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Abstract: The challenges in silicon testing and debug of complex integrated circuits are well understood. Where these circuits
include multiple processor cores there is also a dramatic increase in the complexity of verifying and debugging the associated
software; with much of this complexity being because of the inherent lack of visibility over internal signals which integration
brings. The trend to-date has been to rely upon silicon test interfaces to provide access to internal signals required for
software verification and debug. However, it is questionable whether this is sufficient for real-time systems or future designs
with increasing processor cores. This study examines the on-chip technology supporting software verification and debug in
current designs and proposes enhancements in this area. As much of this technology is primarily intended for silicon test it is
lacking in terms of I/O bandwidth, which is a significant limitation for software verification and debug. The authors propose
their alternative approach of using an on-chip coprocessor and debug circuitry to address this principal limitation; and
describe an embedded application where this approach was successfully applied to monitor timing requirements and detect
failures. The authors also outline how this approach could be applied as an architectural solution for formal runtime verification.

1 Introduction

The dramatic increase in system integration and complexity
has compounded debugging and testing problems. Problems
in manufacturing test are well-documented [1–3] and are
being addressed through design-for-test techniques and
system-on-chip (SoC) test disciplines, such as IEEE 1500
[4], IEEE 1149.7 [5] and IEEE P1687 [6]. Progress is being
made in coordination among the various groups working on
standardisation of on-chip and external test interfaces [7].
Post-silicon validation is performed exhaustively on ‘first

silicon’ parts to ensure that the integrated circuit (IC) meets
its design requirements. The operation of the IC is checked
by capturing data from a physical device over a range of
operating conditions, and comparing against simulation data
gathered during earlier design phases. Once validation is
completed the associated hardware may be removed to
reduce costs. The distinction with software verification is
that software can be updated, requiring further verification;
therefore the final packaged device must include the
necessary interfaces and instruments.
Every IC produced is tested to identify those with

manufacturing defects. This involves stimulating the device
with test patterns and checking the results against expected
values. As silicon test must be carried out on each device, the
on-chip test hardware and interfaces are generally accessible
on the packaged device. This makes reuse of the test
interface an attractive proposition, but it does not offer the
bandwidth required for runtime software verification.
Hopkins and McDonald-Maier [8] show how interfaces
primarily designed for silicon test and verification have been

used for software purposes, but also highlight the limitations
of this approach when considering real-time systems.
When available, simulation environments are useful for

initial software verification and debugging; where visibility
of the internal state of the simulation models is a significant
benefit. When cycle accurate simulation is too slow, field
programmable gate array (FPGA)-based prototypes or
emulation systems can accelerate the process. Chuang et al.
[9] describe seeding a simulation environment with
snapshot data acquired from an FPGA platform, thereby
improving both speed and visibility. Unfortunately, many
‘bugs’ do not appear in simulation; this applies in particular
to timing related issues such as race conditions. The
inherent complexity of real-time systems and expansion
of multi-core designs further compounds verification
difficulties [10].

1.1 Problem background and definition

The software engineering research community offers formal
theories, based in sound semantic models that lead to
verifiable designs or correct-by-construction designs.
Program verification determines whether a program satisfies
a specification. However, program verification is unsolvable
in general, and theorem prover solutions do not in practice
scale to large embedded software systems. In spite of
shortcomings, formal methods research has huge potential
and continues to receive much attention with an aim to
prove a design to be correct; so that, verifiable commercial
products might be built without the need for complex
development and exhaustive testing. With increasing
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complexities new approaches are needed. Burns and Hayes
[11] state that new scientific foundations are now required
for specifying, designing and implementing complex
real-time systems.
For this field, with the exception of a few well-publicised

examples, formal methods have not yet met expectations for
the development of commercial products. Some major
research initiatives are showing potential; for example,
DEPLOY, a European Commission FP7 project, aims to
make major advances in engineering methods for dependable
systems. The DEPLOY Project has several industrial partners
using Event-B and Rodin [12] on deployment projects for
real embedded products. Commercial development tools are
already emerging. ADVANCE is another FP7 project where
the objective is to develop a unified tool-based framework
for automated formal verification and simulation-based
validation.
Although such developments are encouraging, research

