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Abstract 

In this article we apply a fuzzy logic technique, namely Fuzzy C-Means clustering, and artificial intelligence algorithms for 
evaluating comparatively the financial performance of non-banking financial institutions (NFIs) in Romania. The NFIs’ 
performance dataset consists of indicators that define the capital adequacy, assets’ quality and profitability performance 
dimensions. The class performance variable is obtained by applying on the performance dataset the Fuzzy C-Means algorithm 
and obtaining clusters with similar performance. We attach to each input dataset observation a performance class depending on 
which cluster contains the observation given the characterization and hierarchy of the clusters in “good”, “medium” and “poor” 
performance clusters. Finally, we apply artificial neural networks (ANNs) trained with genetic algorithms in order to find a 
function that maps the input performance space on the newly constructed performance class variable. The classification model 
obtained can be used by different beneficiaries (e.g.: the Supervision Department of National Bank of Romania) to classify new 
NFIs as having a “good” or “poor” performance so that the limited resources of the supervision authority to be better allocated. 
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1. Introduction 

The non-banking financial institutions’ (NFIs’) sector has been recently regulated in Romania. The National Bank 
of Romania (NBR) proposed and the Parliament passed a series of provisions regarding the activities carried out by 
these entities in order to strengthen the stability of the financial sector as a whole. According to these provisions, the 
NBR is obliged to prudentially supervise the most important NFIs: those register in the NBR’ Special register. The 
other NFIs are monitored and only in special cases are further scrutinized. However, all NFIs have to report on their 
activity to the Supervision Department. One such reporting consists of periodic financial statements (PFSs) that a 
NFI has to sent to NBR quarterly. Currently, these PFSs are analysed manually by the inspectors from the 
department. Based on their assessment, NFIs that present difficulties are further scrutinized and, eventually, an on-
site inspection is organized. The scarce time and personnel resources of the Supervision Department and the need to 
balance the subjective interpretation of the inspectors motivate the use of some sorts of techniques that would 
classify the NFIs as having a “good” or “poor” performance. Based on these techniques we can build so-called 
classification models that might provide additional help in taking the decision for an on-site inspection. 

Data Mining techniques (Han & Kamber, 2006) can help with building the clustering/classification models. 
Clustering techniques can be used to find performance clusters within the NFIs’ performance dataset and 
classification techniques can be used to place a new NFI into a predefined cluster as data become available. In other 
words, clustering techniques have descriptive properties and classification techniques have prescriptive ones. 

In this article we apply the Fuzzy C-Means algorithm (Bezdek, 1981) and obtaining clusters with similar 
performance. We attach to each input dataset observation a performance class depending on which cluster contains 
the observation given the characterization and hierarchy of the clusters in “good”, “medium” and “poor” 
performance clusters. Finally, we apply artificial neural networks (ANNs) trained with genetic algorithms in order to 
find a function that maps the input performance space on the newly constructed performance class variable. In this 
way we overcome the problem of accommodating new NFIs on the performance map as data become available. 

Next, we present in more detail our methodology. Then, we present the NFIs’ performance dataset and our 
experiment on applying the Data Mining techniques on these data. Finally, we draw our conclusions. 

 

2.  Methodological framework 

We use Fuzzy C-Means (FCM) algorithm (Bezdek, 1981) to group the NFIs with similar characteristics. The FCM 
algorithm minimizes the following objective function, Jm(U, v): 
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where c is the number of clusters, n is the number of observations, fcU M is a fuzzy c-partition of the data set X, 
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is the Euclidean distance between the cluster center vi and observation xk for p attributes (financial ratios in our 
case), [1, )m  is the weighting exponent, and the following constraint holds 
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The solution for the FCM clustering consist of the final cluster centers and membership degrees of the 

observations. Once we obtain the final cluster centers and membership degrees we construct the performance class 
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variable by attaching to each observation a performance class depending on which cluster contains the observation. 
The number of clusters c and the weighting exponent m are parameters for FCM algorithm. 

