
 Procedia Economics and Finance 10 (2014) 4 – 9

2212-5671 © 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Department of Statistics and Econometrics, Bucharest University of Economic Studies.
doi: 10.1016/S2212-5671(14)00271-8

ScienceDirect
Available online at www.sciencedirect.com

7th International Conference on Applied Statistics

Applying fuzzy logic and machine learning techniques in financial
performance predictions

Adrian Costeaa,b,*
aUniversity of Economic Studies, Statistics and Econometrics Department, Virgil Madgearu Building, Calea Dorobantilor No.15-17, 6th floor,

Sector 1, Bucharest 010552, Romania
bNational Bank of Romania, Bucharest Regional Branch, Statistical Reporting and Business Surveys Unit, Lipscani st. No. 16, 5th floor, room

5090, Sector 3, Bucharest 030035, Romania

Abstract

In this article we apply a fuzzy logic technique, namely Fuzzy C-Means clustering, and artificial intelligence algorithms for
evaluating comparatively the financial performance of non-banking financial institutions (NFIs) in Romania. The NFIs’
performance dataset consists of indicators that define the capital adequacy, assets’ quality and profitability performance
dimensions. The class performance variable is obtained by applying on the performance dataset the Fuzzy C-Means algorithm
and obtaining clusters with similar performance. We attach to each input dataset observation a performance class depending on
which cluster contains the observation given the characterization and hierarchy of the clusters in “good”, “medium” and “poor”
performance clusters. Finally, we apply artificial neural networks (ANNs) trained with genetic algorithms in order to find a
function that maps the input performance space on the newly constructed performance class variable. The classification model
obtained can be used by different beneficiaries (e.g.: the Supervision Department of National Bank of Romania) to classify new
NFIs as having a “good” or “poor” performance so that the limited resources of the supervision authority to be better allocated.
© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the Department of Statistics and Econometrics, Bucharest University of
Economic Studies.

Keywords: classification models; artificial neural networks; genetic algorithms; non-banking financial institutions

* Corresponding author. Tel.: +4-031-132-6207; fax: +4-021-319-1793.

E-mail address: adrian.costea@csie.ase.ro

© 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Department of Statistics and Econometrics, Bucharest University of
Economic Studies.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2212-5671(14)00271-8&domain=pdf

5 Adrian Costea / Procedia Economics and Finance 10 (2014) 4 – 9

1. Introduction

The non-banking financial institutions’ (NFIs’) sector has been recently regulated in Romania. The National Bank
of Romania (NBR) proposed and the Parliament passed a series of provisions regarding the activities carried out by
these entities in order to strengthen the stability of the financial sector as a whole. According to these provisions, the
NBR is obliged to prudentially supervise the most important NFIs: those register in the NBR’ Special register. The
other NFIs are monitored and only in special cases are further scrutinized. However, all NFIs have to report on their
activity to the Supervision Department. One such reporting consists of periodic financial statements (PFSs) that a
NFI has to sent to NBR quarterly. Currently, these PFSs are analysed manually by the inspectors from the
department. Based on their assessment, NFIs that present difficulties are further scrutinized and, eventually, an on-
site inspection is organized. The scarce time and personnel resources of the Supervision Department and the need to
balance the subjective interpretation of the inspectors motivate the use of some sorts of techniques that would
classify the NFIs as having a “good” or “poor” performance. Based on these techniques we can build so-called
classification models that might provide additional help in taking the decision for an on-site inspection.

Data Mining techniques (Han & Kamber, 2006) can help with building the clustering/classification models.
Clustering techniques can be used to find performance clusters within the NFIs’ performance dataset and
classification techniques can be used to place a new NFI into a predefined cluster as data become available. In other
words, clustering techniques have descriptive properties and classification techniques have prescriptive ones.

In this article we apply the Fuzzy C-Means algorithm (Bezdek, 1981) and obtaining clusters with similar
performance. We attach to each input dataset observation a performance class depending on which cluster contains
the observation given the characterization and hierarchy of the clusters in “good”, “medium” and “poor”
performance clusters. Finally, we apply artificial neural networks (ANNs) trained with genetic algorithms in order to
find a function that maps the input performance space on the newly constructed performance class variable. In this
way we overcome the problem of accommodating new NFIs on the performance map as data become available.

Next, we present in more detail our methodology. Then, we present the NFIs’ performance dataset and our
experiment on applying the Data Mining techniques on these data. Finally, we draw our conclusions.

