
A Profiling Tool for Heterogeneous Multi-core Systems

Ivan Povazan, Momcilo Krunic
RT-RK Institute for Computer Based Systems

Novi Sad, Serbia
ivan.povazan@rt-rk.com, momcilo-krunic@rt-rk.com

Miroslav Popovic
Faculty of Technical Sciences, University of Novi Sad

Novi Sad, Serbia
miroslav.popovic@rt-rk.com

Abstract — Profiling is a process of collecting relevant data
about the execution of an application. This is done in order
to reveal code bottlenecks, measure the performance, and
give detailed information about source code function
contents and call graphs of the examined application. In this
paper we present one such profiling tool designed for multi-
core systems, which collects information about the multi-
core activity and machine code statistics. The tool is
implemented as part of the framework for development,
deployment, debugging and control of DSP applications, and
includes a profiling view which improves user experience
and understanding of the profiling reports. Profiling reports
can be used for improving the quality of the written code as
well as to ease the process of debugging.

Keywords - Profiling tool; Profiling View; Heterogeneous
muti-core systems

I. INTRODUCTION

It has always been a challenge to meet the needs and
constrains for DSP applications. Developers tend to
achieve different goals considering different types of
architectures. In terms of quality, applications and their
code need to be as small as possible, as quick as possible,
as portable as possible, and finally they need to be power
efficient. To achieve these goals developers need a
feedback about the execution and behavior of their
applications. With this information various improvements
to the code can be made.

Profiling is a process of collecting relevant data for
analyzing program execution and behavior. There are
different techniques for collecting the data including code
instrumentation, hardware interrupts, instruction set
simulation, etc. One rely on hardware support and require
dedicated hardware for measuring and gathering
information about executed applications [1], while others
are based on software implementations inserting
necessary code into the original program [2] [3].

In the embedded world there are many approaches
describing various profiling techniques. A well-known
profiler like GProf [3] uses code instrumentation
technique, which requires the change in program flow for
invoking the monitoring routine. However, this overhead
can sometimes be significant and can affect the results. In

paper [4] it is proposed in which way the cost of
instrumented code can be lowered. On the other hand,
Intel VTune Amplifier [5] performs time and event based
sampling of examined applications in order to collect
relevant data.

While the most of the existing profilers tend to support
single-core architectures, others can perform profiling on
multi-core systems [6] and analyze parallel executions.
Apart from that the type of the profiler is determined by
the kind of information it should acquire. Usually the
timing of the execution is required and source code level
analyses have to be performed. In this paper we present a
different approach where timings are not essential, but the
details about machine code execution and relation
between the cores activity in the multi-core system.
Proposed technique relies on recording program counter
values during step-by-step execution. This is very similar
to sampling method which records program counter
values at certain time intervals. Recorded values are
examined using debug information provided during the
build process of the program in order to retrieve execution
paths. Disadvantage of this approach is that it is time
consuming. However, it collects data with great precision,
and does not include any instrumentation code in the
examined application nor the need for additional
hardware profiling support.

Profiling tool presented in this paper is based on
Eclipse plug-in and resides as part of integrated
development environment. It is used for profiling
applications on heterogeneous multi-core system on chip
(SoC). The tool is used for gathering information about
the execution and behavior of the DSP applications,
processing the gathered information, generating profiling
reports, and displaying collected data to the user in
simplified way.

II. PROFILER

Proposed profiling tool is implemented as part of a

framework for development, deployment, debugging and
control of DSP applications [7] [8]. The framework
consists of an Eclipse-based integrated development
environment (IDE) and a TCP debug proxy server used for

2015 4th Eastern European Regional Conference on the Engineering of Computer Based Systems

978-1-4673-7967-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ECBS-EERC.2015.31

138

communication between the client side (IDE) and target
side (virtual platform-simulator or actual hardware). The
debug proxy server enables users to run applications on the
desired target and control their execution by interacting
with the IDE. User actions like: deploying application,
stepping through source code, starting the debug session,
reading register values, displaying memory contents, etc.,
are translated into TCP protocol messages and sent to the
debug proxy server. After receiving request messages the
server then performs requested actions on the target
device. When the action is performed the response
message or the result is returned to the IDE and to the user.
The supported target devices can be:

