additional
delay to offload more data to WiFi networks opportunistically.
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However, our proposed technique in this work treats the
deadline for downloading the latter part of a video as dynamic
as the video gets played more. This brings a difference
in evaluating the offloading opportunity and we find that
our technique creates substantially more opportunities. This
become possible because of the playback buffer that conceals
some amount of delay before it is being played. In other words,
video chunks only require to be downloaded before the time
they are scheduled to be viewed. For example, in a 10-minutes
long video, the last part of the video can tolerate 10 minutes of
delay. Thus, if WiFi connection availability is predicted within
in the time that a piece of video needs to be played, a smart
scheduler can exploit the opportunity to offload mobile video
traffic to WiFi networks.

III. MEASUREMENT STUDY

A. Existing streaming techniques: YouTube and Vimeo
In this subsection, we examine existing streaming tech-

niques in two popular streaming services, YouTube and Vimeo
player apps, running on an Android smartphone, Samsung
Galaxy Note 2 under a LTE network in March 2014.1 We
capture download packets using an Android version of tcp-
dump [29], while we measure energy consumption using the
Monsoon power monitor [30] simultaneously. In YouTube, we
stream a 253 seconds long video whose size is 90MB, and
in Vimeo, we stream a 750-seconds long video whose size
is 37MB. Since their encoding algorithms are different2, we
select different videos that best show the characteristics of their
streaming algorithms. We depict streaming rates (download
amount per 100ms) and received sizes (i.e., accumulated
downloaded amount) of YouTube and Vimeo in Fig. 1. In
Table I, we summarize the power consumption of YouTube
and Vimeo streaming as well as the power consumption of
fast caching when the video is downloaded at the maximum
achievable capacity. We calculate the power consumption only
for video streaming (i.e., downloading) by taking off the power
consumption for the same downloaded video being played
without any communication, which is about 1064mW (mJ/s).

Figs. 1(a) and 1(c) show that the YouTube streaming ap-
plication prefetches the front part of the video (about 14MB)
from the streaming server at the maximum achievable data
rate of a TCP session. Followed by the fast buffering, the
sending rate is throttled down to the average playback rate
of the video multiplied by a factor of 1.25, which is also
verified by the measurement in [14]. This results in a small
playback buffer as shown in Fig. 1(c), but the wireless interface
is continuously used until 175 seconds and consumes larger
energy compared to the case when the video is downloaded
at the maximum achievable data rate from the beginning to
the end. This is often called fast caching in literature. This
is because the network energy consumption is not reduced
significantly even if the download rate is throttled, and the
cellular interface consumes tail energy for about 10 seconds

1The installed Android version is Jelly Bean 4.3.
2Even if a user uploads the same video, the playback rate of the uploaded

videos can be different across streaming services, mostly due to different
quality adaptation algorithms.
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Fig. 1. Download packet traces of existing streaming techniques: YouTube
(throttling with a factor of 1.25) and Vimeo (on-off streaming with a chunk
size of 22MB)

(which will be clarified in the next subsection), even if the
data transfer is paused. In Table I, we find that for the tested
video in Fig. 1(c), throttling the download rate at 1.25 times
the playback rate consumes 3.7 times more communication
energy than fast caching.

In the case of Vimeo streaming application (in Figs. 1(b)
and 1(d)), the video is downloaded as on-off streaming, where
each part of the video (e.g., 22MB) is downloaded in an ON
period at the maximum achievable data rate, and the video
downloading stops in an OFF period. An OFF period lasts
until the playback buffer becomes smaller than a threshold.
As the video is downloaded through multiple ON periods,
the buffer size is always smaller than the size of each part,
which is 22MB in the tested video. However, even in OFF
period, wireless connection stays alive to keep the TCP session
and also goes through tail energy consumption. Thus, on-off
streaming obviously consumes larger energy than fast caching.
We find that the on-off streaming of Vimeo consumes 8 times
more communication energy than fast caching, as summarized
in Table I. For other existing streaming techniques, we refer
readers to [14], [31].

In short, existing streaming techniques of YouTube and
Vimeo try to keep buffer sizes small by throttling the download
rate or by on-off streaming to mitigate data wastes from user
churning, but this sacrifices large communication energy.