2. Methodological framework

We use Fuzzy C-Means (FCM) algorithm (Bezdek, 1981) to group the NFIs with similar characteristics. The FCM
algorithm minimizes the following objective function, Jm(U, v):

2

1 1

(,) () ()
n c

m
m ik ik

k i

J U v u d
 

 (1)

where c is the number of clusters, n is the number of observations, fcU M is a fuzzy c-partition of the data set X,

[0,1]iku  is the membership degree of observation xk in cluster i,
1/ 2

2

1

()
p

ik k i kj ij
j

d x v x v


 
    

 
 (2)

is the Euclidean distance between the cluster center vi and observation xk for p attributes (financial ratios in our
case), [1,)m  is the weighting exponent, and the following constraint holds

1

1
c

ik
i

u


 . (3)

The solution for the FCM clustering consist of the final cluster centers and membership degrees of the

observations. Once we obtain the final cluster centers and membership degrees we construct the performance class

6 Adrian Costea / Procedia Economics and Finance 10 (2014) 4 – 9

variable by attaching to each observation a performance class depending on which cluster contains the observation.
The number of clusters c and the weighting exponent m are parameters for FCM algorithm.

Once we constructed the performance class variable we apply artificial neural networks (ANNs) trained using
genetic algorithms to build the classification model. Firstly, we apply ANNs trained using normal gradient descent
algorithms in order to find the best ANN architecture. The general procedure for determining the ANN architecture
consists of the following steps:
 split the dataset in training (TR) and test (TS) sets;
 perform 3 experiments and for each experiment:
○ split the training set in effective training (TRe) and validation (VAL) sets;
○ vary the number of neurons in the first and second hidden layers (NH1, NH2) between 5 and 8 and for each

combination perform 4 trainings follows:
– initialize the ANN weights;
– train the ANN;
– calculate the mean squared errors for each set (TR, VAL, TR and TS);

 we save the ANN architecture if the mean squared error for VAL is less than the one for TRe multiplied by a
factor of 6/5. This condition has been imposed in order to avoid saving ANN architectures for which the effective
training and validation mean squared error are too far from each other.

 at the end, we obtain the best ANN architecture in terms of mean squared error for training (TR).
Once we obtain the architecture, we can use genetic algorithms (GA) to train the network. Unlike the traditional

gradient-descent training mechanisms, GAs are provided with a population of solutions, and by initialisation,
selection and reproduction mechanisms, achieve potentially good solutions. All solutions (chromosomes) compete
with each other to enter the new population.

In the case of GA-based ANN training, the GA’s chromosome (solution) is the set of ANN weights after training
represented as a vector. Next, we describe the GA steps performed to train the ANN.

2.1. Initialisation and fitness evaluation

The population size is a parameter of our models. It was set to PS = 20. Dorsey & Mayer (1995) suggest that this
value is good enough for any grade of problem complexity. The first chromosome of the population is the set of
weights obtained when determining the ANN architecture. The other 19 chromosomes are generated by training the
ANN with the previously obtained architecture. Afterwards, the first generation of the algorithm may begin. The
number of generations is related to the empirical formula suggested in Ankenbrandt (1991). Each chromosome is
evaluated using the accuracy rate for the training set (ACRTR).

2.2. Selection

Firstly, the elitism technique is applied in the sense that the best Nelite chromosomes in terms of ACRTR are
inserted into the new population. The rest of the chromosomes (20-Nelite) are selected based on the probability of
selection (roulette wheel procedure) for each chromosome:

 iTRiTRi ACRSUMACRP  :
The higher the probability Pi for a chromosome is, the higher its chance of being drawn into the new population.

We decided to employ elitist selection in our algorithms as a consequence of what was reported in the literature.
Rudolph (1994), Miller & Thomson (1998), Shimodaira (1996), Fogel et al. (2004) are a few papers that prove the
usefulness of using elitist selection.

Next, 80 per cent (probability of crossover: Pc = 0.80) of the chromosomes obtained previously are randomly
selected for mating. The probability of crossover is not essential for the performance of our algorithm as long as it
has a high value. This is because after reproduction we increase the population to include both the parents and their
offspring.

