
How the use of design patterns affects the quality
of software systems: a preliminary investigation

Carmine Gravino
Department of Computer Science

University of Salerno

Fisciano (SA), Italy

Email: gravino@unisa.it

Michele Risi
Department of Computer Science

University of Salerno

Fisciano (SA), Italy

Email: mrisi@unisa.it

Abstract—In this paper we analyze at the class level the quality
of the software portions including classes participating in design
patterns instances (DP classes) with respect to the remaining
software portions (NoDP classes). The performed study is based
on 10 software systems from which information about design
pattern instances and CK (Chidamber and Kemerer) metrics
were obtained by exploiting repositories of pattern instances and
the tool Understand, respectively. The analysis revealed that the
use of design patterns impacts on the quality of the software.

I. INTRODUCTION

Design patterns [1] can be used both in the process of

designing a software system, and in reverse engineering to

review and improve an existing system through code refac-

toring and maintenance operations. Indeed, some studies have

also shown that the availability of documentation explaining

the use of design pattern instances in software systems allows

to better comprehend the source code of those systems, and

thus facilitating their maintenance (see e.g., [2]).

In this paper we present the results of a study carried out to

analyze at the class level the quality of the software portions

including classes participating in design patterns instances

(DP classes) with respect to the remaining software portions

(NoDP classes). To this aim, we exploited some (CK) metrics

proposed by Chidamber and Kemerer [3], which provide an

indication of the software quality with respect to crucial

properties, e.g., cohesion and coupling [4]. The study is based

on 10 software systems from which we obtained information

on design pattern instances and CK metrics.

Structure of the paper. Related work is presented in

Section II. Section III presents the design of the performed

study, while the results are discussed in Section IV. Conclusion

concludes the paper.

II. RELATED WORK

Several studies have highlighted that the design based

on patterns improves the quality of object-oriented software

systems [1], [5], e.g., reducing the development time and

program quality, producing reusable software, improving the

documentation, and increasing flexibility and elegance of the

developed software system. Among them, Scanniello et al.

[2] have studied the importance of documenting design pattern

instances and how it can affect the comprehensibility of source

code. To this aim, they conducted a family of four controlled

experiments with participants having different experience (i.e.,

professionals and Bachelor, Master, and PhD students). De-

sign patterns were graphically documented with UML class

diagrams, or textually documented as comments in the source

code. The results indicated that documenting design-pattern

instances yields an improvement in correctness of understand-

ing source code for those participants with an adequate level

of experience. Prechelt et al. [5] have performed a series

of experiments to test whether pattern comment lines help

during maintenance phase when they are well documented

in the source code. The results highlighted that the quality

is improved by reducing the time required for performing

changes. Replications of this experiment were executed in

order to examine the importance of design patterns in source

code comprehension [6]. Aversano et al. [7] have investigated

the frequency and scope of modifications of design patterns by

examining three open source systems. The results have pointed

out that design patterns closely related to the application

purpose are modified more frequently than others. Gustafsson

et al. [8] have presented a tool that allows to assure software

quality by computing various kinds of design metrics from

the system architecture, by automatically exploring instances

of design patterns and anti-patterns from the architecture, and

by reporting potential quality problem to the designers. Khomh

et al. [9] assessed the impact that specific design pattern

roles play on the quality of classes, analyzed in terms of

CK measures as done in our study. They found a significant

increase in many metric values and a significant increase in

the frequencies and numbers of changes when classes play two

roles in design pattern instances. Our study can be considered a

further assessment with respect to [9], exploiting more design

patterns (20 vs. 6) and software systems (10 vs. 6).

