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Abstract Image denoising is the process to remove the noise from the image naturally corrupted by

the noise. The wavelet method is one among various methods for recovering infinite dimensional

objects like curves, densities, images, etc. The wavelet techniques are very effective to remove the

noise because of their ability to capture the energy of a signal in few energy transform values.

The wavelet methods are based on shrinking the wavelet coefficients in the wavelet domain. We pro-

pose in this paper, a denoising approach basing on dual tree complex wavelet and shrinkage with

the Wiener filter technique (where either hard or soft thresholding operators of dual tree complex

wavelet transform for the denoising of medical images are used). The results proved that the deno-

ised images using DTCWT (Dual Tree Complex Wavelet Transform) with Wiener filter have a bet-

ter balance between smoothness and accuracy than the DWT and are less redundant than SWT

(StationaryWavelet Transform). We used the SSIM (Structural Similarity Index Measure) along

with PSNR (Peak Signal to Noise Ratio) and SSIM map to assess the quality of denoised

images.
ª 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The advances of digital imaging technologies include Magnetic
Resonance Imaging (MRI), the different digital vascular radio-
logical processes, the cardiovascular and contrast imaging,
mammography, diagnostic ultrasound imaging, nuclear

medical imaging with Single Photon Emission Computed
Tomography (SPECT), Positron Emission Tomography

(PET) and multi-detector computed tomography (MDCT).
All these processes are producing ever-increasing of images
are different from typical photographic images primarily

because they reveal internal anatomy as opposed to an image
of surface (Rangayyan, 2005), they have revolutionized mod-
ern medicine, largely due to technical advances in imaging

hardware and new imaging methodologies, the quality of dig-
ital medical images becomes an important issue. To achieve the
best possible diagnosis it is important that medical images be
sharp, clear, and free of noise. Noise removal is essential in

medical imaging applications in order to enhance and recover
fine details that may be hidden in the data (Satheesh and
Prasad, 2011).
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2. Dual tree complex wavelet transform

Complex Wavelet Transforms (CWT) use complex-valued fil-
tering (analytic filter) that decomposes the complex signals into

real and imaginary parts in the transform domain. The real
and imaginary coefficients are used to compute amplitude
and phase information, just the type of information needed

to accurately describe the energy localization of oscillating
functions (wavelet basis). Another approach to implement an
expansive CWT first applies a Hilbert transform to the data.
The real wavelet transform is then applied to both the original

data and the Hilbert transformed data, and the coefficients of
each wavelet transform are combined to obtain a CWT.

The dual-tree complex wavelet transform (DTCWT) is a

relatively recent enhancement to the discrete wavelet transform
(DWT), with important additional properties: It is nearly shift
invariant and directionally selective in two and higher dimen-

sions. It achieves this with a redundancy factor of only 2d for
d-dimensional signals, which is substantially lower than the
Stationary DWT (Selesnick et al., 2005). Extension of the

DTCWT to two dimensions is achieved by separable filtering
along columns and then rows. However, if both column and
row filters suppress negative frequencies, then only the first
quadrant of the 2-D signal spectrum is retained. It is well

known, from 2-D Fourier transform theory, that two adjacent
quadrants of the spectrum are required to represent fully a real
2-D signal. Therefore, in the DTCWT it is also filtered with

complex conjugates of the row (or column) filters in order to
retain a second (or fourth) quadrant of the spectrum
(Kingsbury, 1999).

The dual tree complex DWT of a signal x(n) is computed
using two critically-sampled DWTs in parallel to the same data
as shown in the following figure (Fig. 1). If the same filters are

used in the upper tree and lower tree nothing is gained. So the
filters in this structure will be designed in a specific way that
the sub bands of upper DWT are interpreted as real part of
complex wavelet transform and the lower tree as imaginary

part as shown in Fig. 1. The transform is expansive by factor
2 and shift invariant (Naga Prudhvi Raj and Venkateswarlu,
2012).

3. Wavelet thresholding

Wavelet thresholding is a widely used term for wavelet domain

denoising. Denoising by thresholding in wavelet domain has
been developed principally by Donoho and Johnstone (1994)
and Donoho (1995). In wavelet domain, large coefficients cor-

respond to the signal, and small ones represent mostly noise.
The denoised data are obtained by inverse-transforming the
suitably thresholded, or shrunk coefficients.

Suppose s ¼ si;j; i ¼ 1;M and j ¼ 1;N is an image of

M�N pixels, which is corrupted by independent and identi-
cally distributed (i.i.d.) zero mean, ni;j are independent stan-

dard normal Nð0; 1Þ random variables and r the noise level
may be known or unknown. The noise signal can be denoted

as ni;j � Nð0; r2Þ. This noise may corrupt the signal in a trans-

mission channel. The observed, noise contaminated, image is

x ¼ xi;j; i ¼ 1;M and j ¼ 1;N.