towards solutions for correct software designs need to be
complemented with solutions that can monitor the exact
program behaviour, non-intrusively, for highly integrated
and multi-core embedded systems. Even if a complex
software system can be ‘believed’ to be correct, confidence
in the total hardware/software product combination is
paramount; therefore accurate monitoring and testing of its
behaviour in its target environment is still necessary. The
execution of real-time application software can be affected by
system issues such as unpredicted hardware performance,
real-time operating system (RTOS) performance, I/O
interrupt behaviour and interference from other software
applications on the system. The authors propose that
improved in-situ on-chip development instrumentation is
needed to assess proper program behaviour.
To perform in-situ software verification, validation,

development and debug, it is imperative that engineers have
adequate tools. There is significant research into on-chip
instrumentation (OCI) architectures. Solutions exist for
on-chip trigger and trace infrastructures, using
high-bandwidth interfaces and on-chip buffers to capture
data at very high rates. However, current and emerging
solutions have limitations because of available bandwidths
and available on-chip hardware, which restrict their
capabilities for software monitoring and debug.
According to Min-Allah et al. [13] further complications

arise in the development of real-time systems, where
conflicting issues arise in the design process; the most
fundamental issue being the adjustment of task parameters
for scheduling that directly influence the system feasibility,
as task computation times can fluctuate. The authors’
proposal to embed runtime reprogrammable instrumentation
on to the chip has the potential to monitor and even correct
such behaviour.
Higher energy consumption and associated heat issues are

an emerging problem as real-time systems become more
computationally powerful to cope with processor intensive
applications. Proposed solutions involve adjusting the
system speed on-the-fly, so that application deadlines are
respected. However, the multi-core front is relatively
unexplored from the perspective of task scheduling [14].
An on-chip instrument could potentially monitor such
complex on-the-fly changes in processor operations.

1.2 Research question

The fundamental research question is to ask is there a better
architectural solution for on-chip software monitoring and

debug instrumentation. The purpose of this paper is to
review some of the more important emerging solutions for
on-chip monitoring and debug instrumentation that support
real-time, embedded software development, and to propose
an enhanced OCI solution that is based on the use of a
coprocessor that can be configured at run-time, and has the
ability to analyse, on-chip, the trace or other captured data
and to optimise the use of on-chip resources in a
non-intrusive or in a minimally invasive fashion.
Section 2 provides a general overview to embedded

software debugging and some challenges when considering
real-time and multi-core devices. Sections 3–5 provide a
more detailed review of the technologies currently
employed. In Section 6, the authors propose and
demonstrate the use of a coprocessor to assist verification
and debug in a multi-core system.

2 Embedded software debugging

Software verification is the process of ensuring that the
software meets its design requirements; or as pointed out by
Myers [15], it might be better considered as the task of
finding and removing bugs. Debugging is not a
well-defined discipline commanding its own literature;
despite often taking more than 50% of a project time-scale.
Even authoritative publications tend to be sets of guidelines
and check-lists [15, 16]. Vermeulen [17] provides a
comprehensive overview of recent ‘functional’ debug
techniques. This paper identifies the primary challenges in
designing on-chip debug support, not least the fact that it
is impractical to extract the volume of data required to
observe all on-chip activity in real time. Nonetheless, in
real-time systems that cannot be halted to facilitate checking
of the internal state, the engineer must attempt to find or
reconstruct the problem from information captured while a
system is running. This in turn means that huge quantities
of data must be captured at full execution speed and
analysed off-line.
Transferring large volumes of data off-chip for analysis