III. STUDY DESIGN

We defined the following research questions RQX : Are

the classes participating in design pattern instances charac-

terized by better values of the CK measure X with respect

to the classes that are not involved in design pattern in-

stances? where X can be one of the measures [3]: WMC

(Weighted Methods per class), LCOM (Lack of Cohesion

in Methods), AMS (AvgLineCode), CLOC (CountLineCom-

2017 43rd Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-2141-7/17 $31.00 © 2017 IEEE

DOI 10.1109/SEAA.2017.32

274

ment), LOC (CountLineCode), CLOC/NL (CountLineCom-

ment/CountLine). As for the measures DIT (Depth of Inheri-

tance Tree) and CBO (Coupling Between Object classes), we

have analyzed the values characterizing the classes that are

involved in the design pattern instances. Indeed, due to the

definitions of these measures we cannot fairly compare the

values obtained for the DP classes with ones obtained for the

NoDP classes. Regarding the design patterns, we took into

account those proposed by Gamma et al. [1].

The software systems we considered are publicly avail-

able: QuickUML 2001, Lexi 0.1.1 alpha, Refactory 2.6.24,

NetBeans 1.0.x, JUnit 3.7, JHotDraw 5.1, JHotDraw 6.0,

MapperXML 1.9.7, Nutch 0.4, and PMD 1.8. They have been

used in several studies to assess the accuracy of design pattern

recovery approaches (e.g., [10], [11], [12], [13], [14]).

As for the design pattern instances to consider in our study,

we exploited P-MARt [15] which is a repository of micro-

architectures similar to design motifs, where a design motif

represents the solution of a design pattern. Furthermore, we

employed instances recovered by the following tools, and

made available on the web by the researchers working on

them: DPD [12], ePAD [16], RM [13], DPF [14]. In particular,

we first considered the instances present in P-MARt since they

cover all the GoF patterns. Then, we added those recovered

by the above tools and not present in P-MARt. To obtain CK

metrics values we used the tool Understand [17], which is an

integrated and interactive development environment conceived

to support software developers in documenting, comprehend-

ing, and maintaining their source code (e.g., C, C++, C#, Java).

Regarding data analysis, we employed simple descriptive

statistics and the Mann-Whitney test [18] to verify whether

there is statistical significant difference among CK metrics

values of DP and NoDP classes. The results were intended as

statistically significant at α = 0.05. Furthermore, we employed

the Cliff’s d non-parametric effect size measure in order to

provide information about the magnitude of the difference

between two distributions [19]. As for the magnitude of

the effect size we considered the following classification:

negligible (d < 0.147), small (0.147 ≤ d < 0.33), medium

(0.33 ≤ d ≤ 0.474), and large (d > 0.474).

As for the threats that could affect our study, we tried to

mitigate errors in the identification of design pattern instances

by exploiting public repositories and results made available by

other researchers who assessed their data through empirical

validations (e.g., [10], [11], [12], [13], [14]). We employed

software systems analyzed in previous studies. Similarly,

among the proposals provided to assess the quality of software

systems we used CK measures since they have been widely

employed in previous studies (e.g., [4], [20]). Finally, we

carefully applied the statistical tests performed by verifying

all the required assumptions.

IV. RESULTS AND DISCUSSION

In order to have an idea of the portions of code interested

by the design pattern instances, in Table I, we have reported

for each software system in our study the number of pattern

TABLE I
PATTERN INSTANCES AND # OF DP AND NODP CLASSES (AND THEIR %

WITH RESPECT TO THE TOTAL # OF CLASSES), FOR EACH SYSTEM

System
pattern # DP classes # NoDP classes
instances (and %) (and %)

HotDraw 5.1 68 119 (71) 49 (29)
JHotDraw 6.0 82 76 (23) 253 (77)

JUnit 14 25 (27) 68 (73)
JRefactory 41 198 (34) 392 (66)
QuickUML 18 54 (25) 162 (75)

PMD 14 52 (11) 440 (89)
Nutch 15 40 (13) 260 (87)

MapperXML 25 60 (24) 186 (76)
NetBeans 26 200 (4) 5347 (96)

Lexi 5 8 (6) 117 (94)

instances and the number of DP and NoDP classes. To

better highlight the use of the design patterns, we have also

determined the percentage of DP classes with respect to the

total number of classes. We can observe that the number of

NoDP classes are greater than the number of DP classes, for

all the considered software systems, except for JHotDraw5.1.