B. Wireless communication energy

We measure cellular communication energy of a smartphone
by letting the smartphone download a file from our server via
a TCP socket using a Monsoon power monitor [30]. We refer
readers to the experimental setting in [32], as we repeated the
measurement methodology explained in the work. As shown
in Fig. 2, a smartphone’s cellular module is in either idle,
transfer3, or tail4 mode, where the power consumption (in

3This mode is called DCH (Dedicated CHannel) mode in 3G networks.
4This mode is called FACH (Forward Access CHannel) mode in 3G

networks.
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TABLE I
MEASURED POWER CONSUMPTION OF YOUTUBE AND VIMEO VIDEOS.

Video YouTube (90MB, 253 secs long)
Streaming YouTube (throttling) Fast caching†

Avg. power] 678mW (3.7x) 182mW (1x)

Video Vimeo (37MB, 750 secs long)
Streaming Vimeo (on-off) Fast caching†

Avg. power] 609mW (8x) 76mW (1x)

† Downloading the whole video at the maximum achievable capacity at
the beginning.
] Excluding power consumption in playing the video (e.g., screen and
CPU), which is about 1258mW for the YouTube video and 911mW for
the Vimeo video.

(a) Consumed power in states (cellular networks).

(b) State diagram.

Fig. 2. State transitions in wireless modules.

TABLE II
LTE/WIFI ENERGY PROFILES.

Device Name Etran (J/s) Etail (J/s) Eidle (J/s) τ tail (sec)
LTE-I Galaxy Note 2 1.35 0.67 0.02 9.74
LTE-II Galaxy Note 2 1.38 0.65 0.02 10.01
WiFi Galaxy Note 2 0.897 - - -

Joule/sec) in each mode is denoted by Eidle, Etran, and Etail.
Each value is given in Table II for two different cellular
networks and a WiFi network. Starting from idle mode, the
mode is changed to transfer when it has data to transmit
to or to receive from a base station. After completing the
transfer, the mode is changed from transfer to tail, and the
cellular module stays in the tail mode at least for a predefined
tail duration, which is denoted by τ tail, before going back
to idle mode. We use the LTE-I network throughout this
paper, as LTE-I and LTE-II networks show very similar energy
profiles. We also measure power consumption in downloading
data traffic through WiFi APs, which is also summarized in
Table II. Note that the tail duration in WiFi is negligible (about
0.2 second as shown in [13]) compared to cellular networks.

TABLE III
SUMMARY OF MAJOR NOTATION

Variable Definition
L video length
rp CBR playback rate (in Mbps)
t0 start-up delay

Bmin minimum buffer size
A = {1, 2}, set of access networks (1: LTE, 2:WiFi)

ra(t) data rate of network a ∈ A
b(t) received video size at time t
b(t)
rp

received duration at time t
λoff WiFi AP arrival rate
λon WiFi AP departure rate
TIAP random variable of inter-AP time
ω(t) ∈ {0, 1}, WiFi connection indication at time t
Tc ≤ L, random variable of user churning time
pc(t) = P[Tc = t|Tc ≥ t], churning rate at time t
τ(t) remaining tail time at time t

s system state, a tuple of ts, b
s(ts)
rp

, τs(ts), ws(ts)

st system state at time t
s∞ terminating state
u ∈ {0} ∪ A, control (i.e., network selection)

µ ∈ U scheduling policy, a set of controls µ(s) in each s
U(s) set of feasible controls in state s
pi,j(u) state transition prob. from i to j under a control u
gi,j(u) instantaneous cost in transition from i to j under u
γ trade-off parameter (cellular data over energy)

Etran
LTE unit LTE transfer energy

Etran
WiFi unit WiFi transfer energy
Etail

LTE unit LTE tail energy
τ tail LTE tail duration (in slots)

IV. FINITE-HORIZON COST MINIMIZATION PROBLEM

In this section, we describe our system model and formulate
our problem as a finite horizon cost minimization problem
given the audience retention probability and WiFi contact
statistics (i.e., inter-AP and AP connection time5 distributions).
The audience retention probability captures the statistical
departure probability (i.e., the probability of quitting the video
watch) of the viewers for each moment of a video. By the
definition, it is possible for us to estimate the probabilistic
user churning behaviors from this graph. As a representative
example, the YouTube API for retention data returns 100 data
points, i.e., the granularity is 1% [7]. We first derive an optimal
online algorithm based on dynamic programming. Then, we
develop a simple heuristic algorithm, Maximum Buffer Control
(MBC), which is a threshold-based policy that mimics the
optimal algorithm.