Once we constructed the performance class variable we apply artificial neural networks (ANNs) trained using 
genetic algorithms to build the classification model. Firstly, we apply ANNs trained using normal gradient descent 
algorithms in order to find the best ANN architecture. The general procedure for determining the ANN architecture 
consists of the following steps: 
 split the dataset in training (TR) and test (TS) sets; 
 perform 3 experiments and for each experiment: 
○ split the training set in effective training (TRe) and validation (VAL) sets; 
○ vary the number of neurons in the first and second hidden layers (NH1, NH2) between 5 and 8 and for each 

combination perform 4 trainings follows: 
– initialize the ANN weights; 
– train the ANN; 
– calculate the mean squared errors for each set (TR, VAL, TR and TS); 

 we save the ANN architecture if the mean squared error for VAL is less than the one for TRe multiplied by a 
factor of 6/5. This condition has been imposed in order to avoid saving ANN architectures for which the effective 
training and validation mean squared error are too far from each other. 

 at the end, we obtain the best ANN architecture in terms of mean squared error for training (TR). 
Once we obtain the architecture, we can use genetic algorithms (GA) to train the network. Unlike the traditional 

gradient-descent training mechanisms, GAs are provided with a population of solutions, and by initialisation, 
selection and reproduction mechanisms, achieve potentially good solutions. All solutions (chromosomes) compete 
with each other to enter the new population. 

In the case of GA-based ANN training, the GA’s chromosome (solution) is the set of ANN weights after training 
represented as a vector. Next, we describe the GA steps performed to train the ANN. 

2.1. Initialisation and fitness evaluation 

The population size is a parameter of our models. It was set to PS = 20. Dorsey & Mayer (1995) suggest that this 
value is good enough for any grade of problem complexity. The first chromosome of the population is the set of 
weights obtained when determining the ANN architecture. The other 19 chromosomes are generated by training the 
ANN with the previously obtained architecture. Afterwards, the first generation of the algorithm may begin. The 
number of generations is related to the empirical formula suggested in Ankenbrandt (1991). Each chromosome is 
evaluated using the accuracy rate for the training set (ACRTR). 

2.2. Selection 

Firstly, the elitism technique is applied in the sense that the best Nelite chromosomes in terms of ACRTR are 
inserted into the new population. The rest of the chromosomes (20-Nelite) are selected based on the probability of 
selection (roulette wheel procedure) for each chromosome:  

 iTRiTRi ACRSUMACRP  :  
The higher the probability Pi for a chromosome is, the higher its chance of being drawn into the new population. 

We decided to employ elitist selection in our algorithms as a consequence of what was reported in the literature. 
Rudolph (1994), Miller & Thomson (1998), Shimodaira (1996), Fogel et al. (2004) are a few papers that prove the 
usefulness of using elitist selection. 

Next, 80 per cent (probability of crossover: Pc = 0.80) of the chromosomes obtained previously are randomly 
selected for mating. The probability of crossover is not essential for the performance of our algorithm as long as it 
has a high value. This is because after reproduction we increase the population to include both the parents and their 
offspring. 
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2.3. Reproduction 

The selected chromosomes are randomly paired and recombined to produce new solutions. There are two 
reproduction operators: crossover and mutation.  With the first the mates are recombined and newborn solutions 
inherit information from both parents. With the second operator new parts of the search space are explored and, 
consequently, we expect that new information will be introduced into the population. We used one-point crossover. 
For each pair of chromosomes we generate a random integer X, X   {1, L} where L is the chromosome length. The 
two new born children are constructed as follows: C1 = g11, g12, . . . , g1X, g2,X+1, . . . , g2L and C2 = g21, g22, . . . , g2X, 
g1,X+1, . . . , g1L 

The children chromosomes are added to the population. The size of the population becomes PS' > PS. Next, we 
apply the mutation operator for all the chromosomes in PS'. We used only uniform mutation and add the new 
obtained chromosomes into the new population obtaining PS'' > PS' > PS. The probability of mutation is set to Pm = 
0.01, which means that approximately one per cent of the genes will mutate for each chromosome. 

The final step in constructing the new population is to reduce it in size to 20 chromosomes. We select from PS'' 
the best 20 chromosomes in terms of ACRTR satisfying the condition that one chromosome can have no more than 
max_lim duplicates. We use the mutation operator to generate more chromosomes if the number of best 
chromosomes that satisfy the above condition is less than 20. 

As a summary, excluding the crossover, the parameters of our GA model are as follows: number of generations 
(Ngen), population size (PS), number of elite chromosomes (Nelite), probability of crossover (Pc), probability of 
mutation (Pm), and maximum number of duplicates for the chromosomes (max_lim). 