This is not a surprise since JHotDraw5.1 has been developed

with the intent of using design patterns by the people that

introduce them. By analyzing the % of Table I, we can

note that among the remaining systems, JHotDraw 6.0, JUnit,

JRefactory, QuickUML, and MapperXML are characterized by

values greater than 20, i.e., more than 1/5 of the classes are

involved in the design pattern instances. The systems PMD,

Nutch, NetBeans, and Lexi have a percentage less than 15%.

This confirms the level of variability of the considered systems,

also from the point of view of design pattern use.

In Table II, the entry ”DP” (NoDP, respectively) for the

cell (i,j) means that the set of DP classes in the system i are

characterized by a mean value for the measure j better than

the one calculated for the NoDP (DP, respectively) classes.

The entry ”=” means that the mean values of the measure

j calculated for the set of the DP and NoDP classes are

comparable. For CBO and DIT, we have reported the values of

the mean for the set of DP classes and the standard deviation

(St.Dev) since we cannot compare the distributions for the set

of DP and NoDP classes, due to the definition of these two

measures. So, we will discuss only the distributions.

In the following we discuss the results for each CK measure.

RQAMS : the ratio between the numbers of source code lines

and the number of methods is higher for NoDP classes in 8

systems (see Table II) for the majority of the patterns (Factory

Method, Decorator, Composite, Prototype, Template Method,

Visitor, State, Command, Singleton, Observer, Builder, Ab-

stract Factory, Iterator, Adapter, Facade, Strategy, Proxy, Me-

mento). Differently, for Nutch, the AMS mean value for DP

classes is higher than the one for NoDP classes for 5 (Iterator,

Memento, Command, Strategy and Template Method) of the

8 patterns present. For JHotDraw5.1 AMS is greater for DP

classes in the case of 5 patterns (Singleton, Adapter, Observer,

State, Null Object) with respect to the value for NoDp classes,

while for other 5 patterns (Factory Method, Decorator, Com-

posite, Prototype, Template Method) is the contrary. For this

reason, in Table II, the entry ”=” is reported. The Mann-

Whitney test revealed that there is significant difference in

275

TABLE II
SUMMARY OF RESULTS CONSIDERING THE MEAN OF CK MEASURE VALUES FOR EACH SOFTWARE SYSTEMS

System AMS LOC CBO CLOC DIT LCOM WMC CLOC/NL
JHotDraw 5.1 = DP Mean(DP classes)= 3.98; Dev.St.(DP classes) = 1.56 DP Mean(DP classes) = 3; Dev.St.(DP classes) = 0.65 DP DP =
JHotDraw 6.0 NoDP DP Mean(DP classes) = 10.87; Dev.St.(DP classes) = 5.74 DP Mean(DP classes) = 2; Dev.St.(DP classes) = 0.5 DP DP =

JUnit NoDP DP Mean(DP classes) = 2.5; Dev.St.(DP classes) = 2.55 DP Mean(DP classes) = 2; Dev.St.(DP classes) = 0.48 DP DP DP
JRefactory NoDP NoDP Mean(DP classes) = 7.35; Dev.St.(DP classes) = 4.24 = Mean(DP classes) = 2; Dev.St.(DP classes) = 0.33 DP DP =
QuickUML NoDP DP Mean(DP classes) = 5; Dev.St.(DP classes) = 4 DP Mean(DP classes) = 2; Dev.St.(DP classes)= 0.86 DP = DP

Lexi NoDP DP Mean(DP classes) = 2.5; Dev.St.(DP classes) = 6.64 DP Mean(DP classes) = 2; Dev.St.(DP classes) = 0.55 NoDP NoDP DP
MapperXML NoDP NoDP Mean(DP classes) = 4.11; Dev.St.(DP classes) = 1.89 DP Mean(DP classes) = 3; Dev.St.(DP classes) = 1.3 DP DP DP

PMD NoDP DP Mean(DP classes) = 15.38; Dev.St.(DP classes) = 14.6 DP Mean(DP classes) = 1; Dev.St.(DP classes) = 0.45 DP DP =
NetBeans NoDP DP Mean(DP classes) = 5.33; Dev.St.(DP classes) = 2.83 DP Mean(DP classes) = 2; Dev.St.(DP classes) = 0.79 DP DP DP

the case of only 3 systems (JHotDraw6.0, JRefactory, and

MapperXML) with a medium (in few cases large) effect size.