A. System Model

1) Network and Traffic (video) model: We summarize ma-
jor notations in Table III. We consider a scenario where a user
requests a single streaming video of length L (in timeslots)
which is encoded in constant bit rate (CBR) with the playback
rate rp (in Mbps). We assume a time-slotted model and index
a time slot by t ∈ {1, ..., T}, where T = L + t0 and t0 is
a start-up delay. The length of a time slot is one second.
We assume that users are always under the coverage of a
cellular base station, but not necessarily of a WiFi access

5AP connection time is the net amount of continuous time duration that a
device is connected to an AP. Inter-AP time is the time duration after a user
leaves an AP coverage area, until it returns to a coverage area.
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point (AP). We denote the set of access networks by A,
where A = {1, 2} (1 denotes the cellular networks, and 2
denotes the WiFi networks). The data rate of network a ∈ A
at time slot t is denoted by ra(t). Users can estimate data
rates using a low-power rate prediction algorithm that exploits
signal strength, location information or past data rates. We
refer readers to [33]–[35] for rate prediction algorithms.

Unlike cellular networks, data rate of a WiFi network can
be zero, r2(t) = 0, when the connection is unavailable to
any WiFi network. We denote the received video size until
time slot t by b(t). The received video size should be greater
than the amount of video chunks that is needed to play the
video without buffering, i.e., b(t) ≥ rp(t− t0) +Bmin, where
Bmin is the minimum buffer size of a streaming system. We
assume that the minimum buffer size Bmin is chosen to be
sufficiently large to ensure that the playback never stops in the
middle of playback (i.e., no buffering). For instance, we can
apply the Chebyshev’s inequality6 to bound the video stalling
probability, using the knowledge about the variance of random
data rates from rate prediction.

We model that the inter-AP and AP connection times follow
the geometric distribution that is the discrete analogue of
the exponential distribution. We find that from our public
transportation traces, this modeling is realistic as shown in our
measurement in Section V. The inter-AP time is distributed
with parameter λoff and AP connection time is distributed
with parameter λon.7 Our scheduler is assumed to obtain these
parameters a priori by analyzing the previous history of AP
connection events over the same mobility path. For a newly
visited location, we may use crowdsourced AP connection
times of other users who visited the area or the mobility path.
We denote a WiFi connection indicator at time slot t by ω(t),
where ω(t) = 1 when the user is connected to a WiFi AP, and
ω(t) = 0 otherwise. The user churning time is denoted by Tc,
which is a random variable and the distribution of Tc is given
by the audience retention probability. We define a churning
(i.e., abandoning) probability at time t by pc(t), where pc(t)
is a failure rate of Tc, i.e., pc(t) = P[Tc = t|Tc ≥ t]. We
denote the remaining tail duration of cellular networks at time
t by τ(t) ≤ τ tail, where this value is set to be an integer
value τ tail (unit is time slot) after completing a cellular data
transfer, and decreased by 1 at each time slot if the user does
not download a video chunk through cellular networks. When
τ(t) becomes zero, the cellular module goes into idle.

2) State transition model: We denote a system state s as a
tuple of time ts, received duration bs(t)

rp
, remaining tail τs(t),

WiFi connection indicator ωs(t). We omit the superscript s
unless confusion arises. Note that the received duration b(t)

rp
should be greater than the playback time t. When the playback
ends at t = L+t0 or the user abandons watching the video with
probability pc(t) at time t, the system moves to the terminating
state, s∞, with an instantaneous cost of remaining tail energy
consumption, τ(t).

6For a random variable X , Pr{E[X]−X ≥ δ} ≤ V ar(X)

δ2
7The average inter-AP time is 1/λoff and the average AP connection time

is 1/λon.

Fig. 3. An example of the state transition model (L = 3).

We illustrate an example of the state transition model when
L = 3, t0 = 0, and Bmin = 0 in Fig. 3. States are depicted
by circles and each arrow indicates the possible transitions
between states. We denote by st the system state at slot t. The
system state st+1 is dependent on the previous state st and a
control µ(st). We define µ : s 7→ µ(s) as a scheduling policy,
which is a set of controls for each state s, where a control
µ(s) ∈ {0} ∪ A selects an access network to download a
video chunk or does not download any data (when µ(s) = 0).
We denote by µ(st) a control in system state st and policy µ.
We denote U as the set of all feasible policies, where U(s)
is a set of feasible controls in state s, or µ(s) ∈ U(s). When
the user is connected to a WiFi AP, U(s) = {0, 1, 2} and
U(s) = {0, 1} otherwise.