• single core virtual platform (simulator of a
single core system)

• multi-core virtual platform (simulator of a
multi-core system)

• single core DSP
• multi-core DSP

Our target device was a heterogeneous multi-core DSP,
consisting of five cores: two numerical acceleration DSPs
and three general purpose DSP cores. One of the general
purpose DSP cores is a micro-controller which is used for
controlling the whole system. Our approach is based on a
simple technique of tracing the execution of each core in
the multi-core system by logging program counter values,
as well as monitoring the cores' states. Combining
collected data and debug information of the analyzed code
a profiling report is generated. Generated report can then
be viewed and analyzed in the profiling view. In order to
collect mentioned data debug session needs to be active.
During the debug session user is able to initiate the
collecting of profiling data and to stop it at any time.
However, this can lead to inaccurate results thus it is
advisable to place breakpoints around the code which
needs to be analyzed. When the "Start profiling" action is
performed, debug proxy server starts collecting relevant
data until a breakpoint is reached, or the user interrupts
this process. During this profiling process, debugging of
the examined application is disabled. If a breakpoint is not
placed anywhere in the code, user can always choose to
stop the profiling by performing the "End profiling"
action. When the profiling is finished it is possible to
generate the profiling report and to view its contents in the
profiling view.

III. PROFILING

The profiling process can be divided into three stages:

A. Generating debug information of the
examined application

B. Collecting relevant data
C. Generating report

A. Generating debug information

Creating debug information is essential for our
approach. It contains details about the source code, as well
as the machine code, generated during the build process.
Some of the information of our interest is listed below:

• list of defined symbols in the source code
• information about symbol type (function or a

variable)
• origin of each generated machine instruction
• address of each machine instruction

A tool-chain provided by the manufacturer for the
examined architecture provides the ability to generate
debug information in XML format. We have used this
feature and unmarshalling technique of the JAXB tool [9]
to read and store necessary information in a simple way.
This is done upon start of the debug session and is used for
different plug-ins and views in the IDE and for generating
the profiling results.

B. Collecting the data

In order to collect relevant data about code execution

user needs to start a debug session and choose the "Start
profiling" action mentioned before. This action turns the
IDE and the debug proxy server into profiling mode
during which profiling data is collected and debugging
disabled. When profiling is initiated the debug proxy
server starts to single step the target device, performing
multi-core debug command "step all" which
synchronously steps all cores. After each step, debug
server reads the program counter register of each core and
writes the read values into the log file. Along with PC
values debug server also stores information about the core
state, whether a core is in reset or not. Apart from program
counter values and cores' states system cycle count is also
stored. All these information is later on used for generating
profiling report and populating the profiling view. The
profiling mode is active until a breakpoint is reached, or
the user interrupts it with "End profiling" action.

C. Generating the report

When the debug proxy server finishes collecting data it

is required to transform it into readable format. By
performing "Generate report" action, log file is read and its
contents are combined with debug information to generate
various reports. Reports can be displayed in the profiling
view which is implemented by using BIRT plug-in [10].
One useful feature of the BIRT plug-in is the option of
exporting all report types to various file formats like doc,
xls, pdf, and csv, which makes user able to view the
reports in other types of viewers.

The profiling view consists of:
• Call graph view
• Function statistics view
• Instruction histogram view
• Core activity view

139

Call graph is created based on logged core's program
counter values. Values represent addresses of machine
instructions which have been executed during the profiling
process on each core. By using debug information we have
implemented a simple algorithm that analyzes the
execution flow and creates a call graph based on executed
jump to subroutine instruction. Figure 1 shows an example
of a call graph generated with our profiler. The calls to the
subroutines are prefixed with the address of the call
instruction. During the debug session this address can be
double clicked which results with opening the code editor
and selecting the line with that call instruction.

Function statistics view displays details about each
source level function: name of the function, where the
function resides in memory, how many times function has
been called, which machine instructions belong to which

function, and how many times each machine instruction
has been executed. All this information is generated by
analyzing the debug information and logged data. An
example of this type of the report is displayed in Figure 2.