creates a bandwidth problem. The industry-standard means
of addressing this has been to reduce the volume of data to
be captured and sent off-chip [18, 19]. Efforts to further
reduce the volumes of data transmitted off-chip have led to
the use of data compression techniques [20–23]. Taken
along with the Nexus, ARM and related techniques from
other manufacturers, these methods represent the state of
the art in system tracing today. As Vermeulen [17]
indicates, there is a need to better define the criteria which
provide the best debug support for future architectures.
Multi-core designs bring increasing volumes of data to

analyse, and new questions which need to be addressed,
such as: if one core is halted, should others be halted? How
to correlate data from multiple cores? How to preserve the
relative timings of traced data? How to best accomplish
data tracing across multiple clock domains? These
questions, and more, greatly complicate the landscape for
developing today’s debugging tools.

3 Standard interfaces

The I/O interface, as the first layer between the external
development environment and on-chip signals, is a critical
link in the debug chain; and several standard I/O interfaces
exist. The IEEE 1149.1 joint test action group (JTAG)
standard [24] is the principal method for board-level
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interconnection testing of complex digital circuits. Although a
board-level test standard, IEEE 1149.1 has been habitually
modified to include debug capabilities. One significant
limitation of IEEE 1149.1 is that it envisages only a single
test access port (TAP) per IC. Vermeulen et al. [25] review
several approaches to accommodate multiple cores and
propose an architecture, which maintains compliance with
the standard; however, they do not address the issue of
limited I/O bandwidth.
The more recent IEEE 1149.7 standard [5] aims to address

the limitations of 1149.1, while maintaining compatibility
with it. In addition to allowing serial connection of multiple
cores, the standard introduces two-wire and four-wire star
configurations. As described by Ley [26] this standard is of
particular benefit for SoC or system-in-package designs.
Enhancements such as: reducing I/O to just two pins, using
a star topology, the concept of 1149.7 being an ‘adaptor’
for existing 1149.1 TAPs, and the introduction of hierarchy,
ease integration challenges. There are some improvements
for debug (simplification of the architecture, reduced
scan-chain lengths and allowing data transmission during
idle states), but the critical limiting factor is still I/O
bandwidth, which may be exacerbated by reduced pin count
and interleaving of control and data signals onto pins.
IEEE-ISTO 5001-2003 (Nexus) [18] is the only standard

developed to address the challenges in debugging real-time
embedded control applications. The standard defines a
development interface, a messaging protocol and a
comprehensive set of features many of which are optional.
The optional auxiliary port is the primary differentiator in
Nexus as it directly addresses I/O bandwidth limitations;
but this requires additional pins which are a precious
resource in IC designs. Consequently, despite being
developed by many leading silicon and tool vendors, Nexus
has not been widely adopted. However, planned updates to
include 1149.7 and high-speed serial ports may provide the
stimulus for wider use.
For SoC designs the on-chip core wrappers and interfaces

between cores are also critical for test and debug purposes.
The preliminary IEEE P1687 standard eases access to the
instruments which accompany many cores within SoC
designs. Utilising IEEE 1149.1 to access the on-chip
instruments, this standard aims to address the challenges of
test interface efficiency and adaptability while maintaining
compatibility with existing tools. The standard proposes the
addition of gateway logic between the 1149.1 and P1687
zones, and the hierarchical connection of cores within the
P1687 zone [6]. This hierarchical arrangement addresses the
inefficiencies with existing daisy-chained or multiplexed
1149.1 access methods. However, initial analysis on a range
of benchmark designs suggests test application time
overhead of between 9 and 24% [27]. These results exclude
cores with built-in self-test (BIST) capability; nonetheless
they do highlight the overhead associated with P1687.
The IEEE 1500 standard [4] facilitates testing of

independent cores within SoC designs. The standard defines
core wrapper architecture, which is analogous to the use of
IEEE 1149.1 for boundary scan testing of ICs. Higgins
et al. [28] use this wrapper architecture to simultaneously
test multiple cores; their paper outlines the use of on-chip
test controllers and reuse of the on-chip bus for test
purposes. Prior work of others such as Lee et al. [29],
Huang et al. [30] and Krstic et al. [31], also highlight the
benefits of using on-chip resources to implement test. These
approaches are relevant for software verification and debug,
as avoidance of the I/O bottleneck is a shared objective.