7 Adrian Costea / Procedia Economics and Finance 10 (2014) 4 – 9

2.3. Reproduction

The selected chromosomes are randomly paired and recombined to produce new solutions. There are two
reproduction operators: crossover and mutation. With the first the mates are recombined and newborn solutions
inherit information from both parents. With the second operator new parts of the search space are explored and,
consequently, we expect that new information will be introduced into the population. We used one-point crossover.
For each pair of chromosomes we generate a random integer X, X  {1, L} where L is the chromosome length. The
two new born children are constructed as follows: C1 = g11, g12, . . . , g1X, g2,X+1, . . . , g2L and C2 = g21, g22, . . . , g2X,
g1,X+1, . . . , g1L

The children chromosomes are added to the population. The size of the population becomes PS' > PS. Next, we
apply the mutation operator for all the chromosomes in PS'. We used only uniform mutation and add the new
obtained chromosomes into the new population obtaining PS'' > PS' > PS. The probability of mutation is set to Pm =
0.01, which means that approximately one per cent of the genes will mutate for each chromosome.

The final step in constructing the new population is to reduce it in size to 20 chromosomes. We select from PS''
the best 20 chromosomes in terms of ACRTR satisfying the condition that one chromosome can have no more than
max_lim duplicates. We use the mutation operator to generate more chromosomes if the number of best
chromosomes that satisfy the above condition is less than 20.

As a summary, excluding the crossover, the parameters of our GA model are as follows: number of generations
(Ngen), population size (PS), number of elite chromosomes (Nelite), probability of crossover (Pc), probability of
mutation (Pm), and maximum number of duplicates for the chromosomes (max_lim).

3. The dataset

Our NFIs’ performance dataset consist of 11 indicators: 3 for the degree of capitalization, 4 for assets’ quality
and 4 for profitability. The data were collected quarterly from 2007 to 2012 for the NFIs registered in the Special
Register that have been active since the introduction of the regulatory framework for these institutions in Romania.
In total there were 68 NFIs that met the above criteria and 990 observations. Out of these 990 observations, 5
observations were discarded due to lack of data for certain financial indicators. In Table 1 we present the indicators
for each performance dimension:

Table 1. The performance dimension and the corresponding financial ratios

Dimension Indicators

Capital adequacy Equity ratio (Leverage) = own capital / total assets (net value)

Own capital / equity

Indebtedness sources = borrowings / total assets (net value)

Assets’ quality Loans granted to clients (net value) / total assets (net value)

Loan granted to clients (net value) / total borrowings

Past due and doubtful loans (net value) / total loans portfolio (net value)

Past due and doubtful claims (net value) / total assets (net value)

Profitability Return on assets (ROA) = net income / total assets (net value)

Return on equity (ROE) = net profit / equity

The rate of profit = gross profit / total revenues

Activity cost = total costs / total revenues

8 Adrian Costea / Procedia Economics and Finance 10 (2014) 4 – 9

4. Experiment

Our dataset that consist of 11x985 observations has been transformed by levelling the extreme values for each
variables in the [-20, 20] interval. We have done this in order to avoid the algorithms’ results being affected by these
extreme values.

In the next step, we apply FCM algorithm in order to build cluster with similar performance. We chose 4 clusters
as we have done with a version of the same dataset in our previous work.

The other parameters of FCM were as follows: m = 1.5, no_of_iterations = 10000, the limit for the stopping
criterion = 0.00001. After we run the FCM algorithm on the 11x985 dataset we obtained the following structure of
the clusters: cluster 1 (95 observations), cluster 2 (770 observations), cluster 3 (59 observations), and cluster 4 (61
observations). Based on the clusterization we have constructed the class variable by associating to each observation
the number of the cluster that the observation belongs to.

In order to have an uniform number of observations in each cluster to train the classification model we selected
59 observations (the number of observations in the smallest cluster) from each cluster, totalling 236 observations.
Also, at this stage, we have split the data in training (TR) and testing (TS) sets by selecting one testing instance for
every nine training instances. Thus, we obtained randomly 212 observations for training and the rest for testing (24
observations).

The next step of the methodology was to determine the proper ANN architecture based on the general procedure
described in Section 2. The final ANN architecture consisted of 8 neurons on the first hidden layer and 5 neurons on
the second hidden layer.

Next, we applied GAs to train the previously obtained network. The parameters used were number of generations
(Ngen = 1000), population size (PS = 20), number of elite chromosomes (Nelite = 3), probability of crossover (Pc =
0.8), probability of mutation (Pm = 0.01), and maximum number of duplicates for the chromosomes (max_lim = 1).