Therefore, the noised image can be expressed as:

x ¼ sþ rnij: ð1Þ

The wavelet shrinkage denoising of signal x(n), in order to
recover y(n) as an estimate of original signal s(n) is represented
as a 4-step algorithm (Taswell, 2000) with j representing

decomposition levels, W is forward WT and W�1 is inverse
WT.

1. xj ¼ W ðxÞ, j= 1 to J.

2. kj =Level adaptive threshold selection ðxjÞ.
3. zj =Thresholdingðxj; kjÞ.
4. y ¼ W �1ðzjÞ.

The standard thresholding of wavelet coefficients is gov-

erned mainly by either « hard » or « soft » thresholding func-
tion as shown in Fig. 2. The first function in Fig. 2a is a linear
function, which is not useful for denoising, as it does not alter

the coefficients. The linear characteristic is presented in the fig-
ure just for comparing the non-linearity of other two func-
tions. The hard thresholding function is given as:

z ¼ hardðxÞ ¼ x; jxj > k

z ¼ hardðxÞ ¼ 0; jxj 6 k

�
; ð2Þ

where x and z are the input and output wavelet coefficients
respectively. kis a threshold value selected.

Similarly, soft thresholding function is given as:

z ¼ softðxÞ ¼ sgnðxÞmaxðjxj � k; 0Þ; jxj > k

z ¼ softðxÞ ¼ 0; jxj 6 k

�
: ð3Þ

Thresholding methods can be grouped into two categories,
global thresholds and level dependent thresholds. The former

method chooses a single value for threshold k to be applied
globally to all empirical wavelet coefficients while the latter
method uses different thresholds for different levels. In this
work, we have used the universal threshold, which is a

simple entropy measure totally dependent on the size of the
signal

k ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðkÞ

p
;

where k is the size of the signal and k is the threshold value.Th-
ese thresholds require an estimate of the noise level r. The
usual standard deviation of the data values is clearly not a
good estimator (Ismail and Anjum Khan, 2012; Chang et al.,
2000; Donoho, 1995), unless the underlying function S is rea-

sonably flat. Donoho and Jhonstone considered estimating r
in the wavelet domain and suggested a robust estimate that
is based only on the empirical wavelet coefficients at the finest
resolution level. The reason for considering only the finest level

is that the corresponding empirical wavelet coefficients tend to
consist mostly of noise. Since there is some signal present even
at this level, Donoho and Jhonstone proposed a robust esti-

mate of the noise level r based on the MAD (Median Absolute
Deviation) (Naga Prudhvi Raj and Venkateswarlu, 2012),
given by

r̂ðMADÞ ¼
medianfjxi;jjg

0; 6745
; ð4Þ

where xi;j represents the detail coefficients at the finest level.

4. Wiener filter and noise reduction

Wiener filter was adopted for filtering in the spectral domain.
Wiener filter (a type of linear filter) is used for replacing the
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FIR filter (Mitiche et al., 2013) to reduce noise in signal. When

the image is blurred by a known low pass filter, it is possible to
recover the image by inverse filtering. But inverse filtering is
very sensitive to additive noise. The Wiener filtering executes
an optimal trade-off between inverse filtering and noise

smoothing. It removes the additive noise and inverts the blur-
ring simultaneously (Kaur and Kaur, 2013; Asmaa Abass
Ajwad, 2012). It minimizes the overall mean square error in

the process of inverse filtering and noise smoothing. The

Wiener filtering is a linear estimation of the original image.
The approach is based on a stochastic framework. The orthog-
onality principle implies that the Wiener filter in Fourier
domain can be expressed as follows:

Wðf1; f2Þ ¼
H�ðf1; f2ÞSxxðf1; f2Þ

jHðf1; f2Þj2Sxxðf1; f2Þ þ Sggðf1; f2Þ
; ð5Þ
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Figure 1 (a) 1D complex wavelet, (b) filter bank analysis for 1-D DTDWT,(c) synthesis filter bank for 1-D DTDWT.
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where Sxxðf1; f2Þ ,Sggðf1; f2Þ are respectively power spectra of

the original image and the additive noise, and Hðf1; f2Þ is the
blurring filter.