As described by Stollon et al. [32] the open core protocol
(OCP) international partnership debug working group aims to
define and standardise debug interface requirements for OCP
compliant cores and proposes optional debug interface
sockets for cores which require debug. Although their paper
outlines desirable debug capabilities such as run control,
trace and trigger, it explains that the implementation details
for debug within each core is specific to that IP block and
not mandated by OCP. Instead, OCP provides a framework
for interconnection between cores, so that IP from various
sources can be integrated. Similarly, the chip-level pin
interface is not within the scope of OCP, instead the
objective is to define a solution that is compatible with
existing interfaces.

4 Proprietary OCI

OCI refers to integrated circuit blocks which provide the
features required by modern debug environments. Stollon
and Leatherman [33] categorise typical OCI under five
headings: (i) logic analysis, (ii) run control and programme
trace, (iii) embedded bus trace (iv) performance analysis
and (v) system-level monitoring and synchronisation, which
encompasses most verification and debug tool features.
In SoC designs this OCI may be provided with each core or
a customised chip-level OCI block may be developed.
ARM offers a suite of modules to provide debug and

trace functionality for SoC designs. Orme [34] gives an
overview of these ‘CoreSight’ modules and the key design
decisions required. The ‘debug access port’ (DAP) and
‘trace port interface unit’ (TPIU) modules connect to
external pins and thus impact upon bandwidth. The DAP
provides ‘access ports’ to on-chip resources such as buses
and JTAG scan chains, plus ‘debug port’ access to external
tools via a two-pin serial or four-pin JTAG interface; if
both interfaces are required these pins may be shared. The
TPIU formats trace data into packets, and provides an
interface for external tools which is scalable from 1 to 32
pins. Since these modules use I/O interfaces which are
similar to other debug solutions so too are their bandwidth
capabilities.
The ARM suite also includes modules to assist

software-based instrumentation. By providing a memory
mapped hardware module to which software can write
instrumentation data, the latency and code-space problems
associated with traditional ‘printf’ software instrumentation
can be avoided. Nonetheless, the data captured must still be
offloaded to external tools for analysis, which for real-time
applications necessitates the use of a high-speed port.
MIPS enhanced JTAG (EJTAG) [35] provides on-chip

debug capabilities for SoCs using MIPS processor cores.
EJTAG augments, the IEEE 1149.1 standard to provide
access to a range of on-chip features including: single-step
execution, breakpoints, memory substitution and
program-counter sampling. Debug of multi-threaded
applications is supported within the specification, but
multi-core debug requires duplication of the hardware, with
the option to share a single interface.
Trace information from a MIPS processor core can be

obtained by connecting a trace control block (TCB) to the
processor’s PDtrace interface [36]. The TCB compresses the
data before storage in on-chip or off-chip memory. External
tools can then access this trace data using the EJTAG
interface. An optional parallel interface (probe IF)
providing higher-bandwidth is also defined, but requires

www.ietdl.org

58 IET Softw., 2013, Vol. 7, Iss. 1, pp. 56–64
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2011.0212



additional I/O pins. Therefore despite supporting multi-core
SoCs this debug architecture provides no unique
mechanism to deal with the accompanying volume of data.
Infineon promotes a slightly different approach to cater for