Instruction histogram view is populated with machine
instructions of the examined application and number of
their occurrences during the execution. Information about
the amount of memory access instructions can be used for
power consumption and performance analysis. Instruction
histogram is shown in Figure 3.

Finally, the core activity view uses information about
system cycle count and changes in core states in order to
graphically display the comparison between cores' activity.
Low-power devices use various techniques in order to
reduce power consumption. One of those techniques is
clock gating which saves power by disabling parts of
circuits [11]. In multi-core systems, core clocks are usually
set to automatic gating keeping their clocks disabled while
the core is in idle state. It is not uncommon to have one or
more cores inactive at certain point of the multi-core
processing which makes the power consumption analysis

Figure 1. Call graph view

Figure 3. Function statistics view

Figure 2. Instruction histogram view

140

of the whole system difficult. The purpose of core activity
view is to simplify this analysis and to give more details
about the cores' activity. Figure 4 displays two different
activity reports. Report on the left includes profiling of
several dozen of cycles, while the report on the right
includes around 45000 cycles. The vertical axis values
describe whether the core was in active or inactive state.
Values 0, 2, 4, 6, and 8 represent inactive states, while 1,
3, 5, 7, and 9 represent active states for cores 1 to 5 (core 1
is the micro-controller core).

IV. CONCLUSION

We have presented a profiling tool for heterogeneous

multi-core systems which maturity is proven by
exploitation in industry. The tool generates information
about source code function details, call graph, machine
instruction occurrences, and multi-core activity which can
be used to further improve the quality of the code, to
simplify power consumption analyses, and to ease the
process of debugging. The profiler is an ongoing project
and we tend to advance its functionality and to add new
features. One of the main features to consider is adding a
support for performance measurements, which would
require implementation of timing mechanism. This would
further improve analysis of the code execution.

ACKNOWLEDGMENT

The paper is a part of the research done within the
Grant TR 32030. The authors would like to thank to the
Ministry of Education and Science of the Republic of
Serbia.

REFERENCES

[1] J. Dean, J. E. Hicks, C. A. Waldspurger, W. W. Weihl, and G.

Chrysos, “ProfileMe: hardware support for instruction-level
profiling on out-of-order processors,” in , Thirtieth Annual
IEEE/ACM International Symposium on Microarchitecture, 1997.
Proceedings, 1997, pp. 292–302.

[2] “Valgrind” http://www.valgrind.org
[3] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call

Graph Execution Profiler,” in Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, New York, NY, USA,
1982, pp. 120–126.

[4] M. Arnold and B. G. Ryder, “A Framework for Reducing the Cost
of Instrumented Code,” in Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and
Implementation, New York, NY, USA, 2001, pp. 168–179.

[5] “VTune amplifier” https://software.intel.com/en-us/intel-vtune-
amplifier-xe

[6] S.-H. Hung, C.-H. Tu, and T.-S. Soon, “Trace-based performance
analysis framework for heterogeneous multicore systems,” in
Design Automation Conference (ASP-DAC), 2010 15th Asia and
South Pacific, 2010, pp. 19–24.

[7] M. Krunic, N. Cetic, M. Djukic, I. Povazan, and M. Popovic,
“Integrated Development Environment for Multi-core Systems,”
Teh. Elektrotehnika, vol. 69, no. 5, pp. 818–826, 2014.

[8] M. Krnjetin, B. Rankov, M. Djukic, and V. Kovacevic,
“Implementation of a universal framework for deployment,
debugging and control of applications on DSP targets,” presented
at the 18th Telecommunications forum TELFOR 2010, Belgrade,
Serbia, 2010, pp. 1289–1292.

[9] “JAXB Project” https://jaxb.java.net/
[10] D. Peh, N. Hague, and J. Tatchell, BIRT: A Field Guide. Addison-

Wesley Professional, 2011.
[11] C. Leech and T. J. Kazmierski, “Energy Efficient Multi-Core

Processing,” Electron. ETF, vol. 18, no. 1, p. 3, Jun. 2014.

Figure 4. Multi-core activity view

141