We define the transition probability from state i to state
j under a control u by pi,j(u). We assume that t0 = 0 and
Bmin = 0 for simplicity. When the next state is the terminating
state, s∞, pi,j(u) becomes:

pi,s∞(u) =

{
pc(t

i) if ti < L
1 if ti = L

If j is not the terminating state, s∞, and ti < L,

pi,j(u)=


(1− pc(ti))λoff if wi(ti) = 0,wj(tj) = 1
(1− pc(ti))(1− λoff) if wi(ti) = 0,wj(tj) = 0
(1− pc(ti))λon if wi(ti) = 1,wj(tj) = 0
(1− pc(ti))(1− λon) if wi(ti) = 1,wj(tj) = 1

where tj = ti+1, bj(tj) = bi(ti)+ru(t)1{u≥1}, and τ j(tj) =
max(τ i(ti)− 1, 0) if u 6= 1, and τ j(tj) = τ tail if u = 1. 1{·}
is the indicator function.

An instantaneous cost in a state i and during state transition
from i to j under a control u is denoted by gi,j(u), which is the
summation of an instantaneous cellular cost, and instantaneous
energy consumption multiplied by a trade-off parameter γ.
The trade-off parameter γ is for the unit conversion between
cellular data cost and energy, where this parameter depends
on the user’s preference. When the next state j is not the
terminating state, s∞, gi,j(u) is written as:

gi,j(u) =r1(t)1{u=1}

+γ
(
Etran

LTE1{u=1}+E
tail
LTE1{τ i(ti)>0}+E

tran
WiFi1{u=2}

)
.



1520-9210 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2016.2604565, IEEE
Transactions on Multimedia

6

The instantaneous cellular cost is the amount of cellular traffic
transmitted during state transition which occurs only when
u = 1 meaning that the cellular network is used. We assumed
that the monetary cost of WiFi data usage is zero, which is
true in common. Often, WiFi networks are complementary
services provided by cellular providers or some organizations
(e.g., government). The instantaneous energy consumption is
either unit cellular transfer energy, unit cellular tail energy, or
unit WiFi transfer energy, which we explained in Section III-B,
depending on the control u and remaining tail time τ(t). When
the next state is the terminating state, s∞, the tail energy
term (Etail

LTE1{τ i(ti)>0}) changes to Etail
LTEτ

i(ti) to consider all
remaining tail energy:
gi,s∞(u) =r1(t)1{u=1}

+γ
(
Etran

LTE1{u=1} + Etail
LTEτ

i(ti) + Etran
WiFi1{u=2}

)
.

B. Problem Definition

We assume that t0 = 0 and Bmin = 0 for simplicity. It is
trival to generalize our results to non-zero start-up delay (t0)
and minimum buffer size (Bmin). Our objective is to minimize
the expected sum cost of cellular data and energy consumption
where the expectation is with respect to the joint distribution
of the random variables (such as Tc and ω(t)) involves:

min
µ∈U

E
[
gsTc ,s∞

(µ(sTc
)) +

Tc−1∑
t=1

gst,st+1
(µ(st))

]
, (1)

where we recall that Tc is the churning time that a user
abandons watching the video. Note that Tc = L when the
user watches the entire video (i.e., no churning).

C. Optimal Algorithm

The value iteration algorithm that yields an optimal policy
is as follows [36]:

V (n+1)(i) = min
u∈U(i)

m∑
j=1

pi,j(u)
[
V (n)(j) + gi,j(u)

]
, (2)

where V (n)(s) is the value of state s, which is the expected
sum of the instantaneous cost from state s to the terminating
state s∞, at n-th iteration. Initially, V (0)(s) = 0 for all state
s. In each step, the algorithm updates the value function of
each state, which will converge to the expected sum cost until
termination (i.e., the user churns or watches the entire video).
When maxs |V (n+1)(s)− V (n)(s)| < ε, for a sufficiently
small ε, the scheduling policy µ which attains minimum at
every state s is an optimal scheduling policy. Intuitively, as
the iteration runs, the value function of each state captures the
probabilistic effect of more distant states (i.e., states that take
longer transitions to visit). However, it is well known that this
optimal policy is practically impossible to use due to the curse
of dimensionality [37].