OCI. Rather than adding instrumentation and memory within
the SoC core area, these circuits are instead placed on the
device perimeter or on separate die to which the SoC is
bonded [37]. The key benefit of this approach is that
removing these circuits at a later stage has no impact upon
SoC behaviour; therefore silicon verification need not be
repeated!
Mayer et al. [38] describe how the Infineon multi-core

debug solution addresses the challenge of limited I/O
bandwidth by focusing on trigger and trace qualification.
By providing sophisticated data capture capabilities only a
small amount of relevant data need be stored in on-chip
memory. This smaller amount of data can then be
transferred off-chip using a conventional JTAG or other
low-bandwidth interface.
Leatherman and Stollon [39] propose a multi-core

embedded debug (MED) architecture to address specific
multi-core debug challenges. MED adds on-chip capabilities
to deal with issues such as debug synchronisation, but the
solution for limited I/O resources is to multiplex the data
streams from various cores, using a scheme called
HyperJTAG. Although this may simplify the I/O interface it
does not address the limited bandwidth problem.
Bernardi et al. [40] proposed the addition of an

infrastructure intellectual property (I-IP) block to assist in
silicon debug and testing of SoCs. This I-IP block uses the
SoC host processor to run software-based self-test (SBST)
routines to test and debug the silicon. By restricting external
data transfers to test commands and compressed test results,
the bandwidth limitations of the interface can be overcome.
However, executing SBST in the manner proposed takes
over the host processor, which is not acceptable for
real-time software verification.
A wide variety of proprietary OCI blocks are available,

each offering its own particular features and benefits, but in
general the problem of limited I/O bandwidth is addressed
by: limiting the data captured, using faster I/O interfaces or
using parallel interfaces requiring additional I/O pins.

5 Runtime monitors

To ensure the correct runtime operation of high-reliability
systems, hardware or software monitors, which share many
requirements with verification and debug instrumentation,
are often added. Scottow et al. [41] demonstrate how
an invasive software monitor can, in certain situations,
extract performance related data with acceptable overhead.
However, their paper also highlights the problems
associated with software monitors, particularly in real-time
systems where the overhead can impact upon determinism.
Watterson and Heffernan [42] demonstrate the use of the

Java-Mac runtime verification system to provide a
minimally invasive method of verifying a Java optimised
processor embedded within an FPGA. This framework
demonstrates the complexity in extracting the required data
from an embedded system at runtime. It points towards a
technique which could be applied to multi-core devices
whereby the core under examination could be instrumented
to a minimal level, thus maintaining determinism, while a
secondary heavily instrumented core could replicate the
execution behaviour.

Heffernan et al. [43] describe an on-chip SoC monitor
which can be used for runtime verification. Two control
applications demonstrate how the monitor can ensure that
the application state transitions occur within prescribed time
limits. For the solution proposed, the constraints to be
verified are established prior to SoC synthesis and the
appropriate circuitry is automatically generated. This results
in a monitor with low software and hardware overheads,
but it is specific to one set of constraints which limits its
applicability to more general verification situations.
Larsson et al. [44] describe on-chip monitor hardware

which is capable of detecting the occurrence of an incorrect
read/write sequence, because of the presence of a race
condition, when two CPUs access shared memories. The
monitor described involves a bus interface, address/data
matching circuits and a state machine, which can be
reprogrammed in-circuit to monitor different potential race
conditions.
For hybrid SoC designs (containing both hard and

reconfigurable elements) Hopkins and McDonald-Maier
[45] highlight how traditional techniques to monitor
registers within the reconfigurable elements can impact
upon the system behaviour, and propose enhancements to
the reconfigurable circuitry fabric to enable the registers to
be memory mapped.

6 Proposed alternative approach

In addition to challenges, multiple processors within a single
package also offer opportunities. In silicon test, data intensive
operations have migrated on-chip using techniques such
SBST, BIST and dedicated test controllers. In the same
way, the authors believe that an on-chip coprocessor could
perform many software verification and debug tasks. This
arrangement, as illustrated in Fig. 1, does require additional
on-chip logic, but the size and cost of core digital cells
continues to shrink. By using a coprocessor, the execution
of the host processor is not impeded; alternatively, spare
processing capacity in an existing core could be used. This
would be particularly attractive in multi-processor designs if
these tasks could be performed by a dedicated processor.
Many existing solutions already provide the necessary