3. The dataset 

Our NFIs’ performance dataset consist of 11 indicators: 3 for the degree of capitalization, 4 for assets’ quality 
and 4 for profitability. The data were collected quarterly from 2007 to 2012 for the NFIs registered in the Special 
Register that have been active since the introduction of the regulatory framework for these institutions in Romania. 
In total there were 68 NFIs that met the above criteria and 990 observations. Out of these 990 observations, 5 
observations were discarded due to lack of data for certain financial indicators. In Table 1 we present the indicators 
for each performance dimension: 

Table 1. The performance dimension and the corresponding financial ratios 

Dimension Indicators 

Capital adequacy Equity ratio (Leverage) = own capital / total assets (net value) 

Own capital / equity 

Indebtedness sources = borrowings / total assets (net value) 

Assets’ quality Loans granted to clients (net value) / total assets (net value) 

Loan granted to clients (net value) / total borrowings 

Past due and doubtful loans (net value) / total loans portfolio (net value) 

Past due and doubtful claims (net value) / total assets (net value) 

Profitability Return on assets (ROA) = net income / total assets (net value) 

Return on equity (ROE) = net profit / equity 

The rate of profit = gross profit / total revenues 

Activity cost = total costs / total revenues 



8   Adrian Costea  /  Procedia Economics and Finance   10  ( 2014 )  4 – 9 

4. Experiment 

Our dataset that consist of 11x985 observations has been transformed by levelling the extreme values for each 
variables in the [-20, 20] interval. We have done this in order to avoid the algorithms’ results being affected by these 
extreme values.  

In the next step, we apply FCM algorithm in order to build cluster with similar performance. We chose 4 clusters 
as we have done with a version of the same dataset in our previous work. 

The other parameters of FCM were as follows: m = 1.5, no_of_iterations = 10000, the limit for the stopping 
criterion = 0.00001. After we run the FCM algorithm on the 11x985 dataset we obtained the following structure of 
the clusters: cluster 1 (95 observations), cluster 2 (770 observations), cluster 3 (59 observations), and cluster 4 (61 
observations). Based on the clusterization we have constructed the class variable by associating to each observation 
the number of the cluster that the observation belongs to. 

In order to have an uniform number of observations in each cluster to train the classification model we selected 
59 observations (the number of observations in the smallest cluster) from each cluster, totalling 236 observations. 
Also, at this stage, we have split the data in training (TR) and testing (TS) sets by selecting one testing instance for 
every nine training instances. Thus, we obtained randomly 212 observations for training and the rest for testing (24 
observations). 

The next step of the methodology was to determine the proper ANN architecture based on the general procedure 
described in Section 2. The final ANN architecture consisted of 8 neurons on the first hidden layer and 5 neurons on 
the second hidden layer. 

Next, we applied GAs to train the previously obtained network. The parameters used were number of generations 
(Ngen = 1000), population size (PS = 20), number of elite chromosomes (Nelite = 3), probability of crossover (Pc = 
0.8), probability of mutation (Pm = 0.01), and maximum number of duplicates for the chromosomes (max_lim = 1).  

The choice of crossover probability as well as the other GA parameters (mutation probability, population size) is 
more art than science.  Tuson & Ross (1998) suggested that the proper choice of the crossover in the case of non-
adaptive GAs depends upon the population model, the problem to be solved, its representation and the performance 
criterion being used. DeJong (1975) considers mutation probability to be inversely proportional to population size. 
Hesser & Männer (1990) include in the calculation of mutation probability both population size and chromosome 
length. Hoehn (1998) introduced mutation at both parental and offspring levels and implemented four GAs based on 
the mutation probabilities for the two levels. The author finds that introducing parental mutation is generally 
advantageous when compared to the standard GA with only offspring mutation. In our experiments we used both 
parental and offspring mutation by applying mutation to both parents and their offsprings. 

We obtained the following accuracy rates: effective training dataset accuracy rate (ACRTre) = 92.32 percent, 
validation dataset accuracy rate (ACRVAL) = 91.34 percent, total training dataset accuracy rate (ACRTR) = 92.11 
percent and testing dataset accuracy rate (ACRTS) = 89.55 percent. We obtained high accuracy rates and small 
differences between training and testing accuracy rates. However, the setting of the Gas parameters has to be done 
carefully in order for these high rates to be obtained in another context (another dataset). 

5. Conclusions 

In this study we train artificial neural networks with genetic algorithms in order to obtain performance 
classification models that might be used to find the future performance of non-banking financial institutions in 
Romania. As a first phase of our methodology we applied a clustering technique (FCM algorithm) in order to group 
NFIs with similar performances. Then, using initialization, selection and reproduction mechanisms we trained a 
neural network based on genetic learning. A brief rationale supported with references is given regarding the 
parameters’ setting for the genetic algorithm. 

We obtained high training and testing accuracy rates for the classifier and small differences between training and 
testing accuracy rates. The reproduction of the process of natural selection (which forms the base for the genetic 
learning) in addressing real problems is welcomed. However, the results have to be taken with some precaution, 
given the genetic algorithms take long time to learn compared to other computational techniques such as 
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backpropagation or other gradient-descent-like algorithms. The above classification model can be applied to 
discriminate between “poor” and “good” performing NFIs, hence helping the supervision authority in its activities. 
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