D. Heuristic: Maximum Buffer Control

We develop a heuristic algorithm that mimics an optimal
policy by controlling the maximum buffer size (i.e., a thresh-
old) considering (i) data wastes from user churning, (ii) WiFi
offloading from future WiFi contacts, and (iii) tail energy
from turning off the cellular interface. Our heuristic algorithm

TABLE IV
MAXIMUM BUFFER CONTROL (A HEURISTIC SCHEDULER)

1: At the first time slot t = 1,

2: if ω(t) = 1 (under a WiFi AP) and r2(t) > rp,

3: u(t) = 2 (download a chunk through WiFi networks).

4: else u(t) = 1 (download a chunk through cellular
networks).

5: At each time slot t > 1,

6: if ω(t) = 1,

7: if b(t− 1) + r2(t) > rp · t,
8: u(t) = 2.

9: else u(t) = 1.

10: else if ω(t) = 0 (out of WiFi coverage) and u(t−1) = 0
(did not download any chunk at the previous slot),

11: if b(t− 1) < rp · t,
12: u(t) = 1.

13: else u(t) = 0 (does not download any chunk).
14: else if ω(t) = 0 and u(t− 1) = 1 (downloaded a chunk

through cellular networks at the previous slot),
15: C1 = P

[
Tc ≤ b b(t)rp c

∣∣∣Tc ≥ t]× (r1(t) + γEtran
LTE) ,

16: C2 =
(
1− P

[
Tc ≤ b b(t)rp c

∣∣∣Tc ≥ t])
×P
[
TIAP ≤ b b(t)rp c − t

]
×
(
r1(t) + γ

(
Etran

LTE − Etran
WiFi

r1(t)
E[r2(t)]

))
,

17: C3 =
(
1− P

[
Tc ≤ b b(t)rp c

∣∣∣Tc ≥ t])
×
(
1− P

[
TIAP ≤ b b(t)rp c − t

])
× γEtail

LTEτ
tail.

18: if C1 + C2 ≤ C3,

19: u(t) = 1.

20: else u(t) = 0.

(maximum buffer control (MBC)) is described in Table IV.
We denote u(t) as the schedule (control) at time slot t.8 We
denote the random variable of inter-AP time as TIAP.

We first myopically prefer opportunistic WiFi networks to
reduce cellular costs. This strategy is reasonable since per-
bit transfer energy of WiFi networks is comparable to or
better than that of cellular networks in practice, unless the
signal strength is extremely weak or interference is too severe.
We also emphasize that the tail energy of WiFi networks is
negligible. Thus, if the user is connected to a WiFi AP, it
downloads data through WiFi networks as long as the data
rate of WiFi is fast enough to continue video streaming.
When WiFi APs are not available, the scheduler does not
download data cellular networks, as long as the video buffer is
sufficient enough to play the video at the next time slot. If the
remaining buffered video is not sufficient, the scheduler starts
downloading data through cellular networks. The scheduler
will stop downloading data if the buffer is sufficiently large in
order to (i) avoid cellular data waste and (ii) not to lose future

8We recall that when u(t) = 0, buffering (i.e., downloading) stops at time
slot t.
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WiFi connection opportunities.
To determine how much the sufficient buffer size is, we

compare the costs (C1 and C2) and gain (C3) while down-
loading data from cellular networks. C1 and C2 are projected
data waste cost and offloading failure cost when downloading
data through cellular networks at time slot t, respectively.
The data waste cost is the product of the probability that
the user churns before watching out the currently buffered
video (P

[
Tc ≤ b b(t)rp c

∣∣∣Tc ≥ t
]
) and the sum of cellular cost

and energy cost (r1(t) + γEtran
LTE). There can be another cost,

that is the offloading failure cost which is incurred if the
user meets a WiFi AP before watching out the currently
buffered video (with probability P

[
TIAP ≤ b b(t)rp c− t

]
), which

is inflated by the difference between the cellular cost and WiFi
cost (r1(t) + γ

(
Etran

LTE − Etran
WiFi

r1(t)
E[r2(t)]

)
). C3 is the projected

tail energy gain when downloading a chunk through cellular
networks at time slot t. When the user will not churn and
will not meet a WiFi before watching the current buffer, then
the tail energy of Etran

LTEτ
tail will be incurred if the user does

not download chunks further from cellular networks. Here, we
assume that the remaining time of the received video size is
generally longer than the tail period. If the sum of projected
costs is greater than the tail energy gain (C1 + C2 > C3),
the scheduler stops downloading through cellular networks
(u(t) = 0).