on-chip trigger and trace infrastructure with high-bandwidth
interfaces to on-chip buffers to capture data at the fastest
possible rate. Therefore what is required is a coprocessor
capable of analysing this data, on-chip. This reduces I/O
bandwidth requirements, with a reduced volume of data
needing to be sent off-chip for analysis.
Conventional hardware instrumentation solutions limit the

number of monitored events to minimise I/O, logic and
memory requirements. Using a coprocessor the number of
potential signals can be greatly increased, with a subset of
these being selected at runtime for capture and analysis.
The ability to reprogram at runtime, to monitor different

Fig. 1 Development platform with on-chip coprocessor
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events or properties, eliminates the need to define a fixed
subset at configuration or design time; giving more
flexibility and minimising the risk of omitting data needed
for verification. A coprocessor could also adjust trigger
conditions at runtime; thereby creating sophisticated trigger
conditions more efficiently than existing OCI, which
requires additional hardware as the trigger complexity
increases.
Analysing trace or other captured data on-chip allows the

data to be filtered with redundant data being discarded, thus
optimising the use of on-chip buffer memory. Where data
must be sent off-chip, compression could be performed by
the coprocessor; potentially eliminating dedicated hardware
compression modules.

6.1 Exemplar platform

The platform chosen to examine the feasibility of the proposed
approach is illustrated in Fig. 2. This is representative of many
simple embedded control applications; whereby a real-time
signal is computed in software, fed into a pulse-width
modulation (PWM) module, and outputted using a digital
pin. This PWM signal is then filtered using a simple resistor-
capacitor (RC) network to produce an analogue waveform. In
this case the aim is to generate is a simple triangle waveform,
the amplitude of which can be increased or decreased using
two input buttons. As shown, the platform uses the Freescale
MC9S12XE microcontroller; which, in addition to a 16-bit
CPU12X and peripheral modules also includes an on-chip
debug module (S12XDBG) and XGATE coprocessor [46].
The software on the platform consists of three central
functions: ReadKeys(), ComputeOutput() and OutputPWM
(); which are called in a continuous loop using a simple
cyclic scheduling scheme. The analogue waveform generated
is dependent upon the software meeting the expected timing
for the loop, which in this case is 50 µs.
Checking that execution proceeds correctly, and within

defined time-limits, often poses a challenge on such
platforms. By placing breakpoints in the application the
execution can be tracked and verified or errant behaviour
identified. However for real-time systems, such as this,
halting at breakpoints is not practical. Other verification
approaches using the MC9S12XE include: adding
instrumentation code to generate status output, capturing and
outputting trace data or using the S12XDBG state sequencer
to combine several triggers before a breakpoint is generated;
all of which are limited by the available hardware resources.
The alternative proposed is to use the S12XDBGmodule to

trigger the XGATE coprocessor, which can determine
if execution is proceeding correctly or an error occurs.
This is a non-intrusive approach, as it does not require
instrumentation or modification of the application. Although

the XGATE is primarily an I/O coprocessor for real-time
tasks such as interrupt handling, it can be used for any
purpose including verification and debug support. The
MC9S12XE allows shared access to internal memory and
peripherals, which is supported by a memory protection
unit, hardware semaphores and associated instructions.
However, in this instance the XGATE has exclusive access
to the S12XDBG module, which it can reprogramme to
trigger on new events and thus overcome the limitation
posed by a finite number of triggers/breakpoints.
This approach was used to debug and verify the timing for