5. Experimental results

The aim of our comparison is to point out the differences in
terms of PSNR (Peak Signal to Noise Ratio) due to a particu-

lar choice of wavelet bases. The PSNR has been computed
using the following formula

PSNR ¼ 10log10
2B � 1ffiffiffiffiffiffiffiffiffiffiffi
MSE
p
� �

: ð6Þ

The SSIM (Structural Similarity Index Measure) (Wang
et al., 2004) is a perceptual measure that compares patterns
of pixel intensities for images, on the basis of the local lumi-

nance and contrast of the analyzed pixels. Let x and y be
two data vectors assumed to contain non-negative values only
and representing the pixel values to be compared. The lumi-

nance and the contrast of these pixels are estimated by the
mean and the standard deviation of x and y, respectively.
The SSIM index between x and y is then given by

SSIMðx; yÞ ¼
ð2lxly þ c1Þð2rxy þ c2Þ

ðl2
x þ l2

y þ c1Þðr2
x þ r2

y þ c2Þ
; ð7Þ

where lx; lyare the average of x, average of y ; r2
x; r2

yare the

variance of x, variance of y, and c1 ¼ ðk1LÞ2, c2 ¼ ðk2LÞ2 are

two variables to stabilize the division with weak denominator.
L is the dynamic range of the pixel-values (typically is

2Bbitsperpixel � 1), and k1 ¼ 0:01, k2 ¼ 0:03 (are taken by default).

The SSIM maps (Wang et al., 2007) indicate that the qual-
ity of the image by the proposed method is more uniformly dis-
tributed over the image space, and the resulting SSIM index

map can be viewed as the quality map of the distorted images.
Finally, a mean SSIM index of the quality map is used to eval-
uate the overall image quality.

The tabulation was made for r vs PSNR and SSIM for

DWT, SWT, DTCWT and DTCWT with Wiener filter and
using both hard and soft thresholding functions as shown in
Tables 1 and 2. The performance results of various algorithms

can be evaluated for low and high noise conditions as follows:

� The denoising capability (r = 30) of both DTCWT is better

than SWT and DWT.
� Under high noise conditions (r = 300), of both SWT,
DWT and DTCWT give poor denoising results than even
DTCWT with Wiener filter.

Figure 2 Thresholding functions: (a) linear, (b) hard, (c) soft.

Table 1 Hard thresholding (PSNR and SSIM for various denoising methods with parameters J= 3, ‘db4’ family wavelets (Kharate

et al., 2007)).

r DWT SWT DT-CWT DT-CWT with Wiener filter

30 42.1516 43.2858 47.4061 44.7465

0.8379 0.8718 0.9706 0.9629

50 37.0691 38.3027 46.0542 44.5527

0.6569 0.7137 0.9605 0.9617

100 30.1486 31.4253 42.3218 43.7756

0.3297 0.3883 0.916 0.9564

200 23.2199 24.5077 36.6588 41.6158

0.1039 0.1305 0.7829 0.9357

300 19.1657 20.4557 32.8792 39.3308

0.0443 0.0569 0.6446 0.9003
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We compare in Fig. 3, the reconstructed images obtained

using DWT, SWT, DTCWT and DTCWT with Wiener filter
for the medical image. It can be seen that the image for
DTCWT with Wiener filter is better in preservation of many

local structures and therefore presents the best quality of per-
ceptual image. The visual quality improvement is also reflected
in the corresponding SSIM maps, which provides useful guid-

ance on how local image quality is improved over space. It can
be observed from the SSIM map for DTCWT with Wiener

filter that the areas which are relatively more structured benefit
more obviously compared to the SSIM maps for DWT, SWT
and DTCWT.

6. Conclusion

In this paper, denoising methods using universal threshold and
the Wiener filter are applied for medical images. Firstly, we

Table 2 Soft thresholding (PSNR and SSIM for various denoising methods with parameters J= 3, ‘db4’ family wavelets (Kharate

et al., 2007)).

r DWT SWT DT-CWT DT-CWT with Wiener filter

30 42.1517 43.286 46.3165 44.1177

0.8379 0.8718 0.9649 0.9607

50 37.0693 38.3029 45.3018 43.9892

0.6569 0.7137 0.9558 0.9601

100 30.1487 31.4255 42.1455 43.3846

0.3297 0.3883 0.9138 0.9556

200 23.2199 24.5078 36.7922 41.4888

0.1039 0.1305 0.7848 0.9356

300 19.1658 20.4558 33.0586 39.3438

0.0443 0.0569 0.6484 0.9013
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Figure 3 (a) Original image, (b) noisy image with r = 200, (c) denoised image using DWT with soft threshold, (d) SSIM map for DWT

with soft threshold, (e) denoised image with SWT with soft threshold, (f) SSIM map for SWT with soft threshold, (g) denoised image with

DTCWT with soft threshold, (h) SSIM map for DTCWT with soft threshold, (j) denoised image with DTCWT–Wiener filter and the soft

threshold, (k) SSIM map for DTCWT with wiener filter and with soft threshold.
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estimate the image noise level. For the DWT, SWT and
DTCWT based denoising we used the ‘db4’ family wavelets
as a second step. Using the hard and the soft thresholding

functions for the shrinkage of wavelet coefficients, their effi-
ciency are compared in image denoising, based on PSNR
(Peak Signal to Noise Ratio), SSIM (Structural Similarity

Index Measure) and SSIM map.
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