Thus, the DP classes are not characterized by better AMS

values with respect to the NoDP classes.

RQLOC : the mean number of LOC characterizing the DP

classes is greater than the one of NoDP classes, for the

majority of design patterns (Factory Method, Decorator, Com-

posite, Adapter, Prototype, Observer, State, Strategy, Template

Method, Visitor, Abstract Factory, Iterator, Command, Facade,

Singleton, Builder, Proxy) in 7 systems. For the remaining 3

systems (JRefactory, MapperXML, Nutch) we have a different

situation. Indeed, in JRefactory for just 2 design patterns (State

and Builder) of the 8 design patterns present, DP classes

are characterized by a greater mean number of LOC, while

for the remaining design patterns (Singleton, Adapter, Visitor,

Template Method, Observer e Factory Method) the NoDP

classes have a greater mean number of LOC. Similarly, in

MapperXML the mean number of LOC is grater for the DP

classes for 3 design patterns (Facade, Singleton e Strategy),

while for the remaining 6 design patterns that can be found

in the code, the mean number of LOC is greater for the

NoDP classes. For the system Nutch in 3 cases (Bridge,

Singleton, and Adapter) DP classes are characterized by a

greater mean number of LOC, while for the remaining design

patterns (Iterator, Memento, Command, Strategy, and Template

Method) the NoDP classes have a greater value. The performed

statistical test revealed that there is significant difference

between LOC characterizing the DP and NoDP classes in all

the systems with a medium (in few cases large) effect size,

except for QuickUML, Nutch, JRefcatory, and MapperXML.

Thus, the DP classes are characterized by a greater number

of LOC.

RQCLOC : the mean number of comments results to be

greater for the DP classes in 8 systems for the majority of

the design patterns (Factory Method, Decorator, Singleton,

Composite, Adapter, Prototype, Command, Observer, State,

Strategy, Template Method, Builder, Visitor, Abstract Factory,

Iterator, Facade). Just in 2 systems (JRefactory and Nutch) DP

and NoDP classes are characterized by comparable values of

the mean of CLOC. Indeed, for 4 design patterns (Builder,

Visitor, Template Method, and Factory Method) DP classes

have a greater value, while for the remaining Singleton,

Adapter, State, and Observer patterns the mean number of

comments is greater in the case of NoDP classes. Similarly, for

Nutch, and the design patterns Iterator, Memento, Command

and Strategy, DP classes are characterized by a greater mean

number of CLOC, while for the remaining design patterns

(Bridge, Singleton, Adapter, and Template Method) NoDP

classes have a grater value. The performed statistical test

revealed that there is significant difference between CLOC

characterizing the DP and NoDP classes in all the systems

with a medium (in few cases large) effect size. Thus, the DP

classes are characterized by a greater number of CLOC.
RQLCOM : the mean value for the LCOM measure is greater

for the DP classes in 8 systems for the majority of the design

patterns (Singleton, State, Builder, Template Method, Factory

Method, Proxy, Iterator, Composite, Adapter, Observer, Strat-

egy, Abstract Factory, Command, Prototype, Facade, Visitor,

Decorator, Null Object). The opposite is verified in the two

remaining systems: Lexi and Nutch. In the case of Lexi for all

the design patterns NoDP classes are characterized by higher

mean with respect to the DP classes. Differently, for Nutch

and 3 design patterns (Iterator, Singleton and Strategy) DP

classes have a greater mean value. The performed statistical

test revealed that there is significant difference between LCOM

characterizing the DP and NoDP classes in all the systems

with a medium (in few cases large) effect size, except for

JRefcatory, MapperXML, Nutch, and PMD. Thus, the DP

classes are characterized by a better result in terms of LCOM

with respect to the NoDP classes.
RQWMC : the mean value of the method count for a class