V. TRACE-DRIVEN NUMERICAL ANALYSIS

A. Setup

We consider a 10-minute long video (L = 600) with
playback rate rp = 0.69Mbps.9 This is a typical rate of
a SD (standard definition, 480p) video in YouTube. We let
t0 = 0 and Bmin = 0. The data rate of cellular networks of
LTE is assumed to be constant as r1(t) = 6.9Mbps. We first
measure the connectivity and data rates of WiFi networks over
a Seoul subway trace as depicted in Fig. 4. We choose to use
a subway trace since people actively watch videos in public
transportation, supported by the fact that 36.5% of people
primarily use their mobile data while commuting by public
transportation [38]. In subway stations of many countries
including South Korea, there exist WiFi APs deployed by
cellular carriers with the purpose of cellular traffic offloading.
We exploit such APs for our stream scheduling. The inter-AP
connection time in those public transportation traces is similar
to the difference between arrival times of two consecutive
stations, which is just a few minutes in general. Thus, a
scheduler can offload some parts of video traffic through WiFi
networks as long as the video length is longer than the inter-
station time. The average WiFi data rate observed from the
trace is 1.24Mbps. We use this average WiFi data rate as the
data rate of WiFi in deriving the optimal and heuristic policies.
The average inter-AP connection time observed is 2 minutes
and the average AP connection time is 1.4 minutes, where they
fit well with exponential distributions. We use the audience
retention graph of video 1 in Fig. 5. These audience retention

9The total video size is 52MB.

(a) Mobility trace in Seoul metro line 2.
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Fig. 4. Download data rates and CCDF of inter-AP and AP connection times
in a 30-min Seoul subway trace.
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Fig. 5. Audience retention probabilities of video 1 and 2 [14].

graphs are extracted by Hoque et al. from YouTube videos
in [14]. We omit the result for video 2 for brevity, since it has
similar results as video 1.

We classify streaming policies into four categories: existing
LTE only streaming, WiFi offloading + existing streaming,
optimal and heuristic streaming, oracle. In existing LTE only
streaming policies (YouTube and Vimeo), large cellular costs
are generated since cost-free WiFi networks are not utilized.
Also, in YouTube, energy consumption is high because of
throttling. In WiFi offloading + existing streaming, the video
is always downloaded through WiFi networks when the device
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is connected with WiFi networks. When the device is not
connected with WiFi APs, existing streaming policies are used.
For example, in the WiFi offloading + YouTube policy, when
the device is connected to a WiFi AP, the video is downloaded
with an achievable WiFi data rate, and when the device is
not connected to a WiFi AP, the video is downloaded at the
playback rate multiplied by 1.25 through cellular networks.
An infeasible policy, oracle, assumes that the device knows
exactly when the user will abandon watching the video and
when the user contacts with WiFi APs, a priori. Oracle
maximally uses WiFi connectivity to minimize the cellular
cost.

B. Comparison between an optimal and our heuristic (MBC)
scheduling algorithms

We depict total received sizes and received sizes from
WiFi networks in an optimal scheduling algorithm with γ =
1, 10, 0.1 and our heuristic (MBC) scheduling algorithm with
γ = 1, 10, 0.1 in Fig. 6, when the 10-minute long video is
requested at 17 minutes of Seoul metro line 2 trace in Fig. 4.
In the optimal scheduling algorithm with γ = 1 in Fig. 6(a),
buffer sizes are kept small when the user churning probability
is high (see 0-150 seconds for video 1 in Fig. 5), and buffer
sizes become larger when the user churning probability is
negligible (see after 150 seconds). Our heuristic scheduling
algorithm (MBC) closely mimics the optimal scheduling al-
gorithm. Thus, similar cost and energy savings are obtained
by using our simple heuristic algorithm. The buffer sizes in the
optimal and MBC scheduling algorithm become smaller when
cellular costs are more valuable than energy, and γ is set to
be small such as 0.1, whereas the buffer sizes become larger
when battery lifetime is more valuable than cellular costs,
and γ is large such as 10. Thus, as γ becomes smaller, the
download schedule results in higher cellular cost saving and
smaller energy saving, and vice versa, which will be shown
in the next subsection.