the exemplar platform described earlier. The XGATE
coprocessor configured the on-chip debug module to
generate an interrupt when the first function (ReadKeys)
was called. When this XGATE interrupt handler was
activated, the debug module was updated with conditions
for the next trigger event and so on. The XGATE software
also included a timer interrupt handler, which was
configured to trigger at 1 µs intervals. Using this timer the
XGATE could measure the time taken to execute each
function and determine if it was within the expected limits.
Table 1 shows the timing values which were outputted after
each 100,000 iterations of the application loop. As shown,
the XGATE software stored the minimum and maximum
duration for each function and checked the execution time
against the deadline provided. The ReadKeys() function
was written with an inherent flaw whereby each key press
was processed independently, introducing a delay of 10 µs
for each key. Therefore when both keys were pressed this
function exceed its deadline. Table 2 shows the results
obtained after both keys were pressed; showing that the
function executed for 20 µs longer, and that the XGATE
detected the deadline violation.
The timing results obtained from the coprocessor were

verified by measurement with a calibrated Agilent
MSO6054A Oscilloscope. In addition, software on the
XGATE coprocessor toggled an output pin to indicate
execution of each function. In this way, the execution time
of each function could be measured by attaching a probe to
the corresponding output pin. As shown in Fig. 3, the
timing values obtained are very close to the expected
values, considering that the software timing values have
inherent discretisation errors.
Of course the MC9S12XE was not designed for this role,

and so this architecture does have limitations when used
in this way. Most noteworthy, the S12XDBG module
generates a CPU12X interrupt and not an XGATE interrupt,
therefore a simple interrupt handler (two lines of C code) is
required to trigger the XGATE. The windowing of debug
module registers and trace buffer into the memory map
imposes some latency and limitations. Plus the S12XDBG
module uses global address locations rather than logical

Fig. 2 Exemplar target platform
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paged addresses as used by the CPU, which necessitates a
simple address translation.
Nonetheless this platform serves as a useful example of

how such an arrangement of: CPU, debug module and
coprocessor, can support verification and debug. The
example application described is limited to three functions
to ease explanation; however, the technique outlined could
be scaled to applications of any size. A key benefit of this
approach is that there is no need to capture, export and
analyse vast amounts of redundant trace data; instead, the
coprocessor can be programmed to output simple status
data, for example, execution is as expected or an error has
occurred. With infrequent or intermittent errors this can
save considerable time which would otherwise be spent
analysing trace data from execution runs without errors.

6.2 Architectural solution for formal runtime
verification

The simple exemplar platform above is intended to
demonstrate and explain the principles of the proposed

approach; however, more complex solutions can also be
supported. We now consider an architectural scheme for an
SoC, which can support instrumented solutions for resident
software testing and formal verification.
The monitoring and checking (MaC) framework

architecture [47] (and the associated JavaMaC [48]) is
based on formal specifications and provides a scheme to
automatically link low-level observations of program
execution, which can be emitted as events from a suitably
instrumented target application program, to the relevant
monitored properties. Such properties can then be formally
verified at runtime.
A simplified representation of the overall MaC framework

architecture is shown in Fig. 4. The architectures include a
static phase (before program execution), and a runtime
phase (during the execution). In the static phase, a mapping
is established, from a formal requirements specification,
between the following two entities: (i) high-level events,
from the high-level requirements specification; and (ii)
low-level state information, to be extracted from the
instrumented target program during execution. During the
runtime phase, the instrumented program is monitored and
checked with respect to its requirements specification.
MaC automatically generates the runtime components:

including a filter and event recogniser, generated from the
low-level specification; and a runtime checker, generated
from the high-level specification. The filter sends relevant
state information to the event recogniser. The event
recogniser detects an event from the state information
received from the filter, according to a low-level
specification. The recognised events are sent to the runtime
checker. The runtime checker verifies, during execution,
that the current execution history satisfies a high-level
requirement specification.
The runtime architecture for the MaC framework is shown

in Fig. 5a. The filter is implemented as a thread within the
target application program, and communicates with a
separate host computer using a dedicated communications
link. The host computer executes the event recogniser and
the runtime checker.
The authors’ research group has devised various

implementation architectures for JavaMaC and other
runtime verification solutions [42, 49]. The research

Table 1 Execution times for functions when operating
correctly, and no keys pressed