results to be greater for the DP classes in 7 systems for

the majority of the patterns (Singleton, Observer, Builder,

Factory Method, Decorator, Composite, Adapter, Prototype,

Command, State, Strategy, Template Method, Visitor, Abstract

Factory, Iterator, Facade, Proxy). Differently, in the case of

the system Lexi the mean value is greater for the NoDP

classes, while for the remaining 2 systems, QuickUML and

Nutch, the mean value characterizing DP and NoDP classes

are comparable. Indeed, in the case of QuickUML the DP

classes result to be more complex (i.e., mean value of WMC

greater) for the patterns Singleton, Builder, Template Method,

Strategy, Prototype, while for the remaining patterns (Abstract

Factory, Composite, Command, Observer, State) less complex.

The statistical test revealed that there is significant difference

between WMC characterizing the DP and NoDP classes in all

the systems with a medium (in few cases large) effect size,

except for JRefcatory, MapperXML, Nutch, and QuickUML.

Thus, the DP classes are more complex than the NoDP classes.
RQCLOC/NL: in mean the percentage of lines of comments

is greater for the DP classes in 5 systems for the majority of the

276

patterns (Observer, Builder, Singleton, Null Object, Template

Method, Visitor, Iterator, Adapter, Facade, Strategy, Abstract

Factory, Composite, Observer, State, Decorator, Bridge, Com-

mand). For the remaining 5 software systems the mean values

of CLOC/NL for DP and NoDP classes are comparable.

The statistical test revealed that there is significant difference

between CLOC/NL characterizing the DP and NoDP classes

in all the systems with a medium (in few cases large) effect

size, except for PMD. Thus, the DP classes are characterized

by a better result with respect to the NoDP.

CBO: overall, the mean values for CBO are in the range

1-4. We have considered values in the range 1-2 ”low”,

while ”medium” has been associated to the range 3-4. Values

equal or higher than 5 have been considered ”high”. From

Table II, we can observe that the coupling level in the case of

DP classes is high for the majority of the systems (Quick-

UML, JRefactory, NetBeans, JHotDraw 6.0, Nutch, PMD).

For JHotDraw5.1 and MapperXML the values for CBO can

be considered medium, while for Lexi e JUnit the coupling

level can be classified as low. The statistical test revealed that

there is significant difference between CBO characterizing the

DP and NoDP classes in all the systems with a medium (in

few cases large) effect size, except for PMD. Thus, the DP

classes are characterized by a high level of coupling. This

can be considered an expected results due to the definitions of

the design patterns, that are based on the use of relationships

such as hierarchy, delegations, use, etc.

DIT. Overall, the mean values for DIT are in the range

1-4. The values in the range 0-1 are classified as “low”,

while higher values are considered ”medium-high’”. Table II

suggests that the mean values for DIT in the case of the DP

classes are in the range 1-3, except for Nutch and PMD that

are characterized by low values. Thus, the classes involved

in pattern instances are characterized by medium-high values

of the maximum inheritance path from the class to the root

class. The Mann-Whitney test revealed that there is significant

difference between DIT characterizing the DP and NoDP

classes in all the systems with a medium (in few cases large)

effect size, except for JRefactory, Nutch, and QuickUML.

V. CONCLUSION

The above analysis has revealed that for the DP classes

more lines of comments have been written by developers.

This can be considered an expected result, since developers

tend to document pattern instances when they knowingly

decide to use them [2]. The analysis about AMS has shown

that the methods of DP classes are characterized by a less

number of lines of code with respect to the NoDP classes.

This should improve the comprehensibility of the source code

[20]. The results about LOC measure have also shown that in

general the developers wrote more lines of code for a class

in the set of DP classes with respect to NoDP classes. As

an unexpected result, we have observed that overall the DP

classes are characterized by higher values of LCOM (and so

worse) with respect to NoDP classes. This means that the level

of cohesion seems to be lower for DP classes. Furthermore, the

analysis of distributions of WMC values has highlighted that

the DP classes are also more complex. The DP classes are also

characterized by a high level of coupling. So, complex code.