C. Cost and energy saving

For various streaming policies, we run simulations 100
times at randomly selected video request points in our subway
trace, and depict average energy consumption and cellular cost
in Fig. 7. We calculate the expected energy and cellular cost
at each time slot in conjunction with the retention probability
by multiplying the energy/cost and the retention probability.
Existing streaming policies of YouTube and Vimeo have high
cellular costs, as they do not adaptively choose access net-
works, where YouTube also has high energy cost from throt-
tling. We can see that WiFi offloading results in large cellular
cost saving, as it prioritizes WiFi networks. In optimal and
heuristic streaming policies, cost savings are larger than WiFi
offloading + existing streaming policies and energy savings are
larger than the WiFi offloading + YouTube policy. In optimal
scheduling policies, as γ becomes smaller, the scheduling
results in higher cellular cost saving and smaller energy saving,
and vice versa. Thus, the best operating point between energy
and cellular cost is achievable by controlling the trade-off
parameter γ, depending on users’ priority. Our simple heuristic
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Fig. 6. Received sizes in the optimal policy with γ = 1, 10, 0.1 (a, c, e)
and a heuristic (MBC) policy with γ = 1, 10, 0.1 (b, d, f).
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algorithm, maximum buffer control (MBC), obtains similar
cost and energy savings as an optimal scheduling algorithm.
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Even with consideration of WiFi scanning energy for periodic
scan (e.g., every 20 seconds) that consumes 3 Joules per scan,
our MBC algorithm reduces the cellular cost by 59% and the
energy consumption by 41% compared to YouTube default
streaming. Note that WiFi scanning is performed only when
the device is not connected to a WiFi AP. We recall that
the oracle streaming policy assumes that the device knows
when the user will abandon watching the video and when
the user will be connected with WiFi APs, a priori. Oracle
maximally uses WiFi connectivity to minimize the cellular
cost and energy, but it is infeasible.

D. Effect of minimum buffer size

In this subsection, we run our MBC algorithm for non-
zero minimum buffer size, Bmin, and discuss its effect on
performance gains. We let Bmin = 0.9MB and 2.6MB, which
correspond to 10 and 30 seconds of playback, respectively.
In Fig. 7, we plot the results for non-zero minimum buffer
sizes. The energy and cost savings are decreased by 6% and
5% for Bmin = 0.9MB and 11% and 21% for Bmin = 2.6MB,
respectively. The video stalling probability is dependent on
the data rate distribution and the buffer size. We remind
that for independent and identically distributed data rates, we
can bound the video stalling probability by a Chebyshev’s
inequality, Pr{E[X] −X ≥ δ} ≤ V ar(X)

δ2 , where δ increases
with the amount of video buffer and the stalling probability
(i.e., video buffer becomes empty) quadratically decreases
with δ. Thus, as we have a larger minimum buffer size, the
video stalling probability will decrease in dynamic network
conditions, with the cost of reduced energy and cost savings.

VI. ANDRIOD IMPLEMENTATION

We depict the architecture of our streaming scheduler
implementation on Android in Fig. 8. Two helper modules,
connectivity manager and energy cost calculator estimate the
network and energy parameters. Based on the previous history
of cellular/WiFi data rates and the density of WiFi APs in
the projected mobility path (e.g., a route from one station to
another in a metro line), the connectivity manager estimates
the arrival and departure rates of WiFi APs, as well as the
average data rates of cellular and WiFi networks (r1(t) and
r2(t)). The energy cost calculator estimates the unit transfer
and tail energy of cellular and WiFi networks and reports them
to the scheduler in advance. The network energy can be also
acquired from the manufacturer or the video server, as the
network energy is almost similar for the same device model.

When a user requests a video clip, the scheduler first
collects the video length (L), the playback rate (rp), and the
retention graph from the video streaming server to calculate
the churning probability (pc(t)). The connectivity manager
scans WiFi APs periodically (e.g., every 20 seconds) when
the device is not connected to a WiFi AP, and reports the
available access networks to the scheduler. Then, at each
time slot, the scheduler (e.g., maximum buffer control (MBC))
decides whether or not to download data, and which access
network to use. When the scheduler decides to download the
data, the video downloader executes streaming download in
regular order through the chosen access network. The video
downloader can pause and resume video downloading at any
specific point (i.e., sequence number) of the video. It tracks
the last downloaded sequence number, and restarts from the
next sequence number. The video queue reports the amount of
buffer size (i.e., received size) to the scheduler.