The choice of crossover probability as well as the other GA parameters (mutation probability, population size) is
more art than science. Tuson & Ross (1998) suggested that the proper choice of the crossover in the case of non-
adaptive GAs depends upon the population model, the problem to be solved, its representation and the performance
criterion being used. DeJong (1975) considers mutation probability to be inversely proportional to population size.
Hesser & Männer (1990) include in the calculation of mutation probability both population size and chromosome
length. Hoehn (1998) introduced mutation at both parental and offspring levels and implemented four GAs based on
the mutation probabilities for the two levels. The author finds that introducing parental mutation is generally
advantageous when compared to the standard GA with only offspring mutation. In our experiments we used both
parental and offspring mutation by applying mutation to both parents and their offsprings.

We obtained the following accuracy rates: effective training dataset accuracy rate (ACRTre) = 92.32 percent,
validation dataset accuracy rate (ACRVAL) = 91.34 percent, total training dataset accuracy rate (ACRTR) = 92.11
percent and testing dataset accuracy rate (ACRTS) = 89.55 percent. We obtained high accuracy rates and small
differences between training and testing accuracy rates. However, the setting of the Gas parameters has to be done
carefully in order for these high rates to be obtained in another context (another dataset).

5. Conclusions

In this study we train artificial neural networks with genetic algorithms in order to obtain performance
classification models that might be used to find the future performance of non-banking financial institutions in
Romania. As a first phase of our methodology we applied a clustering technique (FCM algorithm) in order to group
NFIs with similar performances. Then, using initialization, selection and reproduction mechanisms we trained a
neural network based on genetic learning. A brief rationale supported with references is given regarding the
parameters’ setting for the genetic algorithm.

We obtained high training and testing accuracy rates for the classifier and small differences between training and
testing accuracy rates. The reproduction of the process of natural selection (which forms the base for the genetic
learning) in addressing real problems is welcomed. However, the results have to be taken with some precaution,
given the genetic algorithms take long time to learn compared to other computational techniques such as

9 Adrian Costea / Procedia Economics and Finance 10 (2014) 4 – 9

backpropagation or other gradient-descent-like algorithms. The above classification model can be applied to
discriminate between “poor” and “good” performing NFIs, hence helping the supervision authority in its activities.

Acknowledgements

This work was supported from the European Social Fund through Sectoral Operational Programme Human
Resources Development 2007-2013, project number POSDRU/89/1.5/S/59184 „Performance and excellence in
postdoctoral research in Romanian economics science domain”.

References

Ankenbrandt, C.A., 1991. An extension to the theory of convergence and a proof of the time complexity of genetic algorithms, Proceedings of 4th
International Conference on Genetic Algorithm, pp. 53-68.

Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
DeJong, K.A., 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. dissertation, University of Michigan, Ann Arbor,

MI.
Dorsey, R.E., Mayer, W.J., 1995. Genetic Algorithms for Estimation Problems with Multiple Optima, Non-differentiability, and other Irregular

Features. Journal of Business and Economic Statistics 13(1), 53-66.
Fogel, G.B., D.G. Weekes, R. Sampath, Ecker, D.J., 2004. Parameter Optimization of an Evolutionary Algorithm for RNA Structure Discovery,

Proceedings of 2004 Congress on Evolutionary Computation, IEEE Press, Piscataway, NJ, pp. 607-613.
Han, J., Kamber, M., 2006. Data Mining: Concepts and Techniques, second edition, Morgan Kaufmann, 2006.
Hesser J., Männer, R., 1990. Towards an Optimal Mutation Probability for Genetic Algorithms, Proceedings of the 1st Workshop on Parallel

Problem Solving from Nature, Sringer-Verlag, October 01-03, pp.23-32.
Hoehn, P.T., 1998. Wolves in Sheep’s Clothing? The Effects of <<Hidden>> Parental Mutation on Genetic Algorithm Performances, Proceedings

of ACM 36th annual Southeast regional conference, pp. 221-227.
Miller J.F., Thomson, P., 1998. Aspects of Digital Evolution: Geometry and Learning, Proceedings of the 2nd International Conference on

Evolvable Systems - ICES98, September 23-25, 1998, EPFL, Lausanne, Switzerland.
Rudolph G., 1994. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 5, 96-101.
Shimodaira H., 1996. A New Genetic Algorithm Using Large Mutation Rates and Population-Elitist Selection (GALME), Proceedings of the 8th

International Conference on Tools with Artificial Intelligence (ICTAI '96), pp. 25-32.
Tuson A., Ross, P., 1998. Adapting Operator Settings in Genetic Algorithms. Evolutionary Computation 6(2), 161-184.