These can be considered interesting results that deserve further

analysis in the future. Indeed, it is widely known that the use

of design patterns improve the comprehensibility of the code,

when the patterns are well documented [2]. Thus, we are in

the case that we structure our code in a more complex way but

this choice allow us to re-use available and tested solutions that

can also improve comprehensibility of the code if the pattern

instances are well documented. This point deserves further

investigation and analysis in our future researches.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] G. Scanniello, C. Gravino, M. Risi, G. Tortora, and G. Dodero, “Doc-
umenting design-pattern instances: A family of experiments on source-
code comprehensibility,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 3, pp. 14:1–14:35, 2015.

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[4] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level fault
prediction using software clustering,” in Conf. on Aut. Softw. Eng., 2013,
pp. 640–645.

[5] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. Tichy, “Two
controlled experiments assessing the usefulness of design pattern docu-
mentation in program maintenance,” IEEE Trans. Softw. Eng., vol. 28,
no. 6, pp. 595–606, 2002.

[6] M. Vokác, W. F. Tichy, D. I. K. Sjøberg, E. Arisholm, and M. Aldrin,
“A controlled experiment comparing the maintainability of programs
designed with and without design patterns-a replication in a real pro-
gramming environment,” Em. So. En., vol. 9, no. 3, pp. 149–195, 2004.

[7] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta,
“An empirical study on the evolution of design patterns,” in European
Softw. Eng. Conf. and Foundations of Softw. Eng., 2007, pp. 385–394.

[8] J. Gustafsson, J. Paakki, L. Nenonen, and A. I. Verkamo, “Architecture-
centric software evolution by software metrics and design patterns,” in
European Conf. on Softw. Mainten. and Reeng., 2002, pp. 108–115.

[9] F. Khomh, Y. G. Gueheneuc, and G. Antoniol, “Playing roles in design
patterns: An empirical descriptive and analytic study,” in 2009 IEEE
International Conference on Software Maintenance, 2009, pp. 83–92.

[10] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern
recovery through visual language parsing and source code analysis,” J.
of Systems and Softw., vol. 82, no. 7, pp. 1177–1193, 2009.

[11] ——, “Improving behavioral design pattern detection through model
checking,” in European Conf. on Softw. Maintenance and Reengineering.
IEEE Computer Society, 2010, pp. 176–185.

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” IEEE Trans. Softw.
Eng., vol. 32, no. 11, pp. 896–909, 2006.

[13] G. Rasool and P. Mäder, “Flexible design pattern detection based on
feature types.” in Conf. on Aut. Softw. Eng., 2011, pp. 243–252.

[14] M. L. Bernardi, M. Cimitile, and G. A. D. Lucca, “Design pattern
detection using a DSL-driven graph matching approach,” Journal of
Software: Evolution and Process, vol. 26, no. 12, pp. 1233–1266, 2014.

[15] P-MARt, “P-MARt,” http://www.iro.umontreal.ca/ labgelo/p-mart/.
[16] A. De Lucia, V. Deufemia, C. Gravino, M. Risi, and C. Pirolli,

“ePadEvo: A tool for the detection of behavioral design patterns,” in
Intl. Conf. on Softw. Maint. and Evol., 2015, pp. 327–329.

[17] Understand, “Understand,” https://scitools.com.
[18] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley India

Pvt. Limited, 2006.
[19] V. Kampenes, T. Dyba, J. Hannay, and I. Sjoberg, “A systematic review

of effect size in software engineering experiments,” Information and
Softw. Technology, vol. 4, no. 11-12, pp. 1073–1086, 2007.

[20] L. C. Briand, J. Wüst, and H. Lounis, “Replicated case studies for
investigating quality factors in object-oriented designs,” Emp. Softw.
Eng., vol. 6, no. 1, pp. 11–58, 2001.

277