A. Results from indoor experiments

We conduct a proof-of-concept experiment in our laboratory.
We excluded outdoor testing because the energy measure-
ment device is not handheld.10 We install our video player
implementation on a Samsung Galaxy Note 2 smartphone.
The achievable rate of cellular networks in our lab is about
65Mbps. To be compatible with such a high data rate, we use
the video with playback rate rp = 6.9Mbps and video length
L = 600 seconds. The total video size is 518MB. We use
our own video server for stable connection. We note that our
implementation can run over any videos on the Internet. For
emulation of WiFi connectivity while being mobile, we use
the Seoul subway trace in Fig. 4 and turned on and off the
AP accordingly. For diversity, we fragment our trace of 30
minutes into three to make each part matches with the test
video length: WiFi 1 (from 0 to 10 mins), WiFi 2 (from 10 to
20 mins), and WiFi 3 (from 20 to 30 mins). The average WiFi
data rate in our lab is 8.4Mbps. We use the audience retention
graph of video 1 in Fig. 5. We let the minimum buffer size
Bmin = 8.6MB, which corresponds to 10 seconds of playback.

10The precision of integer-valued battery level reported by Android is not
sufficient for our test.
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Fig. 9. Average energy consumption and cellular cost of various streaming
policies in our in-lab experiment.

During each experiment, we log the amount of data trans-
ferred through LTE and WiFi networks and measure power
consumption separately. In every experiment, power con-
sumption from screen and video playback, which is about
1064mW (mJ/s), is subtracted. In Fig. 9, we compare the
performance of our heuristic (MBC) algorithm with existing
LTE only streaming (YouTube and Vimeo), WiFi offloading +
existing streaming (YouTube+WiFi and Vimeo+WiFi). As in
the simulation, we calculate the energy and cost at each point,
and multiply it by the retention probability to take into account
user churning behaviors.

In YouTube and Vimeo streaming policies that do not
utilize WiFi networks, cellular costs are high irrespective
of WiFi opportunities. Note that the cellular cost is always
less than or equal to the video size, as we only take into
account the amount of downloaded traffic until a user churns
for evaluation. With WiFi offloading, we can see that the
cellular cost is reduced by 34.8% in YouTube and 32.2%
in Vimeo. However, since the data rate of WiFi is much
slower than LTE and the bit per energy is lower in WiFi, the
energy consumption of WiFi offloading policies becomes even
higher than without WiFi offloading. In our MBC algorithm,
this effect is mitigated since it takes account the energy
efficiency of access networks. When γ = 1, the cellular cost is
decreased by 43% and the energy consumption is reduced by
20.3% compared to YouTube. Again, the reduction in energy
consumption is smaller than our simulation results, because of
relatively smaller WiFi data rate. As we decrease γ, the cellular
cost reduces, and as we increase γ, the energy consumption
decreases. When γ = 0.1, the cellular cost is decreased
by 59% compared to YouTube, with the cost of increased
energy consumption. When γ = 10, the energy consumption
is decreased by 26.5% compared to YouTube, with the cost
of increased cellular cost. In all cases, our MBC algorithm
results in the better operating point in terms of both cellular
cost and energy consumption.

VII. CONCLUSION

In this paper, we suggested an optimal scheduling policy
for non-live video streaming traffic based on dynamic pro-
gramming, which minimizes the sum objective of cellular cost

and smartphone energy consumption by exploiting audience
retention probability and WiFi contact statistics (i.e., inter-AP
and AP time distribution). We further developed a heuristic
scheduling policy, Maximum Buffer Control (MBC), which
mimics the optimal policy. Through trace-driven simulation
over real mobility and video traces, we show that our heuristic
scheduling policy obtains 59% cellular cost saving and 41%
energy saving (considering WiFi scanning energy) compared
to an existing streaming technique of YouTube, where optimal
policies obtain 56-63% cellular cost saving and 32-42% energy
saving depending on the trade-off parameter γ. We also
implemented our streaming algorithm on an Android platform,
and experimentally evaluated the performance of MBC. Our
implementation and evaluation validate that MBC is easy to
adopt and gives real user benefit in practice.
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