Function Execution
time, µs

Deadline

Min Max Time, µs Exceeded

ReadKeys 7 9 20 N
ComputeOutput 10 12 15 N
OutputPWM 9 11 15 N

Table 2 Execution times indicating missed deadline when
both keys pressed

Function Execution
time, µs

Deadline

Min Max Time, µs Exceeded

ReadKeys 7 29 20 Y
ComputeOutput 10 12 15 N
OutputPWM 9 11 15 N

Fig. 3 Oscilloscope measurement of software-loop frequency and duration of ReadKeys function
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summarises the main disadvantages of the classical
implementation architectures as follows:

† adding a thread to the target program is invasive and can
make the program less deterministic,
† the communication link needs to strictly guarantee the
timeliness and ordering of events,
† time synchronisation across host and target processors
needs to be carefully managed,
† use of a separate host computer is cumbersome and
expensive.

The solution proposed in this paper offers an architectural
solution which overcomes these drawbacks. Fig. 5b illustrates
such a solution with the following key features:

† the filter is implemented in the coprocessor and thus does
not burden the target application,
† communications link is implicit in the architecture,
† synchronised timing is easily realised in the architecture,
† the single chip solution is streamlined and cost effective,
† the solution will scale to multi-processor architecture,
† a single toolset can be devised for end-to-end automated
development.

7 Conclusions

Software verification and debugging on modern SoC devices
requires access to the signals and data which have become

deeply embedded within the silicon. IC design engineers
use test interfaces aimed at minimising the I/O pins, silicon
area and costs. Although the reuse of these interfaces for
software purposes may reduce costs, the differing
requirements between silicon and software verification
leaves software developers with a sub-optimal solution.
These interfaces are not designed for software verification
and debug of real-time systems, and they do not provide
sufficient bandwidth.
Proposed improvements to increase I/O bandwidth using

high-speed or optical [22] interfaces are unlikely to resolve
the problem in either the short or long term. Such interfaces
require specific process capabilities, limiting usage to a
subset of applications. Improving bandwidth by adding I/O
pins is often not cost-effective. Despite the considerable
integration possible with modern processes, I/O pads and
buffers consume much larger die area as compared with
core digital cells. In I/O-bound designs as the pad area
increases so does the core area. Therefore minimising the
number of I/O pins will continue to be a key objective in
IC design. Plus, additional pins may not be practical where
a rugged interface is required for harsh application
environments.
Nexus and proprietary technologies face the same

bandwidth limitations, the solution to which is usually
a combination of: increasing the number of I/O pins,
compressing the data and/or limiting the verification
capabilities to those which can be supported by the
interface. Efficient compression techniques can help, but

Fig. 4 MaC architectural framework

Fig. 5 Runtime architecture for the MaC framework

a Classical architecture for a MaC runtime verification system
b Solution for an instrumented runtime verification architecture
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increases complexity for external instrumentation. The
increased silicon area and in particular the increased I/O
required by these solutions makes these relatively expensive
when compared with silicon test solutions.
Customised instrumentation added to hardware or software

is useful where specific items need to be monitored, but
excessive software instrumentation can impact upon normal
execution and hardware instrumentation is not easily
changed. However, such monitors can be relatively
inexpensive, particularly if the solution devised can utilise
an existing I/O interface and limited throughput is required.
The emphasis in all existing debug solutions is on control

of the processor and data acquisition; no existing standard
or industrial solution includes on-chip analysis capability.
The authors outline the alternative approach of adding an
on-chip coprocessor or using spare processing capacity to
carry out on-chip analysis of the data captured. This
solution avoids the I/O bottleneck, and the area required for
a coprocessor continues to shrink as cell density increases.
Plus, the ability to process data in real-time while the
application is executing, serves software verification and
debug needs better than existing solutions which are
targeted at off-line test needs. In the authors’ opinion,
on-chip data analysis represents an effective way of
addressing the I/O bandwidth limitations of SoC designs
and enabling a new-generation of software verification and
debugging tools.
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